
mathematics

Article

Universal Function Approximation by Deep Neural
Nets with Bounded Width and ReLU Activations

Boris Hanin

Department of Mathematics, Texas A&M, College Station, TX 77843, USA; bhanin@math .tamu.edu

Received: 29 September 2019; Accepted: 16 October 2019; Published: 18 October 2019
����������
�������

Abstract: This article concerns the expressive power of depth in neural nets with ReLU activations
and a bounded width. We are particularly interested in the following questions: What is the minimal
width wmin(d) so that ReLU nets of width wmin(d) (and arbitrary depth) can approximate any
continuous function on the unit cube [0, 1]d arbitrarily well? For ReLU nets near this minimal width,
what can one say about the depth necessary to approximate a given function? We obtain an essentially
complete answer to these questions for convex functions. Our approach is based on the observation
that, due to the convexity of the ReLU activation, ReLU nets are particularly well suited to represent
convex functions. In particular, we prove that ReLU nets with width d + 1 can approximate any
continuous convex function of d variables arbitrarily well. These results then give quantitative depth
estimates for the rate of approximation of any continuous scalar function on the d-dimensional cube
[0, 1]d by ReLU nets with width d + 3.

Keywords: Deep Neural Nets; ReLU Networks; Approximation Theory

1. Introduction

Over the past several years, neural nets, particularly deep nets, have become the
state-of-the-art in a remarkable number of machine learning problems, from mastering go to image
recognition/segmentation and machine translation (see the review article [1] for more background).
Despite all their practical successes, a robust theory of why they work so well is in its infancy. Much
of the work to date has focused on the problem of explaining and quantifying the expressivity (the
ability to approximate a rich class of functions) of deep neural nets [2–11]. Expressivity can be seen
both as an effect of both depth and width. It has been known since at least the work of Cybenko [12]
and Hornik-Stinchcombe-White [13] that if no constraint is placed on the width of a hidden layer, then
a single hidden layer is enough to approximate essentially any function. The purpose of this article,
in contrast, is to investigate the “effect of depth without the aid of width.” More precisely, for each
d ≥ 1, we would like to estimate:

wmin(d) := min

{
w ∈ N

∣∣∣∣ ReLU nets of width w can approximate any
positive continuous function on [0, 1]d arbitrarily well

}
. (1)

Here, N = {0, 1, 2, . . .} are the natural numbers and ReLU is the so-called “rectified linear unit,”
ReLU(t) = max{0, t}, which is the most popular non-linearity used in practice (see (4) for the exact
definition). In Theorem 1, we prove that ωmin(d) ≤ d + 2. This raises two questions:

Q1. Is the estimate in the previous line sharp?

Q2. How efficiently can ReLU nets of a given width w ≥ wmin(d) approximate a given continuous
function of d variables?

Mathematics 2019, 7, 992; doi:10.3390/math7100992 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math7100992
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/10/992?type=check_update&version=2

Mathematics 2019, 7, 992 2 of 9

A priori, it is not clear how to estimate ωmin(d) and whether it is even finite. One of the
contributions of this article is to provide reasonable bounds on ωmin(d) (see Theorem 1). Moreover,
we also provide quantitative estimates on the corresponding rate of approximation. On the subject
of Q1, we will prove in forthcoming work with M.Sellke [14] that in fact, ωmin(d) = d + 1. When
d = 1, the lower bound is simple to check, and the upper bound follows for example from Theorem 3.1
in [5]. The main results in this article, however, concern Q1 and Q2 for convex functions. For instance,
we prove in Theorem 1 that:

wconv
min (d) ≤ d + 1, (2)

where:

wconv
min (d) := min

{
w ∈ N

∣∣∣∣ ReLU nets of width w can approximate any
positive convex function on [0, 1]d arbitrarily well

}
. (3)

This illustrates a central point of the present paper: the convexity of the ReLU activation makes
ReLU nets well-adapted to representing convex functions on [0, 1]d.

Theorem 1 also addresses Q2 by providing quantitative estimates on the depth of a ReLU net
with width d + 1 that approximates a given convex function. We provide similar depth estimates
for arbitrary continuous functions on [0, 1]d, but this time for nets of width d + 3. Several of our
depth estimates are based on the work of Balázs-György-Szepesvári [15] on max-affine estimators in
convex regression.

In order to prove Theorem 1, we must understand what functions can be exactly computed by a
ReLU net. Such functions are always piecewise affine, and we prove in Theorem 2 the converse: every
piecewise affine function on [0, 1]d can be exactly represented by a ReLU net with hidden layer width at
most d+ 3. Moreover, we prove that the depth of the network that computes such a function is bounded
by the number affine pieces it contains. This extends the results of Arora-Basu-Mianjy-Mukherjee
(e.g., Theorem 2.1 and Corollary 2.2 in [2]).

Convex functions again play a special role. We show that every convex function on [0, 1]d that is
piecewise affine with N pieces can be represented exactly by a ReLU net with width d + 1 and depth N.

2. Statement of Results

To state our results precisely, we set notation and recall several definitions. For d ≥ 1 and a
continuous function f : [0, 1]d → R, write:

‖ f ‖C0 := sup
x∈[0,1]d

| f (x)| .

Further, denote by:
ω f (ε) := sup{| f (x)− f (y)| | |x− y| ≤ ε}

the modulus of continuity of f , whose value at ε is the maximum that f can change when its
argument moves by at most ε. Note that by the definition of a continuous function, ω f (ε) → 0
as ε→ 0. Next, given din, dout, and w ≥ 1, we define a feed-forward neural net with ReLU activations,
input dimension din, hidden layer width w, depth n, and output dimension dout to be any member of
the finite-dimensional family of functions:

ReLU ◦An ◦ · · · ◦ ReLU ◦A1 ◦ ReLU ◦A1 (4)

that map Rd to Rdout
+ = {x =

(
x1, . . . , xdout

)
∈ Rdout | xi ≥ 0}. In (4),

Aj : Rw → Rw, j = 2, . . . , n− 1, A1 : Rdin → Rw, An : Rw → Rdout

Mathematics 2019, 7, 992 3 of 9

are affine transformations, and for every m ≥ 1:

ReLU(x1, . . . , xm) = (max{0, x1}, . . . , max{0, xm}) .

We often denote such a net by N and write:

fN (x) := ReLU ◦An ◦ · · · ◦ ReLU ◦A1 ◦ ReLU ◦A1(x)

for the function it computes. Our first result contrasts both the width and depth required to
approximate continuous, convex, and smooth functions by ReLU nets.

Theorem 1. Let d ≥ 1 and f : [0, 1]d → R+ be a positive function with ‖ f ‖C0 = 1. We have the following
three cases:

1. (f is continuous) There exists a sequence of feed-forward neural nets Nk with ReLU activations, input
dimension d, hidden layer width d + 2, and output dimension 1, such that:

lim
k→∞

∥∥ f − fNk

∥∥
C0 = 0. (5)

In particular, wmin(d) ≤ d + 2. Moreover, write ω f for the modulus of continuity of f , and fix ε > 0.
There exists a feed-forward neural net Nε with ReLU activations, input dimension d, hidden layer width
d + 3, output dimension 1, and:

depth (Nε) =
2 · d!

ω f (ε)d (6)

such that:
‖ f − fNε‖C0 ≤ ε. (7)

2. (f is convex) There exists a sequence of feed-forward neural netsNk with ReLU activations, input dimension
d, hidden layer width d + 1, and output dimension 1, such that:

lim
k→∞

∥∥ f − fNk

∥∥
C0 = 0. (8)

Hence, ωconv
min (d) ≤ d + 1. Further, there exists C > 0 such that if f is both convex and Lipschitz with

Lipschitz constant L, then the nets Nk in (8) can be taken to satisfy:

depth (Nk) = k + 1,
∥∥ f − fNk

∥∥
C0 ≤ CLd3/2k−2/d. (9)

3. (f is smooth) There exists a constant K depending only on d and a constant C depending only on the
maximum of the first K derivative of f such that for every k ≥ 3, the width d + 2 nets Nk in (5) can be
chosen so that:

depth(Nk) = k,
∥∥ f − fNk

∥∥
C0 ≤ C (k− 2)−1/d . (10)

The main novelty of Theorem 1 is the width estimate wconv
min (d) ≤ d + 1 and the quantitative

depth estimates (9) for convex functions, as well as the analogous estimates (6) and (7) for continuous
functions. Let us briefly explain the origin of the other estimates. The relation (5) and the corresponding
estimate wmin(d) ≤ d + 2 are a combination of the well-known fact that ReLU nets with one hidden
layer can approximate any continuous function and a simple procedure by which a ReLU net with input
dimension d and a single hidden layer of width n can be replaced by another ReLU net that computes
the same function, but has depth n + 2 and width d + 2. For these width d + 2 nets, we are unaware of
how to obtain quantitative estimates on the depth required to approximate a fixed continuous function
to a given precision. At the expense of changing the width of our ReLU nets from d + 2 to d + 3,
however, we furnish the estimates (6) and (7). On the other hand, using Theorem 3.1 in [5], when f is

Mathematics 2019, 7, 992 4 of 9

sufficiently smooth, we obtain the depth estimates (10) for width d + 2 ReLU nets. Indeed, since we are
working on a compact set [0, 1]d, the smoothness classes Ww,q,γ from [5] reduce to classes of functions
that have sufficiently many bounded derivatives.

Our next result concerns the exact representation of piecewise affine functions by ReLU nets.
Instead of measuring the complexity of such a function by its Lipschitz constant or modulus of
continuity, the complexity of a piecewise affine function can be thought of as the minimal number of
affine pieces needed to define it.

Theorem 2. Let d ≥ 1 and f : [0, 1]d → R+ be the function computed by some ReLU net with input
dimension d, output dimension 1, and arbitrary width. There exist affine functions gα, hβ : [0, 1]d → R such
that f can be written as the difference of positive convex functions:

f = g− h, g := max
1≤α≤N

gα, h := max
1≤β≤M

hβ. (11)

Moreover, there exists a feed-forward neural net N with ReLU activations, input dimension d, hidden
layer width d + 3, output dimension 1, and:

depth (N) = 2(M + N) (12)

that computes f exactly. Finally, if f is convex (and hence, h vanishes), then the width of N can be taken to be
d + 1, and the depth can be taken to be N.

The fact that the function computed by a ReLU net can be written as (11) follows from Theorem 2.1
in [2]. The novelty in Theorem 2 is therefore the uniform width estimate d + 3 in the representation on
any function computed by a ReLU net and the d + 1 width estimate for convex functions. Theorem 2
will be used in the proof of Theorem 1.

3. Relation to Previous Work

This article is related to several strands of prior work:

1. Theorems 1 and 2 are “deep and narrow” analogs of the well-known “shallow and wide” universal
approximation results (e.g., Cybenko [12] and Hornik-Stinchcombe-White [13]) for feed-forward
neural nets. Those articles show that essentially any scalar function f : [0, 1]d → R on the
d-dimensional unit cube can be arbitrarily well approximated by a feed-forward neural net
with a single hidden layer with arbitrary width. Such results hold for a wide class of nonlinear
activations, but are not particularly illuminating from the point of understanding the expressive
advantages of depth in neural nets.

2. The results in this article complement the work of Liao-Mhaskar-Poggio [3] and
Mhaskar-Poggio [5], who considered the advantages of depth for representing certain hierarchical
or compositional functions by neural nets with both ReLU and non-ReLU activations. Their
results (e.g., Theorem 1 in [3] and Theorem 3.1 in [5]) give bounds on the width for approximation
both for shallow and certain deep hierarchical nets.

3. Theorems 1 and 2 are also quantitative analogs of Corollary 2.2 and Theorem 2.4 in the work of
Arora-Basu-Mianjy-Mukerjee [2]. Their results give bounds on the depth of a ReLU net needed to
compute exactly a piecewise linear function of d variables. However, except when d = 1, they do
not obtain an estimate on the number of neurons in such a network and hence cannot bound the
width of the hidden layers.

4. Our results are related to Theorems II.1 and II.4 of Rolnick-Tegmark [16], which are themselves
extensions of Lin-Rolnick-Tegmark [4]. Their results give lower bounds on the total size (number
of neurons) of a neural net (with non-ReLU activations) that approximates sparse multivariable
polynomials. Their bounds do not imply a control on the width of such networks that depends
only on the number of variables, however.

Mathematics 2019, 7, 992 5 of 9

5. This work was inspired in part by questions raised in the work of Telgarsky [8–10]. In particular,
in Theorems 1.1 and 1.2 of [8], Telgarsky constructed interesting examples of sawtooth functions
that can be computed efficiently by deep width 2 ReLU nets that cannot be well approximated by
shallower networks with a similar number of parameters.

6. Theorems 1 and 2 are quantitative statements about the expressive power of depth without the
aid of width. This topic, usually without considering bounds on the width, has been taken up
by many authors. We refer the reader to [6,7] for several interesting quantitative measures of the
complexity of functions computed by deep neural nets.

7. Finally, we refer the reader to the interesting work of Yarofsky [11], which provides bounds on
the total number of parameters in a ReLU net needed to approximate a given class of functions
(mainly balls in various Sobolev spaces).

4. Proof of Theorem 2

Proof of Theorem 2. We first treat the case:

f = sup
1≤α≤N

gα, gα : [0, 1]d → R affine

when f is convex. We seek to show that f can be exactly represented by a ReLU net with input
dimension d, hidden layer width d + 1, and depth N. Our proof relies on the following observation.

Lemma 1. Fix d ≥ 1, and let T : Rd
+ → R be an arbitrary function and L : Rd → R be affine. Define an

invertible affine transformation A : Rd+1 → Rd+1 by:

A(x, y) = (x, L(x) + y) .

Then, the image of the graph of T under:

A ◦ ReLU ◦A−1

is the graph of x 7→ max{T(x), L(x)}, viewed as a function on Rd
+.

Proof. We have A−1(x, y) = (x,−L(x) + y). Hence, for each x ∈ Rd
+, we have:

A ◦ ReLU ◦A−1(x, T(x)) =
(

x, (T(x)− L(x)) 1{T(x)−L(x)>0} + L(x)
)

= (x, max{T(x), L(x)}) .

We now construct a neural net that computes f . We note that the construction is potentially
applicable to the study of avoiding sets (see the work of Shang [17]). Define invertible affine functions
Aα : Rd+1 → Rd+1 by:

Aα(x, xd+1) := (x, gα(x) + xd+1) , x = (x1, . . . , xd),

and set:
Hα := Aα ◦ ReLU ◦A−1

α .

Further, define:
Hout := ReLU ◦ 〈~ed+1, ·〉 (13)

Mathematics 2019, 7, 992 6 of 9

where~ed+1 is the (d + 1)th standard basis vector so that 〈~ed+1, ·〉 is the linear map from Rd+1 to R that
maps (x1, . . . , xd+1) to xd+1. Finally, set:

Hin := ReLU ◦ (id, 0) ,

where (id, 0) (x) = (x, 0) maps [0, 1]d to the graph of the zero function. Note that the ReLU in this
initial layer is linear. With this notation, repeatedly using Lemma 1, we find that:

Hout ◦ HN ◦ · · · ◦ H1 ◦ Hin

therefore has input dimension d, hidden layer width d + 1, depth N, and computes f exactly.

Next, consider the general case when f is given by:

f = g− h, g = sup
1≤α≤N

gα, h = sup
1≤β≤M

hβ

as in (11). For this situation, we use a different way of computing the maximum using ReLU nets.

Lemma 2. There exists a ReLU netM with input dimension 2, hidden layer width 2, output dimension 1, and
depth 2 such that:

M (x, y) = max{x, y}, x ∈ R, y ∈ R+.

Proof. Set A1(x, y) := (x− y, y), A2(z, w) = z + w, and define:

M = ReLU ◦A2 ◦ ReLU ◦A1.

We have for each y ≥ 0, x ∈ R:

fM(x, y) = ReLU((x− y)1{x−y>0} + y) = max{x, y},

as desired.

We now describe how to construct a ReLU net N with input dimension d, hidden layer width
d + 3, output dimension 1, and depth 2(M + N) that exactly computes f . We use width d to copy the
input x, width 2 to compute successive maximums of the positive affine functions gα, hβ using the net
M from Lemma 2 above, and width 1 as memory in which we store g = supα gα while computing
h = supβ hβ. The final layer computes the difference f = g− h.

5. Proof of Theorem 1

Proof of Theorem 1. We begin by showing (8) and (9). Suppose f : [0, 1]d → R+ is convex, and fix
ε > 0. A simple discretization argument shows that there exists a piecewise affine convex function
g : [0, 1]d → R+ such that ‖ f − g‖C0 ≤ ε. By Theorem 2, g can be exactly represented by a ReLU net
with hidden layer width d + 1. This proves (8). In the case that f is Lipschitz, we use the following,
a special case of Lemma 4.1 in [15].

Proposition 1. Suppose f : [0, 1]d → R is convex and Lipschitz with Lipschitz constant L. Then, for every
k ≥ 1, there exist k affine maps Aj : [0, 1]d → R such that:∥∥∥∥∥ f − sup

1≤j≤k
Aj

∥∥∥∥∥
C0

≤ 72L d3/2k−2/d.

Mathematics 2019, 7, 992 7 of 9

Combining this result with Theorem 2 proves (9). We turn to checking (5) and (10). We need the
following observations, which seems to be well known, but not written down in the literature.

Lemma 3. LetN be a ReLU net with input dimension d, a single hidden layer of width n, and output dimension
1. There exists another ReLU net Ñ that computes the same function as N , but has input dimension d and
n + 2 hidden layers with width d + 2.

Proof. Denote by {Aj}n
j=1 the affine functions computed by each neuron in the hidden layer of N

so that:

fN (x) = ReLU

(
b +

n

∑
j=1

cj ReLU(Aj(x))

)
.

Let T > 0 be sufficiently large so that:

T +
k

∑
j=1

cj ReLU(Aj(x)) > 0, ∀1 ≤ k ≤ n, x ∈ [0, 1]d.

The affine transformations Ãj computed by the jth hidden layer of Ñ are then:

Ã1(x) :=
(

x, Aj(x), T
)

and Ãn+2(x, y, z) = z− T + b, x ∈ Rd, y, z ∈ R

and:
Ãj(x, y, z) =

(
x, Aj(x), z + cj−1y

)
, j = 2, . . . , n + 1.

We are essentially using width d to copy in the input variable, width 1 to compute each Aj, and
width 1 to store the output.

Recall that positive continuous functions can be arbitrarily well approximated by smooth functions
and hence by ReLU nets with a single hidden layer (see, e.g., Theorem 3.1 [5]). The relation (5) therefore
follows from Lemma 3. Similarly, by Theorem 3.1 in [5], if f is smooth, then there exists K = K(d) > 0
and a constant C f depending only on the maximum value of the first K derivatives of f such that:

inf
N
‖ f − fN ‖ ≤ C f n−1/d,

where the infimum is over ReLU nets N with a single hidden layer of width n. Combining this with
Lemma 3 proves (10).

It remains to prove (6) and (7). To do this, fix a positive continuous function f : [0, 1]d → R+ with
modulus of continuity ω f . Recall that the volume of the unit d-simplex is 1/d!, and fix ε > 0. Consider
the partition:

[0, 1]d =

d!/ω f (ε)
d⋃

j=1

Pj

of [0, 1]d into d!/ω f (ε)
d copies of ω f (ε) times the standard d-simplex. Here, each Pj denotes a single

scaled copy of the unit simplex. To create this partition, we first sub-divide [0, 1]d into at most ω f (ε)
−d

cubes of side length at most ω f (ε). Then, we subdivide each such smaller cube into d! copies of
the standard simplex (which has volume 1/d!) rescaled to have side length ω f (ε). Define fε to be a
piecewise linear approximation to f obtained by setting fε equal to f on the vertices of the Pj’s and
taking fε to be affine on their interiors. Since the diameter of each Pj is ω f (ε), we have:

‖ f − fε‖C0 ≤ ε.

Mathematics 2019, 7, 992 8 of 9

Next, since fε is a piecewise affine function, by Theorem 2.1 in [2] (see Theorem 2), we may write:

fε = gε − hε,

where gε, hε are convex, positive, and piecewise affine. Applying Theorem 2 completes the proof of (6)
and (7).

6. Conclusions

We considered in this article the expressive power of ReLU networks with bounded hidden layer
widths. In particular, we showed that ReLU networks of width d + 3 and arbitrary depth are capable of
arbitrarily good approximations of any scalar continuous function of d variables. We showed further
that this bound could be reduced to d + 1 in the case of convex functions and gave quantitative rates
of approximation in all cases. Our results show that deep ReLU networks, even at a moderate width,
are universal function approximators. Our work leaves open the question of whether such function
representations can be learned by (stochastic) gradient descent from a random initialization. We will
take up this topic in future work.

Funding: This research was funded by NSF Grants DMS-1855684 and CCF-1934904.

Acknowledgments: It is a pleasure to thank Elchanan Mossel and Leonid Hanin for many helpful discussions.
This paper originated while I attended EM’s class on deep learning [18]. In particular, I would like to thank him
for suggesting proving quantitative bounds in Theorem 2 and for suggesting that a lower bound can be obtained
by taking piece-wise linear functions with many different directions. He also pointed out that the width estimates
for the continuous function in Theorem 1 were sub-optimal in a previous draft. I would also like to thank Leonid
Hanin for detailed comments on several previous drafts and for useful references to the results in approximation
theory. I am also grateful to Brandon Rule and Matus Telgarsky for comments on an earlier version of this article.
I am also grateful to BR for the original suggestion to investigate the expressivity of neural nets of width two.
I also would like to thank Max Kleiman-Weiner for useful comments and discussion. Finally, I thank Zhou Lu
for pointing out a serious error what used to be Theorem 3 in a previous version of this article. I have removed
that result.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bengio, Y.; Hinton, G.; LeCun, Y. Deep learning. Nature 2015, 521, 436–444.
2. Arora, R.; Basu, A.; Mianjy, P.; Mukherjee, A. Understanding deep neural networks with Rectified Linear

Units. In Proceedings of the International Conference on Representation Learning, Vancouver, BC, Canada,
30 April 30–3 May 2018.

3. Liao, Q.; Mhaskar, H.; Poggio, T. Learning functions: When is deep better than shallow. arXiv 2016,
arXiv:1603.00988v4.

4. Lin, H.; Rolnick, D.; Tegmark, M. Why does deep and cheap learning work so well? arXiv 2016,
arXiv:1608.08225v3.

5. Mhaskar, H.; Poggio, T. Deep vs. shallow networks: An approximation theory perspective Anal. Appl. 2016,
14, 829–848. [CrossRef]

6. Poole, B.; Lahiri, S.; Raghu, M.; Sohl-Dickstein, J.; Ganguli, S. Exponential expressivity in deep neural
networks through transient chaos. Adv. Neural Inf. Process. Syst. 2016, 29, 3360–3368.

7. Raghu, M.; Poole, B.; Kleinberg, J.; Ganguli, S.; Dickstein, J. On the expressive power of deep neural nets.
In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August
2017; Volume 70, pp. 2847–2854.

8. Telgrasky, M. Representation benefits of deep feedforward networks. arXiv 2015, arXiv:1509.08101.
9. Telgrasky, M. Benefits of depth in neural nets. In Proceedings of the JMLR: Workshop and Conference

Proceedings, New York, NY, USA, 19 June 2016; Volume 49, pp. 1–23.
10. Telgrasky, M. Neural networks and rational functions. In Proceedings of the 34th International Conference

on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 3387–3393.

http://dx.doi.org/10.1142/S0219530516400042

Mathematics 2019, 7, 992 9 of 9

11. Yarotsky, D. Error bounds for approximations with deep ReLU network. Neural Netw. 2017, 94, 103–114.
[CrossRef] [PubMed]

12. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. (MCSS)
1989, 2, 303–314. [CrossRef]

13. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators.
J. Neural Netw. 1989, 2, 359–366 [CrossRef]

14. Hanin, B.; Sellke, M. Approximating Continuous Functions by ReLU Nets of Minimal Width. arXiv 2017,
arXiv:1710.11278.

15. Balázs, G.; György, A.; Szepesvári, C. Near-optimal max-affine estimators for convex regression.
In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, San Diego,
CA, USA, 9–12 May 2015; Volume 38, pp. 56–64.

16. Rolnick, D.; Tegmark, M. The power of deeper networks for expressing natural functions. In Proceedings of
International Conference on Representation Learning, Vancouver, BC, Canada, 30 April–3 May 2018.

17. Shang, Y. A combinatorial necessary and sufficient condition for cluster consensus. Neurocomputing 2016,
216, 611–616. [CrossRef]

18. Mossel, E. Mathematical Aspects of Deep Learning. Available online: http://elmos.scripts.mit.edu/
mathofdeeplearning/mathematical-aspects-of-deep-learning-intro/ (accessed on 10 September 2019)

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neunet.2017.07.002
http://www.ncbi.nlm.nih.gov/pubmed/28756334
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1016/j.neucom.2016.08.025
http://elmos.scripts.mit.edu/mathofdeeplearning/mathematical-aspects-of-deep-learning-intro/
http://elmos.scripts.mit.edu/mathofdeeplearning/mathematical-aspects-of-deep-learning-intro/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Statement of Results
	Relation to Previous Work
	Proof of Theorem 2
	Proof of Theorem 1
	Conclusions
	References

