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Abstract: This paper presents the control of a quadrotor with a cable-suspended payload.
The proposed control structure is a hierarchical scheme consisting of an energy-based control
(EBC) to stabilize the vehicle translational dynamics and to attenuate the payload oscillation,
together with a nonlinear state feedback controller based on an linear matrix inequality (LMI)
to control the quadrotor rotational dynamics. The payload swing control is based on an energy
approach and the passivity properties of the system’s translational dynamics. The main advantage of
the proposed EBC strategy is that it does not require excessive computations and complex partial
differential equations (PDEs) for implementing the control algorithm. We present a new methodology
for using an LMI to synthesize the controller gains for Lipschitz nonlinear systems with larger
Lipschitz constants than other classical techniques based on LMIs. This theoretical approach is
applied to the quadrotor rotational dynamics. Stability proofs based on the Lyapunov theory for
the controller design are presented. The designed control scheme allows for the stabilization of
the system in all its states for the three-dimensional case. Numerical simulations demonstrating
the effectiveness of the controller are provided.

Keywords: energy-based control; payload swing attenuation; linear matrix inequalities; quadrotor;
larger Lipschitz constants

1. Introduction

In recent years, systems for the transportation of suspended-payload using unmanned aerial
vehicles (UAVs) have attracted research interest. Some important applications are described in [1].
Quadrotor vehicles exhibit complex dynamic behavior, and if a cable-suspended payload is added to
a quadrotor, it increases the complexity of the system because additional degrees of freedom (DOFs)
due to the payload oscillation are introduced. Moreover, if uncontrolled, a cable-suspended payload
changes the dynamics of the flying vehicle and it can result in an unstable system.

Recently, some control methodologies have been developed to attenuate the payload swing and to
solve the general problem of a quadrotor carrying a cable-suspended payload. For example, a control
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algorithm based on a backstepping strategy is obtained in [2], that ensures trajectory tracking of
the quadrotor regardless of the payload swing. However, attitude control of the UAV is not considered.
Additionally, a control design for a two-dimensional quadrotor with a cable-suspended payload that
enables tracking of the vehicle rotation, the payload rotation, or the payload position is presented
in [3], and it was extended to the three-dimensional case in [4].

In [5], the authors develop a nested saturation controller capable of driving the vehicle to
a specified position while simultaneously limiting the payload dynamic effect. For this work,
Nicotra et al. considered the design for the two-dimensional case only and the attitude control of
the vehicle was not considered. Moreover, a feed-forward control algorithm for reducing or canceling
the payload’s oscillation is introduced in [6]. This controller was designed by implementing the input
shaping theory. In [7], the authors present a geometric controller to exponentially stabilize the aerial
robot position while aligning the links vertically below the vehicle. Similarly, a tracking control law
for a UAV with a load attached by a cable represented as successively-attached inflexible links was
designed in [8]. A fixed-gain geometric PD control strategy is developed to reach the desired goal for
a nominal load. An adaptive control law for an aerial robot carrying a payload attached using a cable
was presented in [9]. In [10], an algorithm for parameterizing aerial vehicles transporting a payload
employing a complementary constraint is presented. A nonlinear attitude controller is developed
in [11] to stabilize the altitude, and the translational dynamics control law is introduced by converting
the vehicle velocity and position error into rotation control. Rego and Raffo [12] address trajectory
tracking for a two-dimensional aerial robot transporting a payload. A discrete-time mixed H2/H∞
linear control strategy is presented. In [13], an active-model-based linear controller is designed for
a UAV transporting a payload. A linear model is obtained considering the vehicle in hover flight
mode. In [14], a path tracking controller is developed based on existing Lyapunov-based path tracking
control laws for free-flying aerial vehicles, which are further backstepped through the vehicle rotation
dynamics.

A passivity-based control technique is used in [15] to control the UAV such that cable-suspended
payload swing reduction is achieved for the planar case. Here, the attitude control of the vehicle is
not considered. Also, interconnection and damping assignment passivity-based control (IDA-PBC)
without total energy-shaping for a UAV transporting a cable-suspended payload for planar maneuvers
is developed in [16,17]. Two control laws with total energy-shaping are presented in [18],
where the closed-loop inertia matrices are modified. These works compute PDEs for synthesizing
the control law. For this reason, the control strategy is only designed within the longitudinal plane.
The control design for the three-dimensional case yields complex partial differential equations (PDEs).

In the literature, unmanned aerial vehicles have been controlled using energy-based controllers.
In [19], the design of two nonlinear controllers to stabilize an aerial vehicle characterized with
quaternions and their axis-angle depiction is studied. Also, [20] introduces a PBC for a vertical
take-off and landing (VToL) vehicle. An estimator of unmodelled dynamics and external wrench
acting on the UAV and based on the momentum of the system is used to compensate such disturbance
effects. Moreover, [21] develops an IDA-PBC methodology that is able to change the apparent vehicle
dynamical parameters, while [22] proposes a robust control of underactuated aerial manipulators
via IDA-PBC.

On the other hand, some works apply control strategies based on linear matrix inequalities to
UAVs. In [23], a method for using LMIs to synthesize controller gains for a UAV system is presented.
In [24], a nonlinear state feedback controller based on LMIs, and a technique with pole placement
constraint (PDC) is synthesized. The requirements of stability and pole placement in the linear matrix
inequality (LMI) region are formulated based on the Lyapunov direct method.

In this work, the control approach is based on a hierarchical scheme considering the well-known
time-scale separation between rotational and translational dynamics of the quadrotor. On one hand,
the objective of this paper was to design an energy-based control law for the outer-loop (i.e., for the
underactuated dynamics of the system). This control law is proposed for the three-dimensional case,
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and it is based on the translation dynamics, which is able to lead the vehicle to a desired position while
simultaneously reducing the payload swing. Compared with similar works that present control laws
based on passivity and energy, particularly for underactuated systems, the proposed controller avoids
solving complex PDEs to obtain the control law. On the other hand, a feedback controller based on
an LMI for the inner loop which is fully actuated is presented. The controller based on an LMI for
the rotational dynamics results in a control algorithm with relative simplicity and with an easy analysis
to demonstrate its stability.

The contribution of this paper is the synthesis of a new controller for a class of Lipschitz nonlinear
systems. An important limitation of the classic results for Lipschitz nonlinear systems is that they
perform well only for small values of the Lipschitz constant. In the case when the Lipschitz constant
is large, most of the existing controller design approaches fail to contribute a solution to the LMI.
This article introduces an algorithm that operates for larger Lipschitz constants compared with classical
results in the literature.

This paper is organized as follows. Section 2 describes the dynamical model for
a three-dimensional aerial vehicle carrying a payload. Section 3 presents an approach for LMI-based
Lipschitz nonlinear systems. This theoretical approach is applied to stabilize the quadrotor rotational
dynamics. Section 4 proposes an energy-based control to stabilize the vehicle translational dynamics
and to attenuate the payload swing. Section 5 presents numerical simulations and results. Finally,
Section 6 gives conclusions and perspectives.

2. Dynamic Model

In this section, we present the mathematical model of a quadrotor transporting a payload
connected by a cable. The aim is to present a dynamic model that mathematically describes
the relationship between the quadrotor, the cable, and the payload. For this purpose, consider
a rigid body with mass m, being transported by a quadrotor as shown in Figure 1. Note that in addition
to the six DOFs of the UAV, the payload adds another two DOFs, resulting in a system with eight
DOFs and four inputs.
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Figure 1. Three-dimensional quadrotor with a cable-suspended payload.

The following assumptions were made for modeling the quadrotor with a cable-suspended payload:

(a) The cable is attached to the center of mass of the quadrotor and the air drag is negligible.
(b) The cable connecting the payload and the quadrotor fuselage is considered rigid, massless,

and inelastic.
(c) The payload can be considered as a mass point.
(d) Mass distribution of the quadrotor is symmetrical in the x-y plane.

As shown in Figure 1, the body-fixed frame is defined by B = {e1, e2, e3} and the inertial frame

by O =
{

ex, ey, ez
}

. The location of the mass center of the vehicle relative to O is represented by
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ξ =
[

x y z
]T

, the attitude of the quadrotor is denoted by η =
[

ψ θ φ
]T

(i.e., yaw, pitch,
and roll, respectively). α defines the payload swing angle in space and has two components αx and αy,

µ =
[

αx αy

]T
. αx is the swing angle projected on the XZ plane and αy is the swing angle projected

on the YZ plane, β represents the angle of the X axis and the projected line of the cable to the Y plane.

Thus, the state vector is denoted by q =
[

x y z ψ θ φ αx αy

]T
∈ R8. The control input is

represented by u =
[

f τ
]T
∈ R4, where f = f1 + f2 + f3 + f4 defines the total thrust magnitude

and τ =
[

τψ τθ τφ

]T
denotes the input torques.

The mass of the quadrotor and the payload are defined by M and m, respectively. The length
of the cable is represented by l, the gravitational acceleration by g. Finally, the distance between
the motors and the gravity center is equal to d.

In this work, the system is modeled using the Euler–Lagrange formulation.

2.1. Euler–Lagrange Formulation

Let ξp =
[

xp yp zp

]T
∈ R3 be the payload position in the inertial frame. Thus, the quadrotor

and payload positions are related by
ξp = ξ + lp,

where
p = [ sin(αx) cos(αy) sin(αy) − cos(αx) cos(αy) ]T .

The equations of motion are obtained using the Euler–Lagrange method. The kinetic energy of
the payload-quadrotor system is given by

KQ−P =
1
2

Mξ̇T ξ̇ +
1
2

mξ̇T
p ξ̇p +

1
2

η̇T Jη̇, (1)

where J = diag[Ixx, Iyy, Izz]3×3 is a symmetric positive definite constant inertia matrix of the quadrotor
with respect to B.

The total potential energy is defined by

VQ−P = (M + m)gz−mgl cos(αx) cos(αy). (2)

From (1) and (2), the Lagrangian is given by

L =
1
2

Mξ̇T ξ̇ +
1
2

mξ̇T
p ξ̇p +

1
2

η̇T Jη̇ − (M + m)gz + mgl cos(αx) cos(αy). (3)

Using the Lagrangian and the derived formula for the equations of motion:

M(q)q̈ + C(q, q̇)q̇ + G(q) = B̄u, (4)

whereM(q) ∈ R8×8 denotes the inertia matrix, which is symmetric and positive definite, C(q, q̇) ∈
R8×8 the Coriolis and centrifugal matrix, G(q) ∈ R8 the gravitational vector, and the matrix B̄ ∈ R8×4
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is determined by the manner in which the control u ∈ R4 is the input of the system. These matrices are
defined as

M(q) =



m + M 0 0 0 0 0 mlcαx cαy −mlsαx sαy

0 m + M 0 0 0 0 0 mlcαy

0 0 m + M 0 0 0 mlsαx cαy mlcαx sαy

0 0 0 Ixx 0 0 0 0
0 0 0 0 Iyy 0 0 0
0 0 0 0 0 Izz 0 0

mlcαx cαy 0 mlsαx cαy 0 0 0 ml2c2
αy 0

−mlsαx sαy mlcαy mlcαx sαy 0 0 0 0 ml2



C(q) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 (Iyy − Izz)θ̇

0 0 0 0 0 JrΩr + (Izz − Ixx)ψ̇

0 0 0 0 (Ixx − Iyy)ψ̇− JrΩr 0
0 0 0 0 0 0
0 0 0 0 0 0

−ml(sαx cαy α̇x + cαx sαy α̇y) −ml(sαx cαy α̇y + cαx sαy α̇x)

0 −mlsαy α̇y

ml(−sαx sαy α̇y + cαx cαy α̇x) ml(−sαx sαy α̇x + cαy cαx α̇x)

0 0
0 0
0 0

−ml2sαy cαy α̇y −ml2sαy cαy α̇x

ml2sαy cαy α̇x 0


G(q) =

[
0 0 (M + m)g 0 0 0 mglsαx cαy mglcαx sαy

]T

B̄(q) =


sφsψ + cφcψsθ cφsθsψ − cψsφ cθcφ 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 l 0 0 0
0 0 0 0 0 l 0 0


T

where sθ = sin(θ), cθ = cos(θ).
We can see in the above expressions that the cable-suspended payload affects the translational

motion, but the rotational motion is not affected. Then, the vehicle attitude dynamics is decoupled
from the payload–quadrotor translational dynamics. Thus, the quadrotor with a cable-suspended
payload model can be divided into payload–quadrotor translational and quadrotor rotational dynamics.
The following subsections show the translational and rotational dynamics.

2.2. Translational Dynamics

From (1) the model considering the translational motion is

M̃ (q̃) ¨̃q + C̃ (q̃, ˙̃q) ˙̃q + G̃(q̃) = B̃ũ, (5)

where q̃ =
[

ξ µ
]T

, ũ =
[

Fx Fy Fz

]T
=
[

f
(
sφsψ + cφcψsθ

)
f
(
cφsθsψ − cψsφ

)
f cθcφ

]T
,
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the matrices are given by

M̃(q̃) =


m + M 0 0 mlcαx cαy −mlsαx sαy

0 m + M 0 0 mlcαy

0 0 m + M mlsαx cαy mlcαx sαy

mlcαx cαy 0 mlsαx cαy ml2c2
αy 0

−mlsαx sαy mlcαy mlcαx sαy 0 ml2

 (6)

C̃(q̃, ˙̃q) =


0 0 0 −ml(sαx cαy α̇x + cαx sαy α̇y) −ml(sαx cαy α̇y + cαx sαy α̇x)

0 0 0 0 −mlsαy α̇y

0 0 0 ml(−sαx sαy α̇y + cαx cαy α̇x) ml(−sαx sαy α̇x + cαy cαx α̇y)

0 0 0 −ml2sαy cαy α̇y −ml2sαy cαy α̇x

0 0 0 ml2sαy cαy α̇x 0

 (7)

G̃(q̃) =
[

0 0 (M + m)g mglsαx cαy mglcαx sαy

]T
(8)

B̃ũ =
[

Fx Fy Fz 0 0
]T

(9)

where sθ = sin(θ), cθ = cos(θ).

2.3. Rotational Dynamics

From (1) the model considering the rotational motion is

M∗ (η) η̈ + C∗ (η, η̇) η̇ = B∗τ,

where
M∗(η) = dig

[
Ixx, Iyy, Izz

]
3×3, B∗ = I3×3

C∗(η) =

 0 0 (Iyy − Izz)θ̇

0 0 JrΩr + (Izz − Ixx)ψ̇

0 (Ixx − Iyy)ψ̇− JrΩr 0

 ,

where Jr is the rotational moment of inertia.

3. LMI-Based Approach for Lipschitz Nonlinear Systems

In this section, we propose a nonlinear state feedback controller based on a linear matrix inequality
to stabilize the quadrotor rotational dynamics.

Taking the state vector of the attitude dynamics as δ(t) =
[

ψ ψ̇ θ θ̇ φ φ̇
]T

, one obtains

δ̇ =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −a1Ωr

0 0 0 0 0 1
0 0 0 a2Ωr 0 0


δ +



0 0 0
b1 0 0
0 0 0
0 b2 0
0 0 0
0 0 b3


τ +



0
I1θ̇φ̇

0
I2ψ̇φ̇

0
I3ψ̇θ̇


. (10)

Therefore, we can represent the rotational dynamics as a particular nonlinear system of the form

δ̇ = Aδ + Bτ + ϕ(δ, t),
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where A and B are constant matrices, B is chosen such that (A, B) is controllable, and ϕ(δ, t) denotes
the nonlinearities of the system. The parameters are given by:

I1 =
Izz − Iyy

Ixx
, I2 =

Ixx − Izz

Iyy
, I3 =

Iyy − Ixx

Izz
, a1 =

Jr

Iyy
, a2 =

Jr

Izz
, b1 =

1
Ixx

, b2 =
d

Iyy
, b3 =

d
Izz

.

Now, we consider that the following assumptions and lemmas are accomplished.

Assumption 1. The function ϕ(δ, t) is Lipschitz w.r.t. δ, with a Lipschitz constant γ, if:

‖ϕ(δ, t)− ϕ(δ̃, t)‖ ≤ γ‖δ− δ̃‖. (11)

Lemma 1. Let ϕ : [ā, b̄]×D → Rn be continuous for some domain D ⊂ Rn. Suppose that
[
∂ϕ/

∂δ

]
(δ, t)

exists and is continuous on [ā, b̄]×D. If, for a convex subset W ⊂ D, there is a constant γ > 0 such that∥∥∥∥∂ϕ

∂δ
(t, δ)

∥∥∥∥ 6 γ

on [ā, b̄]×W, then
‖ϕ(δ, t)− ϕ(δ̃, t)‖ ≤ γ‖δ− δ̃‖

for all t ∈ [ā, b̄], δ ∈W, and δ̃ ∈W.

Lemma 2. If ϕ(δ, t) and
[
∂ϕ/

∂δ

]
(δ, t) are continuous on [ā, b̄]× Rn, then ϕ is globally Lipschitz in δ on

[ā, b̄]×Rn if and only if
[
∂ϕ/

∂δ

]
(δ, t) is uniformly bounded on [ā, b̄]×Rn.

Lemma 3. If ϕ(δ, t) and
[
∂ϕ/

∂δ

]
(δ, t) are continuous on [ā, b̄]×D, for some domain D ⊂ Rn, then ϕ is

locally Lipschitz in δ on [ā, b̄]×D [25].

Assumption 2. For a and b ∈ Rn and ε > 0 we have

2aTb ≤ ε−1aTa + εbTb. (12)

3.1. Classical LMIs for the Quadrotor’s Orientation

We propose a controller u = −Kδ based on an LMI. Firstly, one introduces a classical LMI
approach, which states the following lemma.

Lemma 4. Consider system (10) and Assumption 1. Assume also that the nonlinearity ϕ is locally Lipschitz
(Lemma 3) with Lipschitz constant γ (Lemma 1). Then, there exist a constant ϑ > 0, matrices X = XT > 0,
and W with appropriate dimensions such that the following LMI is satisfied:[

AX + XAT − BWT −WBT + 2(ϑ− γ)X γIn + X
γIn + X −In

]
< 0, (13)

with the feedback gain K = WTX−1. The system (10) is exponentially stable when the control input is u = −Kδ.

We now need to obtain the value of the Lipschitz constant γ of the nonlinearities of the rotation
system function ϕ(δ, t). From the rotational dynamics model (10), the function ϕ(δ, t) is given by

ϕ(δ, t) =
[
0 I1θ̇φ̇ 0 I2ψ̇φ̇ 0 I3ψ̇θ̇

]T .
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We are interested in calculating a Lipschitz constant for ϕ(δ, t) over the convex set

W =
{
(ψ, ψ̇, θ, θ̇, φ, φ̇) | (|ψ| ≤ lψ, |ψ̇| ≤ lψ̇, |θ| ≤ lθ , |θ̇| ≤ lθ̇ , |φ| ≤ lφ, |φ̇| ≤ lφ̇)

}
.

Applying Lemma 1, one gets:

sup
δ∈W

∣∣∣∣∂ϕ(δ, t)
∂δ

∣∣∣∣ = sup
x∈W

∣∣∣∣∣∣∣∣∣∣∣∣∣



0 0 0 0 0 0
0 0 0 I1φ̇ 0 I1θ̇

0 0 0 0 0 0
0 I2ψ̇ 0 0 0 I2φ̇

0 0 0 0 0 0
0 I3θ̇ 0 I3ψ̇ 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣
6 γ

= max {|I1φ̇| +
∣∣I1θ̇

∣∣ , |I2ψ̇|+ |I2φ̇| ,
∣∣I3θ̇

∣∣+ |I3ψ̇|}
= I2 {|ψ̇|+ |φ̇|} = I3

{∣∣θ̇∣∣+ |ψ̇|}
6 I2

(
lψ̇ + lφ̇

)
= I3

(
lθ̇ + lψ̇

)
.

Then,
γ = I2

(
lψ̇ + lφ̇

)
= I3

(
lθ̇ + lψ̇

)
.

The velocities are bounded as lψ̇ = lθ̇ = lφ̇ = 13π
9 rad/s because the rotors are driven by DC

permanent magnet motors, which support a maximum voltage of 9 V. This implies that the torque input
vector τ is bounded and that the rotation speed capability of the motors has a maximum. When 9 V is

applied to the motor the angular speed reaches lψ̇ = lθ̇ = lφ̇ = 13π
9 rad/s. Considering these bounded

values and the values of the Table 1, we can compute the Lipschitz constant as γ = 26π
9 . Then, ϕ is

locally Lipschitz.

Table 1. Parameters.

Parameter Value [Units]

d 0.25 [m]
Ixx 7.6566e−3 [kgm2]
Iyy 3.8278e−3 [kgm2]
Izz 3.8278e−3 [kgm2]
Jr 28.385e−6 [kgm2]

With γ = 26π
9 , we try to solve the LMI (13) using the LMI Toolbox R© in MATLAB R© software.

However, the LMI is infeasible. It may happen that the classical LMI controller can deal with
the problem only for smaller values of the Lipschitz constant. Thus, we propose an LMI following
some ideas from [26]. The LMI presented in [26] is conceived for observer design. The new LMI design
techniques are significantly less conservative than the classical LMI design technique.

3.2. Rotational Subsystem Control

Based on the linear-state-feedback approach, the control law for the attitude dynamics is u(t) =
−Kδ̃(t). Therefore, the orientation dynamics can be constructed as follows:

˙̃δ = Aδ̃(t) + Bu(t) + ϕ(δ̃(t), t)

= Aδ̃(t)− BKδ̃(t) + ϕ(δ̃(t), t). (14)
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The goal is to find a suitable B and K, such that δ→ δ̃. Thus, the attitude error dynamics e(t) is
represented as:

ė(t) = δ̇− ˙̃δ

= (A− BK)e(t) + ϕ(δ(t))− ϕ(δ̃(t)). (15)

The following assumptions are needed for the derivation of the control law.

Assumption 3. There exists a matrix G with appropriate dimensions such that:

‖ϕ(δ, t)− ϕ(δ̃, t)‖ ≤ ‖G(δ− δ̃)‖. (16)

This matrix G is a sparsely populated matrix. ‖G(δ − δ̃)‖ can be much smaller than the constant
γ‖(δ− δ̃)‖ used earlier in Equation (11) for the same nonlinear function.

Let us now consider a larger Lipschitz constant of the nonlinear system. We can achieve a state
feedback controller that is able to bring the state of the nonlinear system δ(t) to the desired state δ̃(t).
This controller is given in the following statement:

Theorem 1. For attitude error dynamics (15), assume that Assumption 1, Lemmas 1 and 3 are satisfied
and there exist a constant ε > 0, matrices X = XT > 0, and W with suitable dimensions, such that
the following LMI holds:[

A X + XAT − BWT −WBT + 2ϑX + XGT + GX εIn + XGT

εIn + GX −εIn

]
< 0, (17)

where In denotes an identity matrix with appropriate dimensions, ϑ > 0 is a constant, and W = (KTX)−1,
the matrix K is a suitable feedback gain. Then, system (15) is exponentially stable, implying that the systems
(10) and (14) are exponentially stable, then δ(t)→ δ̃(t).

Proof. Define the Lyapunov function V = eT Pe. From the trajectory error (15), one gets:

V̇ = eT Pė + ėT Pe

= eT
(

P(A− BK) + (A− BK)T P
)

e + 2eT P
(

ϕ(δ(t))− ϕ(δ̃(t))
)

. (18)

From Assumption 3, one gets:

‖2eT(t)P(ϕ(u(t), δ(t))− ϕ(u(t), δ̃(t)))‖ ≤ 2‖eT(t)P‖‖ϕ(δ(t))− ϕ(δ̃(t))‖
≤ 2‖eT(t)P‖‖Ge‖. (19)

According to Assumption 2, a = ‖Pe(t)‖ and b = ‖Ge‖, one can rewrite (19) as follows:

‖2eT(t)P(ϕ(δ(t))− ϕ(δ̃(t)))‖ ≤ ε−1
1 eT PPe + ε1eTGTGe. (20)

Now, replacing (20) into (18), one gets:

V̇ ≤ eT(t)
(

P(A− BK) + (A− BK)T P + ε−1
1 PP + ε1GTG

)
e(t). (21)

If V̇ ≤ −2ϑeT(t)Pe(t) < 0, where ϑ > 0, one can rewrite (21) as:

V̇ ≤ eT(t)
(

P(A− BK) + (A− BK)T P + ε−1
1 PP + ε1GTG + 2ϑP

)
e(t). (22)



Mathematics 2019, 7, 1090 10 of 21

Indeed, the attitude error dynamics (15) is exponentially stable, and hence the two coupled
systems (10) and (14) are exponentially stable. Using the Schur complement, Equation (22) can be
easily represented in an LMI as:[

P(A− BK) + (A− BK)T P + 2ϑP + GT P + PG P + ε1GT

P + ε1GT −ε1 In

]
< 0. (23)

Multiplying the above inequality by

[
P−1 0

0 ε−1
1 In

]
from the left-hand and right-hand sides,

respectively, and letting X = P−1, ε = ε−1
1 , and W = (KP−1)T , then the above inequality is further

transformed into the following LMI:[
A X + XAT − BWT −WBT + 2ϑX + XGT + GX εIn + XGT

εIn + GX −εIn

]
< 0. (24)

If suitable X > 0 matrix and W are selected such that the LMI (17) is satisfied, then the attitude
error dynamics (15) with the feedback gain K = WTX−1 is exponentially stable, implying that
the coupled systems (10) and (14) are exponentially synchronized.

Now, we apply the main result of this paper (Theorem 1) to system (10). Then, we compute
a controller for the rotational dynamics of the vehicle with guaranteed stability. Using Theorem 1,

the LMI is then solved to obtain the control gain matrix K with ε = 1, ϑ = 25, and γ = 26π
9 . Therefore,

one easily obtains K from (24) by using the MATLAB R© LMI Toolbox R©:

K =

 3.281× 108 2.235× 106 0 0 0 0
0 0 38.75 1.16 −0.0114 −2.27× 10−4

0 0 0.0114 2.27× 10−4 38.75 1.16

 . (25)

The results of the state feedback controller with the gain matrix (25) are shown in Figures 2 and 3.
Figure 2 displays the quadrotor attitude (roll, pitch, and yaw) with δ0 =

[
0◦ 0◦ 1◦ 0◦ 2◦ 0◦

]
.

Note that the stabilization time is about 0.2 s, thus the state feedback controller with the gain matrix K
calculated by LMI provides good transient performance. Figure 3 shows the input torques. Here we
can observe that they are smooth.
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Figure 2. Quadrotor attitude.
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Figure 3. Control inputs.

4. Energy-Based Control

In this section, we propose an energy-based strategy to control the quadrotor’s translation
movements and to attenuate the payload oscillation.

4.1. Planar Case

In order to show the energy-based control law design in a simple manner, let us consider
the system as a planar system operating in the XZ axis, as illustrated in Figure 4. The controller
synthesis for the three-dimensional case is presented in Section 4.2.

In this case, y = ψ = φ = αy = 0, then q̃ =
[

x z α
]T

, ũ =
[

Fx Fz

]T
=[

f sin θ f cos θ
]T

and the matrices of the model (5) for the translational dynamics are defined as

M̃(q̃) =

 M + m 0 mlcα

0 M + m mlsα

mlcα mlsα ml2

 , C̃(q̃, ˙̃q) =

 0 0 −mlsαα̇

0 0 mlcαα̇

0 0 0

 (26)

G̃(q̃) =

 0
(M + m)g

mlgsα

 , B̃ũ =

 Fx

Fz

0

 . (27)
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Figure 4. Two-dimensional quadrotor with a cable-suspended payload.

The total energy of the translational dynamics can be described by

H(q̃, ˙̃q) =
1
2

˙̃qTM̃ ˙̃q + V(q̃)

=
1
2

˙̃qTM̃ ˙̃q + (M + m)gz−mgl cos(α). (28)

Differentiating (28) along the trajectories of the system, we obtain

Ḣ(q̃, ˙̃q) = ˙̃qTM̃(q̃) ¨̃q +
1
2

˙̃qT ˙̃M(q̃) ˙̃q + ˙̃qTG̃(q̃).

Substituting (5) into the above yields

Ḣ(q̃, ˙̃q) = ˙̃qT (ũ− C̃(q̃, ˙̃q) ˙̃q− G̃(q̃)
)
+

1
2

˙̃qT ˙̃M(q̃) ˙̃q + ˙̃qTG̃(q̃).

Taking into account that the skew-symmetric relationship ˙̃qT
(

1
2

˙̃M(q̃) ˙̃q− C̃(q̃, ˙̃q)
)

˙̃q = 0
is satisfied, we obtain

Ḣ(q̃, ˙̃q) = ˙̃qT ũ

= ẋFx + żFz.

Considering x̄ = x− x̃ and z̄ = z− z̃, the total energy in terms of the error is given by

˙̄H = ˙̄xFx + ˙̄zFz. (29)

We propose the following Lyapunov candidate function:

E =
1
2

H̄2 +
kvx

2
˙̄x2 +

kvz

2
˙̄z2 +

kpx

2
x̄2 +

kpz

2
z̄2, (30)

where kpx, kpz are proportional constant gains and the kvx, kvz constants inject damping into the system.

Differentiating (30) with respect to time, we have

Ė = H̄ ˙̄H + kvx ˙̄x ¨̄x + kvz ˙̄z ¨̄z + kpx x̄ ˙̄x + kpz z̄ ˙̄z

= ˙̄x
(

H̄Fx + kvx ¨̄x + kpx x̄
)
+ ˙̄z (H̄Fz + kvz ¨̄z + kvz z̄) . (31)
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We can obtain ¨̄x and ¨̄z from (5), (26), and (27):

¨̄x =
M
(

lm sin ᾱ ˙̄α2 + Fx

)
+ Fxmcos2ᾱ + Fzm cos ᾱ sin ᾱ

M2 + Mm
,

¨̄z = −g +
Fzm + M

(
Fz − lm ˙̄α2 cos ᾱ

)
− Fzmcos2ᾱ + Fxm cos ᾱ sin ᾱ

M2 + Mm
.

Introducing the above into (31), we get

Ė = ˙̄x

H̄Fx +
kvx M

(
lm sin ᾱ ˙̄α2 + Fx

)
+ kvxmFxcos2ᾱ + kvxmFz cos ᾱ sin ᾱ

M(M + m)
+ kxx x̄

+

˙̄z

H̄Fz +
kvz M

(
−lm cos ᾱ ˙̄α2 + Fz

)
+ kvzmFz − kvzmFzcos2ᾱ + kvzmFx cos ᾱ sin ᾱ

M(M + m)
+ kxz z̄− kvzg

 .

We propose a control law such that E + kvx
M+m + kvxmcos2α

M(M+m)
kvxm cos α sin α

M(M+m)
kvzm cos α sin α

M(M+m)
E + kvz

M −
kvzmcos2α
M(M+m)

 [ Fx

Fz

]
=

[
− kvx lm sin αα̇2

M+m − kxxx− kix ẋ
kvz lm cos αα̇2

M+m − kxzz + kvzg− kiz ż

]
. (32)

The matrix that multiplies the vector
[

Fx Fz

]T
is a nonsingular matrix. Which leads to

Ė = −kix ˙̄x2 − kiz ˙̄z2.

From (32) we can obtain

Fx =
−kix ˙̄x− kxx x̄− kvx lm sin ᾱ ˙̄α2

M+m −
kvxm cos ᾱ sin ᾱ

(
kvzlm cos ᾱ ˙̄α2

M+m −kxz z̄+kvzg−kiz ˙̄z
)

M(M+m)H̄+kvz(M+m)−kvzmcos2ᾱ

H̄ + kvx
M+m + kvxmcos2ᾱ

M(M+m)
− kvxkvzm2cos2ᾱsin2ᾱ

M(M+m)(M(M+m)H̄+kvz(M+m)−kvzmcos2ᾱ)

,

Fz =
−kiz ˙̄z− kxz z̄ + kvz lm cos ᾱ ˙̄α2

M+m + kvzg +
kvzm cos ᾱ sin ᾱ

(
kvx lm sin ᾱ ˙̄α2

M+m +kxx x̄+kix ˙̄x
)

M(M+m)H̄+kvx M+kvxmcos2ᾱ

H̄ + kvz
M −

kvzmcos2ᾱ
M(M+m)

− kvxkvzm2cos2ᾱsin2ᾱ
M(M+m)(M(M+m)H̄+kvx M+kvxmcos2ᾱ)

.

4.2. Three-Dimensional Case

The mathematical model for the three-dimensional case is presented in (5)–(9). The total energy
of the system is

H(q̃, ˙̃q) =
1
2

˙̃qTM̃ ˙̃q + V(q̃)

=
1
2

˙̃qTM̃ ˙̃q + (M + m)gz−mgl cos(αx) cos(αy). (33)

In a similar way to the planar case, differentiating (33) along the trajectories of the system,
we obtain

Ḣ(q̃, ˙̃q) = ˙̃qT ũ

= ẋFx + ẏFy + żFz. (34)
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The total energy in terms of the error can be rewritten as

˙̄H = ˙̄xFx + ˙̄yFy + ˙̄zFz. (35)

Consider the following Lyapunov candidate function:

E(q̃, ˙̃q) =
1
2

H̄2 +
kvx

2
˙̄x2 +

kvy

2
˙̄y2 +

kvz

2
˙̄z2 +

kpx

2
x̄2 +

kpy

2
ȳ2 +

kpz

2
z̄2. (36)

Differentiating (36) along the trajectories of the system, it follows that

Ė = H̄ ˙̄H + kvx ˙̄x ¨̄x + kvy ˙̄y ¨̄y + kvz ˙̄z ¨̄z + kpx x̄ ˙̄x + kpyȳ ˙̄y + kpz z̄ ˙̄z

= ˙̄x
(

H̄Fx + kvx ¨̄x + kpx x̄
)
+ ˙̄y

(
H̄Fy + kvy ¨̄y + kpyȳ

)
+ ˙̄z

(
H̄Fz + kvz ¨̄z + kpz z̄

)
. (37)

From (5)–(9) we can obtain ¨̄x, ¨̄y and ¨̄z. These expressions are defined as:

¨̄x =
Fx

(
(M + m)

(
s2

ᾱy
c4

ᾱx
+ c2

ᾱx
c2

ᾱy

)
+ Mc4

ᾱy
s2

ᾱx

)
− Fymc2

ᾱx
c2

ᾱy
sᾱx sᾱy + Fzmsᾱx cᾱx c3

ᾱy
+ λ(µ, µ̇)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1
) ,

¨̄y =
Fy

(
(M + m)

(
s2

ᾱx
c4

ᾱy
+ c2

ᾱx
c2

ᾱy

)
+ Mc4

ᾱx
s2

ᾱy

)
− Fxmc2

ᾱx
c2

ᾱy
sᾱx sᾱy + Fzmsᾱy cᾱy c3

ᾱx
+ κ(µ, µ̇)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1
) ,

¨̄z =
Fz

(
(M + m)

(
s2

ᾱy
c4

ᾱx
− s2

ᾱx
c4

ᾱy

)
−Mc2

ᾱx
c2

ᾱy

)
− Fxmc3

ᾱy
cᾱx sᾱx − Fymsᾱy cᾱy c3

ᾱx
+
(

M2 + Mm
)

go(µ) + χ(µ, µ̇)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1
) ,

where

λ(ᾱx, ᾱy) = Mlm
(

sᾱx c2
ᾱx c4

ᾱy

(
˙̄αx

2 + ˙̄αy
2
)
+ c2

ᾱx c2
ᾱy sᾱx s2

ᾱy
˙̄αy

2 + 2cᾱx c3
ᾱy s2

ᾱx sᾱy
˙̄αx ˙̄αy + c4

ᾱy s3
ᾱx

˙̄αx
2
)

,

κ(µ̄, ˙̄µ) = Mlm
(

sᾱy c2
ᾱy c4

ᾱx

(
˙̄αx

2 + ˙̄αy
2
)
+ c2

ᾱx c2
ᾱy sᾱy s2

ᾱx
˙̄αx

2 + 2cᾱy c3
ᾱx s2

ᾱy sᾱx
˙̄αx ˙̄αy + c4

ᾱx s3
ᾱy

˙̄αy
2
)

,

χ(µ̄, ˙̄µ) = Mlm
(

c3
ᾱy c3

ᾱx

(
˙̄αx

2 + ˙̄αy
2
)
+ cᾱx c3

ᾱy s2
ᾱx

˙̄αx
2 − 2sᾱy c2

ᾱx c2
ᾱy sᾱx

˙̄αx ˙̄αy − c3
ᾱx s2

ᾱy cᾱy
˙̄αy

2
)

,

o(µ̄) =
(

c4
ᾱy s2

ᾱx + c2
ᾱx c2

ᾱy − s2
ᾱy c4

ᾱx

)
.

Substituting ¨̄x, ¨̄y, and ¨̄z into (37) yields

Ė = ˙̄x

H̄Fx+kvx
Fx

(
(M + m)

(
s2

ᾱy
c4

ᾱx
+ c2

ᾱx
c2

ᾱy

)
Mc4

ᾱy
s2

ᾱx

)
− Fymc2

ᾱx
c2

ᾱy
sᾱx sᾱy + Fzmsᾱx cᾱx c3

ᾱy
+ λ(µ̄, ˙̄µ)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1
) +kpx x̄

+
˙̄y

H̄Fy+kvy
Fy

(
(M + m)

(
s2

ᾱx
c4

ᾱy
+ c2

ᾱx
c2

ᾱy

)
+ Mc4

ᾱx
s2

ᾱy

)
− Fxmc2

ᾱx
c2

ᾱy
sᾱx sᾱy + Fzmsᾱy cᾱy c3

ᾱx
+ κ(µ̄, ˙̄µ)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1
) +kpy ȳ

+
˙̄z

H̄Fz + kvz
Fz

(
(M + m)

(
s2

ᾱy
c4

ᾱx
− s2

ᾱx
c4

ᾱy

)
−Mc2

ᾱx
c2

ᾱy

)
− Fxmc3

ᾱy
cᾱx sᾱx − Fymsᾱy cᾱy c3

ᾱx

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1
)

+kvz

(
M2 + Mm

)
go(µ̄) + χ(µ̄, ˙̄µ)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1
) + kpz z̄

 .

We propose a control law such that

Ė = −kix ˙̄x2 − kiy ˙̄y2 − kiz ˙̄z2.
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Finally, we solve the following system of equations to obtain Fx, Fy, and Fz.

Fx

H̄ +
kvx

(
(M + m)

(
s2

ᾱy
c4

ᾱx
+ c2

ᾱx
c2

ᾱy

)
+ Mc4

ᾱy
s2

ᾱx

)
δ(µ̄)

− Fy
kvxmc2

ᾱx
c2

ᾱy
sᾱx sᾱy

δ(µ̄)
+ Fz

kvxmsᾱx cᾱx c3
ᾱy

δ(µ̄)

+
λ(µ̄, ˙̄µ)

δ(µ̄)
+ kpx x̄ = −kix ˙̄x,

(38)

Fy

H̄ +
kvy

(
(M + m)

(
s2

ᾱx
c4

ᾱy
+ c2

ᾱx
c2

ᾱy

)
+ Mc4

ᾱx
s2

ᾱy

)
δ(µ̄)

− Fx
kvymc2

ᾱx
c2

ᾱy
sᾱx sᾱy

δ(µ̄)
+ Fz

kvymsᾱy cᾱy c3
ᾱx

δ(µ̄)

+
κ(µ̄, ˙̄µ)

δ(µ̄)
+ kpy ȳ = −kiy ˙̄y,

(39)

Fz

H̄ +
kvz

(
(M + m)

(
s2

ᾱy
c4

ᾱx
− s2

ᾱx
c4

ᾱy

)
−Mc2

ᾱx
c2

ᾱy

)
δ(µ̄)

− Fx
kvzmc3

ᾱy
cᾱx sᾱx

δ(µ̄)
− Fy

kvzmsᾱy cᾱy c3
ᾱx

δ(µ̄)

+

(
M2 + Mm

)
go(µ̄)

δ(µ̄)
+

χ(µ̄, ˙̄µ)
δ(µ̄)

+ kpz z̄ = −kiz ˙̄z,

(40)

where
δ(µ̄) =

(
M2 + Mm

) (
s4

ᾱx s2
ᾱy + s2

ᾱx s4
ᾱy − 3s2

ᾱx s2
ᾱy + 1

)
.

5. Numerical Simulations and Results

In order to check the performance of the designed control scheme, some simulations were carried
out. The objective was to move the vehicle transporting a payload to the desired position of a square
of 1 m length at 1 m height. The desired trajectory is then defined by,

ξd =



[
0 0 1

]T
, t < 2[

0 1 1
]T

, 2 <= t < 14[
1 1 1

]T
, 14 <= t < 26[

1 0 1
]T

, 26 <= t < 38[
0 0 1

]T
, 38 <= t <= 50

The values of the model parameters used for the simulation were the following: M = 0.4 kg,
m = 0.03 kg, l = 0.35 m, g = 9.81 m/s2.

These parameters are close to real aerial platforms. The corresponding simulation results are
presented in the following figures.

Figure 5 illustrates the x, y, and z positions of the vehicle during the validation. We can see that
the position for each axis was stabilized according to the desired reference points. The position z was
regulated in less than 2 s, the performance of the x and y positions dynamics were similar and were
regulated in less than 5 s.

Figure 6 displays the payload swing angles α and β. It is clear that the proposed control law
exhibited good performance, since the payload swing angles were regulated to 0◦ at around 5 s
and the maximum overshoot was ±2.2◦.

The simulation results of the feedback controller based on LMI (inner-loop of the system) show
the quadrotor’s orientation dynamics in Figure 7. We can see that the attitude converged to the desired
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points with a null steady-state error. The evolution of the control inputs f , τψ, τθ , and τφ are presented
in Figure 8. Finally, a three-dimensional view of the path followed by the vehicle is depicted in Figure 9.
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Figure 9. Three-dimensional trajectory.

One more numerical experiment was carried out. Figures 10–13 illustrate the tracking of
an ascending circular trajectory to prove the efficiency of the proposed controller in a scenario that
involves simultaneous variations of both α and β angles. These figures show that the proposed
control strategy was capable of achieving accurate trajectory tracking since the aircraft converged to
the reference trajectory while attenuating the swing angles of the payload.

In summary, these numerical experiments show that the proposed control scheme presented
a satisfactory performance in position control and the attenuation of cable-suspended payload swing.
It succeeded in transporting the payload to a desired position with attenuation of the oscillation
angles. In contrast, the algorithm of [18] involves solving complicated partial differential equations for
obtaining the control law, and they cannot be solved for the 3D case.
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6. Conclusions

This work presents an energy-based control strategy and a nonlinear state feedback controller
based on a linear matrix inequality to solve the problem of transporting a cable-suspended payload
by an unmanned aerial vehicle. On one hand, a new methodology based on an LMI for stabilizing
the orientation dynamics is proposed. The main contribution is that we can employ the proposed
methodology for Lipschitz nonlinear systems with larger Lipschitz constants than other classical
techniques based on LMIs. Moreover, the LMI-based controller results in a control algorithm with
relative simplicity and guaranteed stability. In addition, the design of the LMI-based control takes
into account physical limits of the system such as the maximum motor voltage or its rotation speed
capability through the velocity and torque bounds which are used to calculate the Lipschitz constant,
while with the energy-based control these limits are not part of the controller design. On the other
hand, an energy-based control to stabilize the quadrotor’s translational dynamics and to attenuate
the cable-suspended payload swing is designed in this work. This strategy is based on an energy
approach and the passivity properties of the translational dynamics. Passivity-based control is
employed, as this part of the system is underactuated. The main contribution is that the computation of
excessive and complex partial differential equations is not needed to obtain the control law. The results
showed an excellent performance of the proposed control scheme. Thus, the new approach achieves
precise payload positioning with rapid oscillation attenuation.

Future work will extend the energy-based control method in order to consider variations in
the payload. In addition, the methodology will be extended so that the linear matrix inequality can be
replaced by an algebraic Riccati equation.
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