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Abstract: Finding the roots of an equation is a fundamental problem in various fields, including
numerical computing, social and physical sciences. Numerical techniques are used when an
analytic solution is not available. There is not a single algorithm that works best for every function.
We designed and implemented a new algorithm that is a dynamic blend of the bisection and regula
falsi algorithms. The implementation results validate that the new algorithm outperforms both
bisection and regula falsi algorithms. It is also observed that the new algorithm outperforms the
secant algorithm and the Newton–Raphson algorithm because the new algorithm requires fewer
computational iterations and is guaranteed to find a root. The theoretical and empirical evidence
shows that the average computational complexity of the new algorithm is considerably less than that
of the classical algorithms.
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1. Introduction

Non-linear equations arise in most disciplines including computer science, natural sciences
(civil engineering, electrical engineering, mechanical engineering), biological engineering and social
sciences (psychology, economics), etc. Problems such as minimization, target shooting, orbital motion,
plenary motion, etc., often lead to finding roots of non-linear functional equations [1–6].

There are classical root-finding algorithms: bisection, false position, Newton–Raphson, modified
Newton–Raphson, secant and modified secant method, for finding roots of a non-linear equation
f(x) = 0 [7–11]. From these algorithms, the developer has to explore and exploit the algorithm suitable
under specified constraints on the function and the domain. Although some researchers have implemented
genetic algorithms to find the roots of equations and compared the results with the results of classical
algorithms [12], it is not the intent of this paper to go into that area. Finding the roots of an equation is
a fundamental problem in engineering fields. Every book on numerical methods has details of these
methods and recently, papers are making differing claims on their performance [13,14]. There is not a single
algorithm that works best for every function. We present a new blended algorithm that outperforms all the
existing algorithms. See Section 4 for experimental data validating the performance of the new algorithm.

Most optimization problems lead to solving equations for the value of an optimizing parameter,
hence determining the root of a related equation. Sometimes, in applications, we may need to determine
when will two functions g(x) and h(x) be equal, i.e., g(x) = h(x). This translates into finding roots of the
classical equation f(x) = g(x) − h(x) = 0. Similarly, the optimal value of g(x) can be determined by a root

of the equation dg(x)
dx = 0, which implies an equation dg(x)

dx = f(x) = 0. Numerical techniques are used
when an analytic solution is not available, see Section 2.

Thus, a root-finding algorithm implies solving an equation defined by a function. Some root-finding
algorithms do not guarantee that they will find a root. If such an algorithm does not find a root,
that does not mean that no root exists. Even though classical methods have been developed and used
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for decades, enhancements are progressively made to improve the performance of these methods.
No single classical method outperforms another method on all functions [15,16]. A method may
outperform other methods on one dataset, and may produce inferior results on another dataset.
Different methods have different strengths/weaknesses. A dynamic new blended algorithm (blend of
bisection and false position) is presented here by taking advantage of the best in bisection and false
position methods to locate the roots. Its computational efficiency is validated by empirical evidence
by comparing it with the existing methods. The new blended algorithm is a tested technique that
outperforms other existing methods by curtailing the number of iterations required for approximations
(Table 1), while retaining the accuracy of the approximate root. Table 2 is a listing of functions from
literature used to test the validity of results.

Table 1. Comparison of classical algorithms iterations, AppRoot, error and interval bounds.

Method Iterations AppRoot Error LowerB UpperB

Bisection 19 2.0000019 0.0000057 1.999996 2.000002
FalsePosititon 15 1.9999984 0.0000048 1.999998 4

Secant 6 2.0000001 0 na na
NewtonRaphson 5 2 0 na na

Hybrid 2 2 0 1.916667 2.05

Table 2. From the literature function, domain interval and author of the function.

Defining Function Interval Reference

x2
− 3 [1, 2] Harder

x2
− 5 [2, 7] Srivastava

x2
− 10 [3, 4] Harder

x2
− x − 2 [1, 4] Moazzam

x2 + 2x − 7 [1, 3] Nayak
x2 + 5x + 2 [−6, 0] Sivanandam

x3
− 2 [0, 2] Harder

xex
− 7 [−1, 1] Calhun

x − cosx [0, 1] Ehiwario
xsin(x) − 1 [0, 2] Mathew

4x4 + 3x3 + 2x2 + x + 1 [−6, 0] Sivanandam

This paper is organized as follows. Section 2 is a brief description of the classical methods bisection,
regula falsi, Newton–Raphson, secant; their strengths and pitfalls. Section 3 describes the new blended
algorithm. Section 4 gives a theoretical justification for the blended algorithm. Section 5 presents
experimental results validating the performance of the new algorithm. Section 6 is the conclusion.

2. Background

There are four classical methods for finding roots of non-linear equations: bisection, false position,
Newton–Raphson and secant. For completeness, we briefly clarify methods for (1) root approximation,
(2) error calculation and (3) termination criteria. Since there is no single optimal algorithm for root
approximation, we will provide a new blended algorithm that outperforms bisection and regula falsi
methods. Normally, when faced with competing choices, the simplest is the accurate one.

We restrain this discussion to finding a single root instead of all the roots of an equation. In case
an equation has several roots, we can delineate an interval where the desired root is to be found.

2.1. Bisection Method

The bisection method is (1) based on binary chopping of irrelevant subintervals, (2) a virtual
binary search, and (3) guaranteed to converge to the root, see Algorithm 1. The bisection method is
static, the length of the subinterval at each iteration is independent of the real-valued function and
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R denotes the set of all real numbers. No matter what the function is, the root-error upper bound is
fixed at each iteration and can be determined a priori. By specifying the root-error tolerance, the upper
bound on the number of iterations can be predetermined quickly.

Problem If a function f:[a, b]→R, is such that (1) f(x) is continuous, (2) R is the set of all real numbers
and (3) f(a) and f(b) are of opposite signs, i.e., f(a)·f(b) < 0, then there exists a root r∈ [a, b] such that f(r) = 0.

Algorithm 1: Bisection Method

1. Input: f and [a, b], ∈, maxIterations
2. Output: root r, bracketing interval [ak, bk]
3. //initialize
4. k = 1; [ak, bk] = [a, b]
5. repeat
6. //compute the mid-point
7. rk = ak+bk

2
8. if f(ak)·f(rk) < 0,
9. ak+1 = ak; bk+1 = rk
10. elseif f(rk)·f(b1) < 0,
11. ak+1 = rk; bk+1 = bk
12. endif
13. r = rk
14. k = k+1;
15. until |f(r)| < ∈ or k > maxIterations

The algorithm proceeds using [a1, b1] = [a, b] as the initial interval of continuity of f. The first
approximate root is r1 = a1+b1

2 , the middle point of the interval [a1, b1]. The actual root lies in the
interval [a1, r1] or [r1, b1]. If f(r1) = 0, r1 is the root. If f(a1) and f(r1) are of opposite sign, then f(a1)·f(r1)
< 0, and the true root lies in [a1,r1]. If f(r1) and f(b1) are of opposite sign, then f(r1)·f(b1) < 0, and the true
root lies in [r1,b1]. The new interval is denoted by [a2, b2]. At each iteration, the new root and next root
bracketing sub-interval is generated. In general, for each iteration k, the approximation rk = ak+bk

2
is the middle point of [ak, bk], if f(ak)·f(rk) < 0, the root lies in [ak, rk] else if f(rk)·f(bk) < 0, the root
lies in [rk, bk] or rk is the root. Then the next interval is denoted by [ak+1, bk+1] where rk is one of its
endpoints. The iterations continue until the termination criteria are satisfied.

2.1.1. Advantages of the Bisection Method

Since the method brackets the root, at each iteration the length of the root-bracketing interval is
halved. Thus, the method guarantees the decline in error in the approximate solution at each iteration.
The convergence of the bisection method is certain because it is simply based on halving the length
of the bracketing interval containing the root.

2.1.2. Drawbacks of the Bisection Method

Though the convergence of the bisection method is guaranteed, its rate of convergence is
slow, and as such it is quite difficult to extend to use for systems of equations. If for any iteration,
root approximation is very close to an endpoint of bracketing interval, bisection does not take advantage
of this information, it will take some pre-determined number of iterations to reach the root [7].

2.2. False Position (Regula Falsi) Method

The motivation for innovative methods arises from the poor performance of the bisection method.
The false position method is known by various names, for example, the double false position, regula falsi
or linear interpolation. It is a very old method for solving equations in one unknown. This method
differs from bisection in the way the estimates are calculated. The false position is a dynamic method;
it takes advantage of the location of the root to make a conceivably better appropriate selection.
Unfortunately, this method does not perform as well as expected, for all functions, see Figures 1–4.
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Here also, the function f:[a, b]→ R is such that (1) f(x) is continuous, (2) R is the set of all real
numbers and (3) f(a) and f(b) are of opposite signs, i.e., f(a)·f(b) < 0. The algorithm uses a, b as the
two initial estimates of the root. The false position method uses both endpoints as two starting values
ro = a, r1 = b. The secant line through points (r0, f(r0)) and (r1, f(r1)) intersects the x-axis to yield the
next estimate, r2. For successive estimates, the false position method intersects the secant line through
(rn−1, f(rn−1)) and (rn−2, f(rn−2)) with the x-axis for the approximation, rn,

rn = rn−1 −
f(rn−1)(rn−1 − rn−2)

f(rn−1) − f(rn−2)
(1)

for n ≥ 2.
The approximations, rn, are ensured to be bracketed as in the case of bisection method. And one

should note that the length of the brackets do not necessarily tend to zero. The pseudo-code of the
Algorithm 2 is as follows.

Algorithm 2: False Position Method

1. Input: f and [a, b], ∈, maxIterations
2. Output: root r, bracketing interval [ak, bk]
3. //initialize
4. r0 = a; r1 = b
5. k = 1; [ak, bk] = [a, b]
6. repeat
7. //compute the secant line -point

8. rk = ak −
f(ak)(bk−ak)
f(bk)−f(ak)

9. if f(ak)·f(rk) < 0,
10. ak+1 = ak; bk+1 = rk
11. elseif f(rk)·f(b1) < 0,
12. ak+1 = rk; bk+1 = bk
13. endif
14. r = rk
15. k = k+1;
16. until |f(r)| < ∈ or k > maxIterations
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2.2.1. Justification

The root approximation error calculation in the bisection method is straight forward (see Section 4);
in each iteration root approximation error is halved, i.e., root approximation error in the n-th step is no
more than b−a

2n . This is not the case for the false position method. If a is sufficiently close to the root r,

then f(a) is close to f(r) due to continuity of f. Then the slope of the secant line, f(b)−f(a)
b − a , is approximately

equal to f(b)
b − a . The closer b is to r, the closer the secant line is to tangent, f′(r), though, it is not required

that f be differentiable. Since f(b)−f(a)
b − a =

f(b)−0
b − r , the slope of secant line, it becomes the slope of the

tangent line slope as b becomes a or r. The closer the secant line is to the tangent line, the faster the
convergence of iterations [17], because the Newton method is faster than the secant method.

In Section 3, we present a dynamic algorithm blend of bisection and false position methods.

2.2.2. Advantages of the False Position Method

It is guaranteed to converge due to the decreasing length of the root-bracketing interval. It is fast
when you know the linear nature of the function.

2.2.3. Drawbacks of the False Position Method

For the false position method, there is no way to determine a priori the number of iterations
needed for convergence. And one should note that the length of the brackets does not necessarily tend
to zero. If we cannot ensure that the function can be interpolated by a linear function, then applying the
false position method can result in worse results than the bisection method. The problem occurs when
the function is convex, concave up or concave down. According to [18], for a concave down function,
the left endpoint remains stationary and the right endpoint updates in each iteration. For concave up
function, the right endpoint remains stationary and the left endpoint updates in each iteration. This is
not an accurate statement, it works for some of the functions, not all the functions. Figures 1–4 contradict
their statement. It depends on the convexity of the function, not concavity up or down. When the root
is very close to the endpoints of the interval, the convergence of the sequence of approximations can
become extremely slow.

In the example in Figures 1–4, four functions are used with the same tolerance and 10 as the upper
limit of the number of iterations for display purposes. The purpose is to show how the algorithm
works for the false position method. In the interest of simplicity of plots, algorithms terminate before
reaching the error-tolerance.

2.3. Newton–Raphson Method

Newton–Raphson is also called a fixed-point iteration method. This method requires that the
function be differentiable. If the function f(x) is differentiable on the domain of the function, and r0 is
the initial guess, then the first approximation r1 is obtained by intersection of the tangent at (r0, f(r0))
with the x-axis, and is defined by

r1 = r0 −
f(r0)

f′(r0)
(2)

and successive approximations are

rn = rn−1 −
f(rn−1)

f′(rn−1)
(3)

for n ≥ 2.
This method converges provided |g′(x)| < 1 where g(x) = x − f(x)

f′(x) for x in the domain
of f(x). For functions where there is a singularity such that it reverses sign at the singularity,
the Newton–Raphson method may converge on the singularity.
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2.3.1. Advantages of the Newton–Raphson Method

The convergence rate is linear, and this method is very fast as compared to the bisection and
false position methods. If f(k)(x) = 0 for integers k < m, then m is the multiplicity of the root. If we
know the multiplicity, m, of the root, it can be further improved with faster convergence to the root [7].
The updated iteration formula becomes,

rn = rn−1 − m
f(rn−1)

f′(rn−1)
(4)

for n ≥ 1.

2.3.2. Disadvantages of the Newton–Raphson Method

The only pitfall is that it fails if the derivative, f′(x), is near zero at some iteration. For example,
Newton–Raphson method fails to compute r1 for f(x) = x2

− 1 where r0 = 0. But it does not create
a problem in some cases where the singularity in f’(x) cancels with f(x). For example, f(x) = x3 with
r0 = 0 does result in r1 = 0.

2.4. Secant Method, Modified Secant Method

The secant method requires that the function be differentiable. When it is not easy to compute the
derivative of the function, the secant method approximates the derivative with the slope of a secant
line. Thus, in the absence of a derivative of the function, the secant method is a modification of the
Newton–Raphson method. It does not need differentiability as well as bracketing. The false position
method ensures that approximations are bracketed, and the secant method simply uses the last two
values to approximate the tangent. Thus, the secant method is not guaranteed to converge.

The convergence rate of the secant method is super linear. Thus, the convergence rate is between
that of the bisection method and the Newton–Raphson’s method. The secant method requires two
initial values, whereas Newton–Raphson requires only one starting value. If the function f(x) is
differentiable, and r0, r1 are two initial guesses, then the approximations of the secant method can be
written as

rn = rn−1 −
f(rn−1)(rn−1 − rn−2)

f (rn−1) − f(rn−2)
(5)

for n ≥ 2.
If the secant line is closer to the tangent line, we can get a better estimate. The closer the

points defining the secant line, the better the approximation of the secant line is to the tangent line.
To accomplish this improvement, we replace rn−2 by a value even closer to rn−1. Thus, for a better
estimate of the slope of the secant line, we can define a small positive constant, δ, so that it replaces
rn−2 with rn−1 − δ (or even rn−1 δ before computing the next iteration as

rn = rn−1 −
f(rn−1) (rn−1 − rn−2)

f (rn−1) − f(rn−2)
(6)

rn = rn−1 −
f(rn−1)δ

f(rn−1) − f(rn−1 − δ)
(7)

or

rn = rn−1 −
f(rn−1)δ

f(rn−1 + δ) − f(rn−1)
. (8)

The success of this method will depend on the choice of sufficiently small real positive δ.
For practical reasons, we choose positive δ, such that 0 < δ < |rn−1 − rn−2|.
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Advantages and Shortcomings

It has the advantage of finding a bracketing-interval quickly, but the choice of delta must be made
adaptively, otherwise, the algorithm runs the risk of missing the root.

Some researchers, experimented on f(x) = x − cos(x) on a closed interval [0,1] and concluded that
the secant method is better than the bisection and Newton–Raphson methods [12,19]. It is not accurate
to make a conclusion from one function. We show that this statement is not accurate, see Tables 3–7.

Table 3. Blended algorithm efficiency iterations, AppRoot, error and interval bounds.

Blended DEMO

Hybrid Method for function x2
− x − 2

Continuity Interval = [1.00, 4.00] ErrorTolerance = 0.0000100
Iterations Root FunctionValue

2 2 0
Itera AppRoot Error Lbound Ubound

1 1.5 1.25 1.5 2.5
2 2 0 1.916667 2.5

Hybrid Root = 2.0000000, FunctionValue = 0.0000000, Error = 0.0000000
Elapsed time is 0.697339 seconds.

Table 4. Bisection algorithm, iterations, AppRoot, error and interval bounds.

BISECTION DEMO

Bisection Method for function x2
− x − 2

Continuity Interval = [1.000, 4.000] ErrorTolerance = 0.0000100
Iterations Root FunctionValue

19 2 0.00001
Itera AppRoot Error Lbound Ubound

1 2.5 1.75 1 2.5
2 1.75 0.6875 1.75 2.5
3 2.125 0.390625 1.75 2.125
4 1.9375 0.183594 1.9375 2.125
5 2.03125 0.094727 1.9375 2.03125
6 1.984375 0.046631 1.984375 2.03125
7 2.007812 0.023499 1.984375 2.007812
8 1.996094 0.011703 1.996094 2.007812
9 2.001953 0.005863 1.996094 2.001953

10 1.999023 0.002929 1.999023 2.001953
11 2.000488 0.001465 1.999023 2.000488
12 1.999756 0.000732 1.999756 2.000488
13 2.000122 0.000366 1.999756 2.000122
14 1.999939 0.000183 1.999939 2.000122
15 2.000031 0.000092 1.999939 2.000031
16 1.999985 0.000046 1.999985 2.000031
17 2.000008 0.000023 1.999985 2.000008
18 1.999996 0.000011 1.999996 2.000008
19 2.000002 0.000006 1.999996 2.000002

Bisection Root = 2.0000019, FunctionValue = 0.0000057, Error = 0.0000057
Elapsed time is 0.260100 seconds.
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Table 5. False position algorithm, iterations, AppRoot, error and interval bounds.

FALSE POSITION DEMO

False Position Method for function x2
− x − 2

Initial [Guesse0, Guess1] = [1.00, 4.00] ErrorTolerance: 0.0000100
Iterations Root FunctionValue

15 1.999998 −0.000005
Itera AppRoot Error Lbound Ubound

1 1.5 1.25 1.5 4
2 1.777778 0.617284 1.777778 4
3 1.906977 0.270416 1.906977 4
4 1.962085 0.112307 1.962085 4
5 1.984718 0.045612 1.984718 4
6 1.993869 0.018357 1.993869 4
7 1.997544 0.007361 1.997544 4
8 1.999017 0.002947 1.999017 4
9 1.999607 0.001179 1.999607 4

10 1.999843 0.000472 1.999843 4
11 1.999937 0.000189 1.999937 4
12 1.999975 0.000075 1.999975 4
13 1.99999 0.00003 1.99999 4
14 1.999996 0.000012 1.999996 4
15 1.999998 0.000005 1.999998 4

FalsePosition Root = 1.9999984, FuncValue = −0.0000048, Error = 0.0000048
Elapsed time is 0.263154 seconds.

Table 6. Newton–Raphson algorithm, iterations, AppRoot and error.

NEWTON_RAPHSON DEMO

NewtonRaphson Method for function = x2
− x − 2

Initial Guess = 1.000000; ErrorTolerance = 0.00001 actual iterations = 5
Iteration AppRoot Error

1 3 4
2 2.2 0.64
3 2.011765 0.035433
4 2.000046 0.000137
5 2 0

Newton-Raphson Root = 2.0000000, FuncValue = 0.000000, Error = 0.0000000
Elapsed time is 0.189108 seconds.

Table 7. Secant algorithm, iterations, AppRoot and error.

SECANT DEMO

Secant Method for function x2
− x − 2

Initial Guess0: 1.000000, Guess1: 4.000000; ErrorTolerance: 0.000010
Iteration AppRoot Error

1 1.5 1.25
2 1.777778 0.617284
3 2.04878 0.148721
4 1.996165 0.011491
5 1.999939 0.000184
6 2 0

Secant Root = 2.0000001, FunctionValue = 0.0000002, Error = 0.0000002
Elapsed time is 0.597723 seconds.

2.5. Genetic Algorithms and Swarm Intelligence

Genetic algorithm design and swarm intelligence is not the purpose of this paper, but for
completeness, we make a passing reference to what some researchers have found. The genetic
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algorithm is based on the concept of chromosomes population, genotype, phenotype, objective function
and fitness values. MATLAB has built-in functions ga for implementing genetic algorithms, and gatool
for user friendly GUI interactive experiments. Genetic algorithms are a wide field on its own, and we
will not spend much time on this except to comment how the new algorithm compares with the genetic
algorithm findings by other researchers [12].

Several researchers including [12,16,19] have attempted to use the genetic algorithm to compare
with the classical methods. They have conflicting experiences, probably depending on the function
and constraints they use. Moazzam et al. [16] solved the transcendental equation x2

− x − 2 = 0 by the
genetic algorithm as well as the bisection and false position methods. The bisection, false position and
genetic algorithms take 21, 17 and 7 iterations in Microsoft Visual C++, respectively. They announced
that the genetic algorithm is better than classical methods. We find that the new blended algorithm
(blend of the bisection and false position methods) outperforms all their findings [12]. Nayak et al. [19]
implemented the genetic algorithm on f(x) = x2 + 2x − 7, and Sirinivasa et al. [12] experimented on
f(x) = x2. They made no comparison of genetic results with classical algorithms.

Swarm intelligence is another idea of coordinating massive numbers of individual technology
entities to work together. This kind of nature-inspired artificial intelligence resulting from the swarm
principles can offer insights to help humans solve complicated real-world problems. Swarm intelligence
(SI) optimization algorithms have attracted significant attention due to their ability to solve complex
optimization problems. The underlying idea behind all SI algorithms is similar, and various SI
algorithms differ in their details. They are beyond the scope of this paper, but worth exploring. We will
explore genetic algorithms, swarm intelligence and statistical analysis for solving related engineering
problems in a future project.

2.6. Effectiveness and Efficacy of Root Approximation Iterations

2.6.1. Methods for Root-Error Calculation for Termination Criterion

There are various ways to measure error when approximating a root of an equation at successive
iterations to continue to a more accurate approximate root. To determine rn for which f(rn) � 0,
we proceed to analyze as follows.

The iterated root approximation error can be

AbsoluteRootError = |rn − rn−1| (9)

or
RelativeRootError =

|rn − rn−1 |

|rn |
. (10)

Since a root can be zero, in order to avoid division by small numbers, it is preferable to use
absolute error |rn − rn−1| for convergence testing. Another reason is that if rn = 2−n, then |rn −rn−1 |

|rn |
is

always 1. It can never be less than 1, so the relative root-error tolerance does not work on all functions.
Since the function value is expected to be zero at the root, an alternate, cognitively more appealing

error test, is to use |f(rn)| for error consideration. There are three versions of this concept. They are

TrueValueError = |f(rn)| (11)

or
AbsoluteValueError = |f(rn−1) − f(rn)| (12)

or

RelativeValueError =

∣∣∣f(rn ) − f(rn−1 )
∣∣∣∣∣∣f(rn)

∣∣∣ (13)
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for comparison criteria. Since f(rn) is to be close to zero, in order to avoid division by small numbers,

we discard using |f(rn )−f(rn−1 )|

|f(rn)|
and since |f(rn−1) − f(rn)| can be close to zero without |f(rn)| being close

to zero, we discard using |f(rn−1) − f(rn)| in favor of using only |f(rn)|, trueValue error. For example,
f(rn) = (n−1)/n is such an example. To avoid using the latter two criteria for this reason, we exploit the
first one, |f(rn)|.

Now we are left with two options for error analysis |rn − rn−1| and |f(rn). Since rn and rn−1 can be
closer to each other without f(rn) being closer to zero, between the options |rn − rn−1| and |f(rn)|, we find
that |f(rn)|is the only reliable metric for analyzing approximation error because we can have a sequence
{rn} where |rn − rn−1| goes to zero, but |f(rn)| does not go to zero. For example, if rn = 1 + 1/n, and f(rn) = rn,
then |rn − rn−1|→ 0, but |f(rn)|→ 1. This example justifies reasoning. Hence, we use this criterion for error
analysis for all the methods uniformly in order to circumvent pathological cases.

2.6.2. Stopping Criteria for Halting Condition

Stopping criteria plays a major role in simulations. We start with an initial guess(es), and by
iteratively applying the selected criteria, we get a sequence of root values of an increasingly accurate
estimation of the root, hopefully, converging to a real root. The tradeoff between accuracy and efficiency
is the accuracy of the outcome. In order to obtain n significant digit accuracy [7], let ∈s be the stopping
error and let ∈a be the approximation error at any iteration. If ∈a < ∈s the algorithm stops iterating.
With ∈s = 5/10n−1, we have n significant digit accuracy in the outcome. In pathological cases, ∈a may
never be useful and we have to specify upper bound on the number of iterations. We use both the
error tolerance and iteration bound. The program terminates whichever is satisfied first.

3. Blended Algorithm

Instead of brute force application of the bisection or false position method solely, we selectively
apply the most relevant method at each step to redefine the approximate root and bracketing interval.
Thus, we construct a new blended algorithm, Algorithm 3, that outperforms the bisection and false
position methods. It also outperforms the Newton–Raphson and secant methods (Tables 3–7) as long as
the f(a)·f(b) < 0 is determined. At each iteration, the root estimate is computed with both bisection and
false position methods, and the hybrid of the two is selected for the next approximation. This prevents
the unnecessary iterations performed in either method (see Table 1 column 2). This method does not
require differentiability of the function as required by Newton–Raphson and secant methods. The blended
algorithm outperforms them when f(a)·f(b) < 0.

Algorithm 3: Blended Bisection and False Position

1. Input: f and [a, b], ∈, maxIterations
2. Output: root r, bracketing interval [ak+1, bk+1]
3. //initialize
4. k = 0; a1 = a, b1 = b
5. repeat
6. //compute the mid point
7. mk = ak+bk

2 , and ∈m = |f(mk)|
8. //compute the secant line point,

9. sk = ak −
f(ak)(bk−ak)
f(bk)−f(ak)

and ∈s = |f(sk)|

10. if |f(mk)| < |f(sk)|,
11. // f(mk) is closer to zero, Bisection method determines bracketing interval [bak+1, bbk+1]
12. rk = mk
13. ∈a = ∈m

14. if f(ak)·f(rk) < 0,
15. bak+1 = ak; bbk+1 = rk
16. else
17. bak+1 = rk; bbk+1 = bk
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18. endif
19. else
20. // f(sk) is closer to zero, False Position method determines bracketing interval [fak+1, fbk+1]
21. rk = sk
22. ∈a = ∈s

23. if f(ak)·f(rk) < 0,
24. fak+1 = ak; fbk+1 = rk
25. else
26. fak+1 = rk; fbk+1 = bk
27. endif
28. //Since the root is bracketed by both [bak+1, bbk+1] and [fak+1, fbk+1]
29. [ak+1, bk+1] = [bak+1, bbk+1] ∩ [fak+1, fbk+1]
30. // outcome: iteration complexity, root, and error of approximation
31. iterationCount = k
32. r = rk
33. error = ∈a = |f(r)|
34. k = k + 1
35. until |f(r)| < ∈ or k > maxIterations

4. Complexity Issue

The new algorithm is a blend of the bisection and false position algorithms. The number
of iterations to find a root depends on the criteria used to determine the root accuracy. If f(x) is used,
then complexity depends on the function as well as the method. If relative error is used, it does not
work for every function, as seen in Section 2.6. Most of the time, absolute error, ∈, is used as the
stopping criteria. For functions on interval [a, b] with the bisection method, the upper bound nb(∈) on
the number of iterations can be predetermined from b−a

2n < ∈ and is lg ((b − a)/∈). For the false position
method, it depends on the convexity and location of the root near the endpoint of the bracketing interval.
The bound nf(∈) for the number of iterations for the false position method cannot be predetermined,
it can be less, nf(∈) < nb(∈) = lg ((b − a)/∈) (see Table 1) or can be greater, nf(∈) > nb(∈) = lg ((b − a)/∈)
(see Figures 1–4). The complexity of the genetic algorithm was found to be close to the false position
algorithm [16]. The number of iterations, n(∈), in the new algorithm is less than min(nf(∈), nb(∈)).
This is confirmed from the algorithm and is validated with the empirical computations in Section 5.
Newton–Raphson and secant methods have quadratic convergence, but are not guaranteed to converge
unless additional constraints are imposed on the functions.

5. Discussions

Many researchers focused their attention toward using such methods to solve their problems.
The roots are calculated, along with the number of iterations within a specified tolerance. All the
existing methods are compared. Error analysis is performed. It is determined that the blended
algorithm (blend of bisection and false position) outperforms the other algorithms.

5.1. Empirical Testing Evidence

We have tested our new algorithm against other methods on examples used in the literature
(Table 2) and validated that the new algorithm outperforms these methods. We have not included the
genetic algorithm testing here, but our tests compare with previously announced results to show it
outperforms the genetic algorithm as well (Table 1).

5.2. Experiments Using MATLAB

Moaazzam used Microsoft Visual C++ to find roots [16]. We used MATLAB R2018b64bit on
MacMojave2.2GHz16GB. For validation purposes, we used the same quadratic equation for root of
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x2
− x − 2 = 0 on interval [1,4]. To find a root of this equation, the bisection method made 19 iterations

to find a root value 2 and the false position method made 15 iterations (see Table 1). The genetic
algorithm [16] made 6 iterations while our new improved algorithm made 2 iterations. They did not
compare the genetic algorithm with secant or Newton–Raphson. The genetic algorithm was no better than
the Newton–Raphson method. Interestingly, Ehiwario [19] compared bisection, Newton–Raphson and
secant method, and claimed the secant method was better. That is also false as Table 1 shows that among
the classical and genetic algorithms, Newton–Raphson outperforms them. Overall, the experiments
have validated that the new algorithm outperforms all the classical algorithms in terms of the number
of iterations required to find a root. Table 2 is a listing of (1) functions, (2) the domain of the function
and (3) referenced authors who experimented with these functions. We tested the new algorithm on all
of these functions and demonstrated the improvement by the algorithm by using the most cited function
in the references.

Though the root approximation is almost the same in all methods, as expected, yet the number
of iterations used to reach the root shows the improvement by the new algorithm. Table 1 is a description
of the results of all the algorithms comparing the number of iterations used by each algorithm,
the approximate root within those iterations, the root error and the bracketing interval of the approximate
root for x2

− x − 2 = 0. Table 1 is a summary of the actual implementations of all these algorithms with
the name of method, number of iterations performed, approximate root, error and bracketing interval
containing the root. Tables 3–7 are detailed MATLAB output tables to support Table 2. Since it is hard
to interpret the numbers in the tables of the algorithm outputs, graph plots are a preferred way to visualize
the algorithm behavior. The plots of the execution of the algorithms are given in Figures 5–9. The iterations
column shows that the new blended algorithm is faster than other algorithms.
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Figure 5. Plot of blended algorithm execution.
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Figure 8. Plot of Newton–Raphson algorithm execution. 

 
Figure 9. Plot of secant algorithm execution. 

Table 4. Bisection algorithm, iterations, AppRoot, error and interval bounds. 

BISECTION DEMO     

Bisection Method for function x2 - x - 2   

Continuity Interval = [1.000, 4.000] ErrorTolerance = 0.0000100 

Iterations Root  FunctionValue  

19 2  0.00001   

Itera AppRoot Error  Lbound Ubound 

1 2.5 1.75  1 2.5 

2 1.75 0.6875  1.75 2.5 

3 2.125 0.390625  1.75 2.125 

4 1.9375 0.183594  1.9375 2.125 

5 2.03125 0.094727  1.9375 2.03125 

6 1.984375 0.046631  1.984375 2.03125 

7 2.007812 0.023499  1.984375 2.007812 

8 1.996094 0.011703  1.996094 2.007812 

Figure 8. Plot of Newton–Raphson algorithm execution.
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Figure 9. Plot of secant algorithm execution.

6. Conclusions

We have designed and implemented a new algorithm, a dynamic blend of the bisection and regula
falsi methods. The algorithm was implemented in MATLAB R2018B 64 bit (maci64) on a MacBook Pro
MacOS Mojave2.2GHz intel Core i716 GB2400MHz DDR4 Radeon Pro555X 4 GB. The count of iterations
required to determine the root clearly shows the improvement of the new algorithm (Table 2). However,
as desired and expected, the root approximation is almost the same in all algorithms. The implementation
validates that the new algorithm outperforms in terms of number of computation iterations in both the
bisection and false position algorithms all the time by a considerable margin. It is also observed that the
new algorithm outperforms secant method and Newton–Raphson method (Table 1).

The algorithm was tested on all functions cited in Table 1. These functions were used by
other researchers listed in the references. The most cited example was selected in the paper for
comparison purposes. The results validate that the blended algorithm is effective both conceptually
and computationally.

We find that some researchers have also used genetic algorithms. In this paper, we observed
that the new algorithm uses fewer iterations than their findings on genetic algorithms. In the future,
for better treatment of genetic algorithms as they pertain to root finding, we will develop our own
genetic algorithms, as the blended algorithm over the bisection and false position methods presented
in this paper.

Swarm intelligence is another idea of coordinating massive numbers of individual technology
entities to work together. This kind of nature-inspired artificial intelligence resulting from the swarm
principles can offer insights to help humans to solve complicated real-world problems. The underlying
idea behind all SI algorithms is similar, and various SI algorithms differ in their details. We will explore
genetic algorithms, swarm intelligence and statistical analysis for solving related engineering problems
in a future project.
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