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Abstract: Short term memory that records the current population has been an inherent component of
Evolutionary Algorithms (EAs). As hardware technologies advance currently, inexpensive memory
with massive capacities could become a performance boost to EAs. This paper introduces a Long
Term Memory Assistance (LTMA) that records the entire search history of an evolutionary process.
With LTMA, individuals already visited (i.e., duplicate solutions) do not need to be re-evaluated,
and thus, resources originally designated to fitness evaluations could be reallocated to continue
search space exploration or exploitation. Three sets of experiments were conducted to prove the
superiority of LTMA. In the first experiment, it was shown that LTMA recorded at least 50% more
duplicate individuals than a short term memory. In the second experiment, ABC and jDElscop were
applied to the CEC-2015 benchmark functions. By avoiding fitness re-evaluation, LTMA improved
execution time of the most time consuming problems F03 and F05 between 7% and 28% and 7% and
16%, respectively. In the third experiment, a hard real-world problem for determining soil models’
parameters, LTMA improved execution time between 26% and 69%. Finally, LTMA was implemented
under a generalized and extendable open source system, called EARS. Any EA researcher could
apply LTMA to a variety of optimization problems and evolutionary algorithms, either existing or
new ones, in a uniform way.

Keywords: algorithmic performance; metaheuristics; duplicate individuals; non-revisited solutions

1. Introduction

Evolutionary Algorithms (EAs) [1] are stochastic algorithms that originated by utilizing
nature-inspired behaviors to search for the global optimum/optima. Over the past few decades,
EA research communities concentrated their efforts on expanding EA areas by mimicking a variety of
nature-inspired behaviors (e.g., ABC [2], ACO [3], Grasshopper Optimization Algorithm (GOA) [4],
Gray Wolf Optimizer (GWO) [5], PSO [6], and Teaching-Learning Based Optimization (TLBO) [7]),
although, in many cases, searching for inspiration from nature has gone too far [8]. EA researchers
also dedicated themselves to how EA’s parameters may influence the evolutionary processes (e.g.,
parameter-less [9], parameter tuning [10,11], and parameter control [12,13]). Both research mainstreams
(i.e., EA behaviors and EA parameters) consider EAs as balancing an evolutionary process between
exploration and exploitation [14], either by controlling EA operations, or EA parameters, or both.

Although duplicate individuals (revisited solutions) have been recognized as unproductive
from the beginning of EAs, not enough research has been done to evaluate how costly it is to
identify duplicates and how much benefit can be gained if duplicates can be identified and replaced
with new solutions. For example, Koza wrote in [15]: “Duplicate individuals in the initial random
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generation are unproductive deadwood; they waste computational resources and reduce the genetic
diversity of the population” undesirably. However, duplicate individuals in Genetic Programming
(GP) [15] have been identified only in initial random generation. This is because duplicate random
individuals are especially likely to be generated when the trees are small, and discovering duplicates
in the later phases when the trees are large would be a costly process, not to mention the cost of
keeping track of all solutions (trees in the case of GP) over the entire evolutionary process (over
all generations). In Teaching-Learning Based Optimization (TLBO) [7], a duplicate elimination
phase has been introduced to replace duplicates generated in one generation with random solutions,
but duplicates were not checked with previous solutions found in earlier generations. Even more
importantly, in TLBO, fitness evaluations were re-computed on duplicates and only later replaced with
random solutions consuming more fitness evaluations [16,17]. The immediate question that arises is:
How much can we profit if fitness evaluations are not re-computed on duplicates, and how costly is it
to discover duplicates over the whole evolutionary process? However, the question is if this problem
is real. Do EAs indeed generate many duplicates? We have often used the Artificial Bee Colony
(ABC) algorithm in the past [18,19] and discovered that ABC exploitation performed in employed and
onlooker bee phases actually generates many duplicates. Figure 1 shows one such example of using
ABC where a convergence graph with duplicates (without Long Term Memory Assistance (LTMA)) is
compared with a convergence graph with no duplicates (with LTMA), where duplicates are rather
replaced with new solutions. For a fair comparison, a single run was used for both scenarios (red and
black lines). LTMA was simulated based on a full run, by removing duplicate solutions that, in the
case of using LTMA, would not be generated. As a result, the algorithm with LTMA converged earlier
(the flat parts of the line are shorter, where duplicates were generated). Even in this simple example
(Figure 1), it is clear that gains can be substantial (e.g., Solution A with Long Term Memory Assistance
(LTMA) in Figure 1 can be found at least 1000 evaluations earlier than the same Solution B without
LTMA). Especially in real-world problems where fitness evaluations are costly, we can expect large
gains on CPU time by not re-computing fitness evaluations of duplicates or even better solutions when
duplicates are rather replaced with new solutions enhancing the exploration and exploitation of the
search space. However, how much we can gain from discovering duplicates and replacing them with
new solutions has not been tested before. Hence, we decided to explore this topic more deeply on
problems where solutions are represented as a vector of real numbers. Using graphs and trees (e.g.,
as in GP) as representations of solutions is out of the scope of this study.

In this paper, we call solutions (population) in the current generation short term memory and
all solutions tested so far from the initial population long term memory. When using only the short
term memory, we lose information on which solutions have already been visited (generated) in the
previous generations, and it is quite possible that some solutions were re-visited. Re-evaluation of
duplicate individuals is an unnecessary step and can be eliminated if we have long term memory.
In this work, Long Term Memory Assistance (LTMA) is introduced, which can increase efficiency in
terms of EA convergence.

The main contributions of this study are:

• estimation of the cost (memory and CPU time usage) for duplicate identification when solutions
are represented as a vector of real numbers,

• estimation of how many fitness evaluations can be saved by not re-evaluating existing solutions
for a few selected EAs and problems,

• demonstrating how we can “attach” long term memory in a uniform way to existing EAs and
provide a general solution for this topic.

This paper is organized as follows. In Section 2, related work on how the past partial or complete
search history has been recorded and utilized is reviewed briefly. The motivation of the research is
proposed in Section 3. In Section 4, the proposed LTMA and its implementation are described briefly.



Mathematics 2019, 7, 1129 3 of 25

In Section 5, duplicates’ generation is analyzed, as well as their effects on benchmark and real-world
problems. Finally, the paper concludes in Section 6.

Figure 1. Convergence graph of the ABC algorithm with the Long Term Memory Assistance (LTMA).

2. Related Work

For EAs, the short term memory concept has been an essential component realized through
selection processes. For example, genetic algorithms [20] utilize a selection process to choose
individuals for the next generation randomly, based on different strategies (e.g., tournament selection
and fitness proportional selection). Although most selection processes use fitness values to guide
selection, due to random selection, fitter individuals are not necessarily guaranteed to propagate to
the next generation. Later, Evolution Strategies (ESs) [20] introduced a deterministic approach to
select individuals based on the fitness ranking of individuals. Survival is guaranteed for a certain
number of current best individuals. For example, (1+1)-ESs select the best between the parent and its
mutated offspring for the next generation. Elitism represents an important milestone of introducing
the long term memory concept to single-objective evolutionary algorithms [20,21], such that the
current best individual(s) can survive throughout the evolutionary process. The elitism concept
was later adapted as an external archive in most multi-objective evolutionary algorithms. All the
non-dominated solutions found during the evolutionary process are retained in an external archive,
so that they can be used to compare with current solutions. Some notable examples are SPEA2 [22],
PAES [23], and EAG-MOEA/D [24]. Note that, although external archives are a commonly used
approach in multi-objective evolutionary algorithms, NSGA-II [25] and its successor NSGA-III [26]
still adopt elitism to retain the best individuals from both parents and offspring. External archives are
also applied to some single-objective evolutionary algorithms. For example, JADE [27] introduced
an optional external archive that stores a set of recently explored inferior solutions to guide the
evolutionary process and improve diversity. Tanabe and Fukunaga [28] extended JADE, but recorded
the history of parameters instead of recently explored solutions. Another EA sub-area that utilizes
memory mechanisms is changing optimization problems or dynamic/uncertain environments [29–32].
Since this paper does not discuss changing optimization problems, readers may refer to those related
works if interested.

Note that, although elitism or external archives introduced long term memory concepts to
single-objective and multi-objective evolutionary algorithms, only partial solutions are recorded from
the entire evolutionary process. During the past decade, several EA researchers have introduced new
data structures to store the information obtained during the entire evolutionary process. For example,
Chow and Yeun introduced non-revising GA [33] and the history driven evolutionary algorithm [34].
Both algorithms utilize the Binary Space Partition (BSP) tree to partition the search space and
memorize the search history to avoid revisiting same solutions. They also introduced the continuous
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Non-revisiting Genetic Algorithm (cNrGA) for continuous variables and, later, introduced pruning
mechanisms to maintain constant memory usage [35]. Leung et al. [36] extended the work to utilize past
history to compute an approximate fitness landscape to control the evolutionary processes. Zhang and
Wu [37] applied a BSP tree to the ABC algorithm to record and utilize the entire search history to
improve the quality of regenerated solutions from the scout bee phase. Zabihi and Nasiri also applied
a BSP tree to ABC algorithms for data clustering [38]. Nasiri et al. [39] used a BSP tree to approximate
the landscape information of dynamic and uncertain optimization problems. In addition to a BSP tree,
Črepinšek et al. [40] introduced an ancestry tree data structure to record the evolution history of a
population and invented exploration and exploitation metrics based on the tree structure.

From the above discussions and references, long term memory has been proven as a useful
mechanism for many EAs. Yet, due to memory constraints and the focus of introducing or improving
EAs, to our best knowledge, there have not been many related works on recording and memorizing the
entire search history of an evolutionary process for long term memory, where the cost of identifying
re-visited solutions and the profit of not re-computing fitness evaluations have been investigated.
Additionally, the aforementioned related work applied the entire search history for specific algorithms.
LTMA, conversely, provides a general and extendable solution by decoupling long term memory from
algorithms and problems.

Please note that Long Short-Term Memory (LSTM) [41] has been introduced in the deep learning
research field (e.g., [42–45]). Unlike LTMA, LSTM introduces cells and gates to form a “highway”
to retain gradient information in a long sequence of a recurrent neural network. In [46], a genetic
algorithm was integrated with an LSTM network to optimize time window size and architectural
factors, to better predict the Korea Composite Stock Price Index.

3. Memory

3.1. How Much Memory Do We Need?

To calculate how much memory we need for completing long term memory recall, we need to
know some data about the EA used, the problem being solved, and its stopping criteria. In our work,
the following assumptions were made:

• Only memory needed to store all individuals (populations over whole generations) is computed,
although different EAs need extra memory for additional computations. This algorithm specific
memory usage is not taken into account in our work.

• Only single-objective continuous optimization problems have been studied, where a point in a
search space (genotype) is represented as a vector x of length n, x ∈ <n, and fitness (phenotype)
y = f (x) ∈ <. To represent a real value <, often eight bytes of memory are used (e.g., Java).
Therefore, (n + 1) ∗ 8 bytes are needed for one member of a population and its fitness value.
A different memory consumption is needed in the case of discrete optimization, where the
representation of a population member is problem dependent. In the case of multi-objective
optimization, a solution y ∈ <k (kth objectives) and more memory are needed to store a
fitness value.

• The stopping criteria determine how many solutions are going to be generated. The fixed-cost
(vertical) and the fixed-target (horizontal) approaches were identified in [47]. In the fixed-cost
approach, solutions are generated until we reach a pre-defined number of iterations, or pre-defined
number of fitness evaluations (MFES), or pre-defined CPU time. In the fixed-target approach,
solutions are generated until a (sub-)optimal solution is found. Some hybrid stopping criteria,
blending vertical and horizontal approaches, have also been employed in EAs. Among the
aforementioned approaches, it is often unknown how many solutions will be generated (e.g.,
based on CPU time or based on the maximum number of iterations when some extra local search
is also included). Hence, in this study, MFES is used as a stopping condition. It indicates directly
the number of generated solutions.
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Based on the aforementioned assumptions, we need MFES ∗ (n + 1) ∗ 8 bytes to store all solutions
and their fitness values. Table 1 shows typical memory consumption for different dimensions (n) and
numbers of generated solutions (MFES).

Table 1. Theoretical calculation of needed memory.

n MFES Bytes MB

2 10,000 240,000 0.2

10 30,000 2,640,000 2

30 30,000 7,440,000 7

100 1,000,000 808,000,000 770

200 1,000,000 1,608,000,000 1533

1000 1,000,000 8,008,000,000 7637

From the memory calculations, we can observe that the limitation of using just computer RAM
memory currently starts with large scale optimization problems where n is 200 or more, where just raw
data that describe solutions take ≈1.5 GB of memory. If we compare Table 1 with the needed RAM
and Table 2 with recommended personal computer RAM, we can get some clues about why long term
memory has not been used in the past.

Table 2. Recommended memory for personal computers.

Release Year OS Recommended RAM

1981 MS DOS R© 64 kB

1987 MS DOS 3.3 R© 512 kB

1995 Windows 95 R© 16 MB

1996 Windows NT R© 32 MB

1998 Windows 98 R© 32 MB

2000 Windows 2000 R© 64 MB

2001 Windows XP R© 128 MB

2006 Windows Vista R© 512 MB

2010 Linux Ubuntu 10 1 GB

2012 Windows 8 R© 1 GB

2015 Windows 10 R© 2 GB

However, these calculations are theoretical. In practice, a solution can be represented as an object
(in object oriented languages such as Java [48,49]) that has additional data that requires memory.
In these cases, memory consumption is higher. Nevertheless, we can observe from Table 1 that,
with current personal computers, indeed all generated solutions can be kept in memory achieving a
long term memory concept in EAs. This is only worthwhile if we can make some profit from it. Below,
we will show that this is indeed the case.

3.2. How Much Can We Profit?

By using the proposed approach, Long Term Memory Assistance (LTMA), there is no need for
re-evaluation of a duplicate individual. As such, the gain is the time not needed for a fitness evaluation.
On the other hand, we also need to know the time to identify a duplicate. The time needed for a
fitness evaluation is obviously problem dependent. In the case of synthetic benchmarks, this is usually
very low (one evaluation takes a few ms), but in the case of real-world problems, it can require much
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more resources (from seconds to hours for one evaluation). Special cases are evaluations with a partial
computer simulated model, where an experiment in the physical world is executed for every solution
evaluation. The price of such an evaluation is usually very high, and often, surrogate models are
used [50–53]. Therefore, in this study, we are using both problems, i.e., synthetic benchmarks, as well as
real-world problems, to investigate this topic more thoroughly. Since we need to take into account the
time to identify a duplicate individual, a simple measure would be speedup, as the ratio between CPU
time needed when duplicates are not identified, and duplicate individuals are re-evaluated, denoted as
told, against CPU time with LTMA (denoted as tnew). By measuring the time of a whole run of a specific
EA, the time needed by algorithm specific operations is also taken into account. Therefore, despite
dealing with the same problem and the same number of fitness evaluations, EAs will run for different
amounts of time. A speedup of 1.5 would mean that using LTMA would be 50% more time efficient.

speedup =
told
tnew

(1)

We expect an increased speedup whenever the average time for identifying duplicates tidenti f y
would be smaller than re-evaluating the fitness of duplicates tre−eval . Let DAll denote the number
of all duplicate individuals. For every individual, we need to check if it is a duplicate individual.
Hence, there will be MFES individuals in the whole search. Therefore, an increased speedup is
achieved when:

MFES · tidenti f y < DAll · tre−eval (2)

Since DAll is not statically known, this cannot be computed in advance.
To investigate some theoretical speedups, we will set tidenti f y as one unit of time, and tre−eval

will be a multiple of tidenti f y. The results are presented in Table 3, where we can observe that, in the
case where tidenti f y is equal to tre−eval , we get negative speedups. This trend turns when tre−eval takes
10-times longer than tidenti f y. This ratio is common, even in the case of simple synthetic problems.
In this case, we can observe (Table 3) that a speedup of 10% can already be achieved when an EA
generates 10% or more duplicate individuals.

Table 3. Relations between time, percentage of duplicates, and speedup.

tre−eval tidenti f y
Speedup
10% DAll

Speedup
20% DAll

Speedup
30% DAll

Speedup
40% DAll

Speedup
90% DAll

Speedup
95% DAll

1 1 0.526 0.556 0.588 0.625 0.909 0.952

10 1 1.000 1.111 1.250 1.429 5.000 6.667

100 1 1.099 1.235 1.408 1.639 9.091 16.667

1000 1 1.110 1.248 1.427 1.664 9.901 19.608

10,000 1 1.111 1.250 1.428 1.666 9.990 19.960

Instead of generating a duplicate individual, it would be better to generate a new solution. In such
a manner, the search space is going to be explored/exploited better [14]. Note that there is no benefit of
revisiting the same solution (a good or a bad solution) two or more times. Hence, another measure to
quantify the profit of duplicate elimination is the number of new solutions that can be generated instead
of duplicates. The success of a particular EA also depends on the number of duplicate individuals that
can be used more wisely in other search regions. However, the factor of non-revisiting solutions is not
the only one that determines the efficiency of an EA. For example, the Random Walk Algorithm (RWA)
will most likely not generate two identical solutions, but RWA is rarely competitive with any EA due
to the lack of guided search. On the other hand, the simple Hill Climbing Algorithm (HCA) will start
to generate the same solutions in a local optimum. Since generating the same optimal solution several
times is still a waste of precious CPU time, we decided to differentiate both cases:
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• DBO is the number of duplicates before an optimum is found in one independent run.
• DAll is the number of all duplicates in one independent run.

In order to count duplicate individuals, we need to define them first. An individual is a duplicate
if there exists an individual in the long term memory with the same genotype. Genotypes x1 and x2 are
the same if x1i == x2i, for every i ∈ [1, 2, . . . n]. The precision of double values is defined by software
and computer configuration. In our experiments, we used the Java programming language. In Java,
the precision of native double values is up to 16 digits; thus, comparison of double numbers is possible
up to 16 digits. In real-world problems, the need for such a high precision is rare, and because of that,
we will limit the precision of double values and conducted experiments with three different precisions
(Pr): 3, 6, and 9 decimal places. We need to stress here that precision is a problem based parameter and
needs to be set accordingly. To identify duplicate individuals, we used a hash table where the key is
the genotype represented as a formatted string. The representation of individuals was not memory
space optimized, but it did not present any problems in our experiments.

The following research questions were investigated in the experiments:

• How many duplicate individuals are generated during the optimization process? To answer
this question we have to count all duplicate individuals based on precision DAllPr, as well
as how many duplicate individuals are found before the global optimum is reached based on
precision DBOPr.

• How much CPU time can be gained by not evaluating duplicate individuals (speedup)?
• How can convergence be improved by replacing duplicate individuals with new solutions?

For easier interpretation of results, the success rate SRPr was added [1]. Finally, the number
of duplicates most likely also depends on the optimization problem. We expected more duplicates
on a multimodal problem with many local optima. Two different experimental scenarios have been
envisioned. In the first scenario, denoted as LTMAt, we will use LTMA to achieve potential time
speedups. On the other hand, we can take an even further step. In cases where the stopping criterion
is set by MFES and EA does not re-evaluate duplicate individuals, then EA can use this unused fitness
evaluation. In this LTMA usage scenario, denoted as LTMAe, we can expect a better or equal result,
but optimization time will be increased by MFES · tidenti f y. In practice, it is expected that for real-world
problems, tidenti f y � tre−eval .

4. Implementation

Traditionally, in order to make EA frameworks/systems/tools generalized and extendable, many
EA frameworks/systems/tools are decoupled into two separate modules: optimization problems and
evolutionary algorithms. Some notable examples are the Evolutionary Algorithms Rating System
(EARS) [54], EvoSuite [55], and the MOEA framework [56]. EARS is a Java-based open source system
that compares and ranks evolutionary algorithms using a chess rating system [57]. Its source code is
available on GitHub. We extended EARS by adding a Long Term Memory Assistance (LTMA) module
between the Optimization Problem (OP) module and Evolutionary Algorithm (EA) module. Figure 2
shows the implementation of the proposed work.

In the implementation of LTMA, users first interact with the OP module to select an optimization
problem and problem specific parameters such as constraints, dimension, upper and lower bounds,
among others (Figure 2, Step 1). Then, users determine the EA and its parameters (e.g., pop_size,
mutation and crossover probabilities (pm, pc) in the case of genetic algorithms), which are forwarded
to the EA module (Figure 2, Step 2). Finally, execution parameters such as stopping criterion will
be requested and passed to the LTMA module. Once all the configurations are done, EA will start
to run the optimization process (Figure 2, Step 3). During a run of the optimization, the EA module
explores or exploits a solution (x), which is then passed to the LTMA module to check whether the
solution has been re-visited or not. Only if the solution has not been visited before will it be passed to
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the OP module to compute its fitness value ( f (x)). Namely, the LTMA module records all duplicate
individuals and prevents redundant time-consuming re-evaluations. Finally, the fitness value will
be passed back to the EA module (Figure 2, Step 4). The experiment will continue until the stopping
criterion is met. Note that the LTMA module is in charge of the termination of a run. This is because
LTMA possesses visited solutions, which could be used as useful information to determine whether
to continue to consume unused fitness evaluations before the stopping criterion is met. Since the
LTMA module is integrated in EARS, a generalized and extendable EA framework, the proposed work
featuring long term memory can be applied to a variety of optimization problems and algorithms in a
uniform way.

The LTMA was designed to be implemented easily and used in combination with different
EA frameworks or in combination with standalone EAs. The focus in this implementation was on
continuous optimization problems, but it can be adapted to discrete optimization problems such as job
shop scheduling, the traveling salesman problem, or the knapsack problem [58,59].
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Figure 2. The implementation of LTMA.

5. Experiment

The experiment is divided into the following parts:

• analysis of duplicate individuals’ occurrences on three simple, but well known problems, to gain
a first insight into the topic,

• duplicate analysis on CEC-2015 benchmark problems, and
• duplicate analysis on a real-world problem.

The phase of exploration and exploitation of evolutionary algorithms [14] affects how the search
space is searched. Since each EA has its own approach, we used five different EAs in the experiment to
demonstrate the viability of the proposed approach. The EAs’ control parameters were not tuned for the
experiment, and default settings of the control parameters were used. A meticulous reader will notice
that EAs in this study used different population sizes as a result of default settings. However, since we
used MFES as a stopping condition, this did not expose additional threats to validity.

The main objective of the experiments was not to show which algorithm was better, but to
investigate the phenomena of duplicate individuals and the influence of the proposed LTMA.
The selected EAs were: Artificial Bee Colony (ABC) [2] with pop_size = 60 and limit =
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pop_size·n
2 , the self-adaptive differential evolution algorithm (jDElscop) [60] with pop_size = 100,

Teaching-Learning Based Optimization (TLBO) [7] with pop_size = 20, Gray Wolf Optimizer (GWO) [5]
with pop_size = 30, and the Grasshopper Optimization Algorithm (GOA) [4] with pop_size = 30.
The source codes of all used algorithms are included in the open source EARS framework [54].

5.1. Experiment I: The First Insight

Our main objective in this experiment was to get a first insight into the generated duplicate
individuals. The LTMAt scenario was used for this analysis. Therefore, we selected three classical
synthetic problems: Sphere, Ackley, and Schwefel 2.26. Usually, these problems are used by developers
of new evolutionary algorithms for their initial evaluation. The Sphere problem was expected to be
very easy, while the Ackley and Schwefel 2.26 problems were somewhat more difficult, but solvable.
Visualization of their landscape will help us understand and interpret the results.

Every problem was analyzed with different scenarios, based on the dimension of the problem n
and the stopping criterion (maximum number of fitness evaluations MFES):

• n = 2 and MFES = 10,000,
• n = 10 and MFES = 30,000, and
• n = 30 and MFES = 100,000.

When multiplying the number of problems, the number of different dimensions, the number of
selected EAs, and number of different precisions, we obtained: 3× 3× 5× 3, in total 135 combinations
of different configurations, each of which was repeated 50 times.

Stochastic algorithms rely on Random Number Generators (RNGs) to generate new solutions.
Therefore, it was crucial to select a good RNG, which will not generate duplicate individuals. In our
experiments, we used the Mersenne Twister Random Number Generator [61]. To test it, we made a
simple experiment, where we generated MFES random solutions based on selected dimensions and
for every precision. The experiment was repeated 50 times. The selected random number generator
did not generate any duplicate individuals, except in one run with settings: n = 2, MFES = 10,000,
and precision Pr = 3, one duplicate individual was generated. The results confirmed that it was very
unlikely that the selected RNG would generate duplicate individuals.

5.1.1. Sphere Problem

The Sphere function problem has no local optima and is one of the easiest global optimization
problems; thus, it has one basin of attraction (Figure 3). The minimization problem is characterized by
the equation:

f (x) =
n

∑
i=1

x2
i (3)

where −5.12 ≤ xi ≤ 5.12. The fitness value for the global optimum is zero. Its characteristics help us
understand an algorithm’s exploitation behavior, and it is used commonly as the first test problem
for EA’s convergence analysis. It is expected that the global solution will be found fast and with
high precision.

From Table 4, we can observe that:

1. the most duplicates are generated at the global optimum (after the global optimum is obtained).
2. the numbers of DBO and DAll will decrease with higher precision (from 3 to 6 and 9).
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Figure 3. Fitness landscape of a Sphere problem for n = 2.

Table 4. Number of duplicate individuals’ evaluation for the Sphere problem. TLBO, Teaching-Learning
Based Optimization; GWO, Gray Wolf Optimizer; GOA, Grasshopper Optimization Algorithm.

EA n MFES DBO3 DAll3 DBO6 DAll6 DBO9 DAll9 SR

ABC 2 10,000
18.3
±7.0

4297.9
±175.2

10.8
±4.2

2702.1
±216.8

9.0
±2.7

1028.5
±59.9 100

jDElscop 2 10,000
2.6
±1.4

6613.5
±75.3

2.2
±2.3

5015.9
±73.0

1.5
±1.2

4275.0
±60.8 100

TLBO 2 10,000
0.8
±1.3

1152.5
±63.3

0.0
±0

617.6
±38.4

0.0
±0

405.9
±40.8 100

GWO 2 10,000
0.0
±0

9553.5
±19.7

0.0
±0

9281.8
±23.5

0.0
±0

9013.8
±36.7 100

GOA 2 10,000
22.3
±20.8

438.6
±42.7

0.0
±0

40.0
±0

0.0
±0

29.5
±2.1 100

ABC 10 30,000
165.3
±79.2

11,698.2
±163.3

14.1
±5.4

10,228.5
±403.7

11.8
±4.2

1206.1
±142.1 100

jDElscop 10 30,000
7.7
±3.9

13,805.4
±174.6

0.2
±0.4

11,140.6
±334.8

0.1
±0.3

8310.5
±492.6 100

TLBO 10 30,000
61.7
±47.0

1690.7
±56.1

0.0
±0

1064.4
±44.2

0.0
±0

750.7
±53.8 100

GWO 10 30,000
0.0
±0

28,576.7
±75.1

0.0
±0

27,898.6
±68.3

0.0
±0

27,129.9
±77.4 100

GOA 10 30,000
131.1
±26.3

487.1
±32.7

0.0
±0

30.0
±0

0.0
±0

0.1
±0.3 100

ABC 30 100,000
688.0
±244.0

39,304.5
±707.2

13.1
±3.0

38,560.1
±811.4

11.2
±3.0

6030.9
±521.8 100

jDElscop 30 100,000
27.8
±4.2

48,036.5
±132.0

0.5
±0.7

43,055.4
±687.6

0.8
±0.9

37,904.8
±663.1 100

TLBO 30 100,000
339.5
±123.6

5934.4
±75.6

0.0
±0

3825.7
±77.2

0.0
±0

2845.8
±114.3 100

GWO 30 100,000
0.0
±0

96,938.2
±102.8

0.0
±0

95,218.2
±158.0

0.0
±0

93,736.9
±173.0 100

GOA 30 100,000
1362.1
±106.9

1362.1
±106.9

40.0
±0

40.0
±0

0.0
±0

0.0
±0 0

For n = 2, we had a very small number of duplicate individuals before the global optimum was
found (DBO); from ≈0% in the case of the GWO algorithm to ( DBO3

MFES = 688
100.000 ) ≈ 0.7% in the case

of the ABC algorithm for n = 30 and Pr = 3. With increased precision, the number of duplicates
(DBO) dropped almost to zero and, using LTMA, was not contributing in the global optimum search.
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The number of all duplicate individuals DAll was high. The number of duplicate individuals (DAll)
in the case of GWO was even ≈97% for (n = 30, Pr = 3), whilst for ABC around ≈40% for (Pr = 3 and
Pr = 6). This indicated that the selected problem was easy to solve and the stopping criterion MFES
could be set to less. The Success Rate (SR) in all configurations was 100%, except for GOA (n = 30).
We tested if duplicates (DAll) could be identified using only short term memory (current population).
Around 50% of duplicates would not be identified in such a case.

A better insight into the duplicates’ generation of a specific EA was obtained by observing the
convergence graph of a particular independent run. Visualization of the convergence graph (black
crosses) was enhanced with visualization of all generated solutions (gray squares) and duplicate
solutions (red pluses). In particular, we would like to know how good the generated solutions (gray
squares) were in terms of fitness, in which phases duplicates (red pluses) appeared (e.g., early in
the search, when approaching local or global optima), and what was the convergence graph of the
best solutions so far (black crosses). Such visualization helped us to understand better how specific
EAs performed exploitation and exploration of the search space [14]. Namely, if the newly generated
solutions (gray squares) were close to local optima or even to the best current solution (black crosses),
then the EA was in the process of exploitation. On the other hand, if newly generated solutions (gray
squares) were far from the best current solutions (black crosses), then the EA must be in the phase of
exploration. On the graph, the x axis (horizontal) represents execution time represented by the number
of evaluations and the y axis (vertical) the success of the algorithm represented by the fitness value.
The graph has three types of data. The first type is all evaluations (gray squares), which represent
all fitness evaluations and their values (10,000 of them). The second type of data represents the best
solution found so far (best, black crosses) and describes the convergence of the algorithm. The last
type of data represents the generated duplicate individuals (duplicates, red pluses). We need to note
here that all solutions in the graph are presented by their fitness value (phenotype) and not by the
actual result vector x (genotype).

Figure 4 represents one run of the ABC algorithm for n = 2 and Pr = 6 on the Sphere problem.
From the graph (Figure 4), we can observe clearly two exploration phases of the ABC algorithm
(all evaluations). The first exploration phase was in the interval from zero to≈1500 evaluations, and the
second started at ≈6000 and ended at 10,000 evaluations. The exploitation phase was in the interval
from 1500 to 6000 (almost all generated solutions ended in the global optimum). Most duplicate
individuals were generated in the global optimum in the interval from 4000 to 7000 evaluations
when ABC was in the exploitation phase, whilst only a few duplicates were generated in the two
exploration intervals.
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Figure 4. One run of the ABC algorithm on the Sphere problem for n = 2 and Pr = 6.
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5.1.2. Ackley Problem

The Ackley function problem has many local optima with a small basin of attraction and global
optima with a large basin of attraction (Figure 5). The fitness value for the global optimum is zero.
The minimization problem is characterized by the equation:

f (x) = −20 exp

(
−0.2

√
1
n

n

∑
i=1

x2
i

)
− exp

(
1
n

n

∑
i=1

cos 2πxi

)
+ 20 + e (4)

where −32 ≤ xi ≤ 32 and e is Euler’s number (≈2.7182818284).-40 -30 -20 -10  0  10  20  30  40 -40 -30 -20 -10  0  10  20  30  40 4 6 8 10 12 14 16 18 20 22  4 6 8 10 12 14 16 18 20 22
Figure 5. Fitness landscape of the Ackley problem for n = 2.

Because of the local optima, it was expected that finding the global optimum would be harder
than in the case of the Sphere problem, but due to the relatively small local optima basin of attraction
compared to the global optima basin of attraction, EAs were able to make the exploration “jump” from
local to global optimum.

The results are shown in Table 5 where we can observe that the number of duplicate individuals
(DBO) was higher than for the Sphere function (Table 4). For example, the ABC algorithm for n = 10
and Pr = 3 had, on average, more than ≈ 4% of DBO; for n = 30 and Pr = 3 it had ≈ 6% of DBO.
Indeed, among the selected EAs, the ABC algorithm had the highest number of DBO, showing that
the proposed LTMA might be useful. The number of all duplicate individuals DAll was similar (ABC
around ≈ 40%) as in the case of the Sphere function (Table 4), indicating again that the number of
MFES could be lower. The SR of GOA showed again that this EA was not competitive for this kind
of optimization problem. Around 60% of duplicates would not be identified when only short term
memory (current population) was used.

From the graph (Figure 6), we can again observe two exploration phases of ABC. Since the Ackley
problem was harder than the Sphere problem, the first exploration phase of ABC was longer (up
to 6000 evaluations) and generated more duplicates than the first exploration phase on the Sphere
problem (Figure 4). Those duplicates were unnecessary, and it would be better if new unique solutions
could be generated in an unexplored search space. In the exploitation phase (from 6000 to 8500
evaluations), many duplicates were actually at the global optimum. The ABC algorithm was no longer
in the exploitation phase at ≈8500 evaluations, again generating a few duplicates.



Mathematics 2019, 7, 1129 13 of 25

Table 5. Number of duplicate individuals’ evaluation for the Ackley problem.

EA n MFES DBO3 DAll3 DBO6 DAll6 DBO9 DAll9 SR

ABC 2 10,000
152.8
±89.7

4254.2
±173.2

103.5
±52.2

2366.1
±131.9

64.7
±43.3

2322.9
±169.9 100

jDElscop 2 10,000
68.4
±51.5

6785.9
±49.7

7.5
±7.1

5175.0
±129.7

6.6
±2.9

4380.8
±77.5 100

TLBO 2 10,000
54.2
±36.7

1345.7
±43.0

0.9
±1.9

656.4
±38.0

0.9
±1.7

398.0
±26.8 100

GWO 2 10,000
5.9
±4.4

9586.4
±38.4

0.0
±0

9301.7
±30.2

0.0
±0

9064.3
±25.2 100

GOA 2 10,000
627.5
±476.1

1344.8
±111.9

0.0
±0

40.2
±0.4

0.0
±0

40.0
±0 96

ABC 10 30,000
1348.1
±454.4

11,703.2
±581.2

211.6
±96.1

7035.1
±905.9

162.7
±67.0

1431.2
±357.0 100

jDElscop 10 30,000
62.3
±23.1

14,116.5
±113.9

1.1
±0.9

11,528.2
±259.9

1.4
±1.3

8597.7
±289.9 100

TLBO 10 30,000
660.9
±182.3

1873.8
±68.9

14.6
±27.4

1158.9
±49.3

0.0
±0

799.0
±33.2 100

GWO 10 30,000
11.6
±14.7

28,751.1
±101.2

0.0
±0

27,977.6
±120.3

0.0
±0

27,273.7
±77.5 100

GOA 10 30,000
1381.9
±202.6

1381.9
±202.6

27.0
±9.5

30.0
±0

30.0
±0

30.0
±0 4

ABC 30 100,000
6594.8
±1276.2

40,259.1
±606.3

493.8
±142.0

32,573.8
±2256.2

179.6
±45.8

12,076.3
±609.9 100

jDElscop 30 100,000
179.2
±55.9

48,279.1
±270.5

7.0
±3.5

43,431.3
±535.5

10.9
±7.0

38,226.1
±657.8 100

TLBO 30 100,000
3484.0
±618.8

6357.3
±138.6

5.2
±6.9

4086.8
±150.3

0.0
±0

2994.6
±115.6 100

GWO 30 100,000
8.0
±7.0

97,123.6
±195.9

0.0
±0

95,477.3
±99.1

0.0
±0

93,873.4
±122.6 100

GOA 30 100,000
5917.7
±1329.9

5917.7
±1329.9

70.0
±0

70.0
±0

40.0
±0

40.0
±0 0
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Figure 6. One run of the ABC algorithm on the Ackley problem for n = 2 and Pr = 6.
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5.1.3. Schwefel 2.26 Problem

The Schwefel 2.26 optimization problem had the most demanding fitness landscape among the
three selected problems, with a lot of small and big basins of attraction (Figure 7). The minimization
problem is characterized by the equation:

f (x) = −
n

∑
i=1

(
xi sin

(√
|xi|
))

(5)

where −500 ≤ xi ≤ 500. -600 -400 -200  0  200  400  600 -600 -400 -200  0  200  400  600-1000-800-600-400-200 0 200 400 600 800 1000 -1000-800-600-400-200 0 200 400 600 800 1000
Figure 7. Fitness landscape of the Schwefel 2.26 problem for n = 2.

The fitness value at the global optimum is −418.982887272 · n.
From Table 6, we can observe that the number of duplicate individuals before the global optimum

(DBO) increased in comparison with the Sphere or Ackley problems (Tables 4 and 5). Again, ABC
generated the most DBO among the selected EAs (more than 10%), although it was the runner-up
regarding SR, where jDElscop had the best performance. It is interesting that the number of duplicates
DAll was not much higher than DBO, indicating that the most duplicates were actually sub-optimal
solutions. Around 75% of duplicates would not be identified when only short-term memory (current
population) was used.

The graph on Figure 8 for ABC indicates that duplicate individuals were generated throughout
the whole optimization process. Most duplicates were generated at six different fitness values (red
stripes on the graph). These were the values of the local optima. About 10% of all generated solutions
were DBO. Clearly, re-visited solutions would be better spent on exploring new regions. The proposed
LTMA would again be very beneficial.
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Table 6. Number of duplicate individuals’ evaluation for the Schwefel 2.26 problem.

EA n MFES DBO3 DAll3 DBO6 DAll6 DBO9 DAll9 SR

ABC 2 10,000
1002.4
±545.4

4069.6
±134.1

935.2
±164.9

3274.0
±264.2

863.9
±218.7

1762.8
±339.5 100

jDElscop 2 10,000
284.3
±92.0

5546.6
±143.4

247.5
±40.6

4408.1
±123.8

246.3
±44.0

338.1
±183.1 100

TLBO 2 10,000
269.2
±376.4

828.8
±191.1

297.4
±533.5

599.9
±420.8

92.5
±80.6

161.8
±77.6 90

GWO 2 10,000
295.5
±126.3

295.5
±126.3

227.1
±143.5

227.1
±143.5

293.2
±120.9

293.2
±120.9 10

GOA 2 10,000
1223.5
±969.8

1346.2
±1065.0

1228.9
±924.2

1326.3
±993.2

1186.4
±1093.0

1255.8
±1149.2 60

ABC 10 30,000
4870.8
±936.1

5688.0
±494.5

2632.9
±315.3

2759.3
±273.8

2509.8
±200.2

2552.8
±219.6 48

jDElscop 10 30,000
175.5
±33.5

7190.8
±358.6

176.1
±36.3

1518.0
±355.0

185.5
±36.1

187.9
±35.7 100

TLBO 10 30,000
79.4
±47.3

79.4
±47.3

1.0
±1.2

1.0
±1.2

2.7
±7.2

2.7
±7.2 0

GWO 10 30,000
0.0
±0

0.0
±0

0.0
±0

0.0
±0

0.0
±0

0.0
±0 0

GOA 10 30,000
150.4
±1.8

150.4
±1.8

30.0
±0

30.0
±0

0.0
±0

0.0
±0 0

ABC 30 100,000
18,168.4
±1583.2

18,168.4
±1583.2

7175.4
±671.3

7175.4
±671.3

6155.2
±759.3

6155.2
±759.3 0

jDElscop 30 100,000
640.2
±72.6

24,746.7
±863.2

611.8
±51.2

2920.5
±208.1

643.0
±31.8

645.2
±32.5 100

TLBO 30 100,000
213.0
±123.1

213.0
±123.1

5.1
±4.2

5.1
±4.2

0.1
±0.3

0.1
±0.3 0

GWO 30 100,000
0.0
±0

0.0
±0

0.0
±0

0.0
±0

0.0
±0

0.0
±0 0

GOA 30 100,000
392.5
±65.0

392.5
±65.0

40.0
±0

40.0
±0

0.0
±0

0.0
±0 0
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Figure 8. One run of the ABC algorithm on the Schwefel 2.26 problem for n = 2 and Pr = 6.
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5.2. Experiment II: CEC-2015 Benchmark

In this experiment, we wanted to test selected EAs on benchmarks that are often used to compare
EAs. The focus of the experiment was not just on the number of generated duplicate individuals
(DBO and DAll), but also on the time t needed to execute the optimization (a single independent
run presented in seconds). For this, we used the LTMAt scenario. Furthermore, we were interested
in how the convergence of an EA could be improved by replacing duplicates (before their fitness
function was re-evaluated) with non-revisited solutions. In this scenario, LTMAe, each EA was run
until MFES different solutions were checked. We also report the percentage of runs where the final
solution was improved. This scenario showed directly the impact of the LTMA on the improvement of
the EA’s convergence.

The execution time of an experiment depends on the running environment: software and
hardware. The experiment was executed on a computer with Intel(R) Core(TM) i7-7500U CPU
@ 2.7 GHz with 16 GB RAM and the Windows 10 64-bit operating system. The execution was not
multi-core CPU optimized.

For this experiment, we selected the ABC algorithm and the most successful algorithm from
previous experiments: jDElscop. EA control parameters were the same as in Experiment I. For the
benchmark, we selected the CEC-2015 benchmark from the Competition on Real-Parameter Single
Objective Optimization [62]. The benchmark has 10 different minimization problems (from F01 to F10).
For our scenario, we set n = 10 and MFES = 100,000. The global optimum for problem F01 was 100,
for F02 200, ..., and for F10 1000. LTMA was also compared to a standard version (i.e., without LTMA),
and its results are shown in the last two columns in Tables 7 and 8.

The number of different configurations (10 different problems, different precisions, 2 EAs, 2
scenarios: LTMt and LTMe) in total was 120, each of which was performed on 100 independent runs.

5.2.1. Scenario LTMAt

In this experiment, we measured how much CPU time could be saved by not re-evaluating the
fitness of revisited solutions (i.e., the fitness value was just read from the LTMA module).

From the results in Tables 7 and 8, we can observe that the ratio of generated duplicate individuals
was surprisingly high. The reason for this was that the problems in the benchmark were difficult (e.g.,
many different local optima). In the case of ABC, more than 20% of the generated solutions were DBO
(e.g., for F02, F03, F05, F09, and F10); whilst jDElscop generated more than 5% DBO for problems
F05–F09. Around 90% of duplicates would not be identified when only short term memory (current
population) was used.

Although the number of DBO was high, the speedup using LTMA was not achieved in most
cases. The reason was that for the most problems (F01–F10, except F03 and F05), fitness evaluations
were fast and took, on average, less than 0.2 s for one optimization run; whilst identifying duplicates
took on average 0.15± 0.05 s. In such cases, the use of LTMA was not justified. It should be noted that
ABC did not find a suitable solution for problems F01, F02, and F10, whilst jDElscop did.

F03 and F05 were more difficult problems that could clearly show the profits of applying LTMA
(see the bold values in Tables 7 and 8). When LTMA was not applied, these two problems took
14.8± 0.3 s and 2.8± 0.0 s (Table 7), respectively. Yet, with LTMA, the execution times taken by ABC
dropped to 11.6± 0.3 s and 2.4± 0.0 s, respectively. Equivalently, this means that LTMA increased
speedup by 1.28 for the F03 problem and by 1.16 for the F05 problem. From Table 7, we noticed that
precisions did not play an important role for these two problems: There was almost no difference
between scenarios with precision of six and nine.

Since generating duplicates was algorithm dependent, LTMA driven profits were different
between ABC and jDElscop. Table 8 shows that F03 took 15.2± 0.6 s on average, and F05 spent
2.7± 0.1 s. On average, jDElscop with LTMA improved the execution time, expressed as speedup,
1.16× for the F03 problem and 1.07 for the F05 problem. Overall, we can expect increased speedup
and faster EA execution by not re-evaluating duplicates for time consuming problems. In such cases,
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termination based on the maximum CPU time should also produce equal or better results using the
LTMA approach.

Table 7. ABC algorithm on CEC-2015 with LTMAt.

Pro. DBO6 DAll6 Fit6 t6 DBO9 DAll9 Fit9 t9 Fit t

F01
5033.4
±816.4

5033.4
±816.4

7766.0
±6064.7

0.3
±0.2

4867.1
±872.8

4867.1
±872.8

7152.7
±5733.5

0.3
±0.1

7630.0
±5881.4

0.1
±0.1

F02
26,711.8
±806.8

26,711.8
±806.8

13,710.4
±3254.7

0.2
±0.0

26,574.3
±672.4

26,574.3
±672.4

12,868.0
±3034.8

0.2
±0.0

12,971.5
±3574.3

0.1
±0.0

F03
23,124.3
±844.1

23,124.3
±844.1

304.8
±0.8

11.6
±0.4

23,058.7
±1019.6

23,058.7
±1019.6

304.7
±0.8

11.6
±0.3

304.7
±1.0

14.8
±0.3

F04
16,360.0
±5393.9

19,455.2
±2311.9

400.2
±0.5

0.3
±0.0

4668.0
±1782.0

4998.3
±1648.0

401.3
±6.2

0.4
±0.1

400.1
±0.1

0.2
±0.0

F05
22,551.8
±759.8

22,551.8
±759.8

500.5
±0.1

2.4
±0.0

22,698.8
±730.4

22,698.8
±730.4

500.5
±0.1

2.4
±0.0

500.5
±0.1

2.8
±0.0

F06
2195.1
±277.6

2209.1
±215.6

600.2
±0.0

0.2
±0.0

2194.9
±196.5

2194.9
±196.5

600.2
±0.0

0.2
±0.0

600.2
±0.0

0.1
±0.0

F07
587.2
±140.7

632.9
±66.4

700.1
±0.0

0.2
±0.0

630.5
±96.5

641.6
±69.4

700.2
±0.0

0.3
±0.0

700.1
±0.0

0.1
±0.0

F08
1413.4
±238.1

1413.4
±238.1

801.1
±0.3

0.3
±0.0

1413.0
±225.7

1413.0
±225.7

801.1
±0.3

0.3
±0.0

801.2
±0.3

0.1
±0.0

F09
21,728.5
±965.0

21,728.5
±965.0

903.0
±0.2

0.3
±0.0

21,908.3
±1044.2

21,908.3
±1044.2

903.0
±0.2

0.3
±0.0

903.0
±0.2

0.1
±0.0

F10
22,954.7
±1106.1

22,954.7
±1106.1

11,114.8
±11,329.6

0.3
±0.0

22,803.2
±1073.5

22,803.2
±1073.5

10,484.4
±7761.3

0.4
±0.0

11,546.5
±9585.6

0.2
±0.0

Table 8. jDElscop algorithm on CEC-2015 with LTMAt.

Pro. DBO6 DAll6 Fit6 t6 DBO9 DAll9 Fit9 t9 Fit t

F01
34.0
±13.6

15,142.5
±1852.6

100.0
±0.0

0.3
±0.1

36.6
±14.9

3897.2
±4690.9

100.0
±0.0

0.3
±0.1

100.0
±0.0

0.2
±0.1

F02
93.4
±41.4

5949.0
±4809.9

200.0
±0.0

0.3
±0.0

90.0
±36.6

110.2
±37.6

200.0
±0.0

0.3
±0.0

200.0
±0.0

0.2
±0.1

F03
5688.5
±6817.4

16,487.8
±3251.6

300.6
±1.1

12.6
±0.5

4085.7
±5119.1

12,137.0
±2988.1

300.6
±1.1

13.4
±0.5

300.5
±0.9

15.2
±0.6

F04
3234.2
±6496.9

20,848.0
±1255.0

400.0
±0.0

0.4
±0.0

463.1
±178.5

509.4
±175.0

400.2
±0.7

0.5
±0.0

400.8
±4.2

0.3
±0.0

F05
13,453.9
±4443.0

13,500.5
±4355.1

500.7
±0.3

2.7
±0.1

12,857.5
±4563.3

12,892.5
±4518.8

500.7
±0.3

2.7
±0.1

500.8
±0.3

2.9
±0.0

F06
7478.5
±5840.1

9709.3
±5334.7

600.1
±0.0

0.3
±0.0

7785.8
±5760.9

9200.3
±5489.0

600.1
±0.0

0.3
±0.0

600.2
±0.0

0.2
±0.0

F07
7450.6
±5626.3

9762.0
±4877.0

700.1
±0.0

0.3
±0.0

6967.1
±5583.3

8991.2
±4998.2

700.1
±0.0

0.3
±0.1

700.1
±0.0

0.2
±0.0

F08
6960.2
±4754.2

6960.2
±4754.2

801.1
±0.3

0.4
±0.0

6798.2
±6261.3

6798.2
±6261.3

801.2
±0.4

0.4
±0.0

801.2
±0.4

0.2
±0.0

F09
8608.7
±4361.9

8608.7
±4361.9

902.5
±0.4

0.4
±0.0

7563.9
±5059.4

7563.9
±5059.4

902.5
±0.4

0.4
±0.0

902.5
±0.4

0.2
±0.0

F10
130.3
±38.3

130.3
±38.3

1026.4
±37.7

0.5
±0.0

125.4
±37.4

125.4
±37.4

1038.1
±47.1

0.5
±0.0

1037.3
±46.2

0.3
±0.0
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5.2.2. Scenario LTMAe

In this experiment, we tested the LTMAe scenario. Namely, when a duplicate was identified,
but not re-evaluated, it was replaced with a new non-revisited individual. With additional search
points, it was expected to obtain better or equal results. To present possible benefits better, we counted
runs where solutions were improved. They are presented as the percentage of improved runs (B)
(Tables 9 and 10).

How much the algorithm gained with additional evaluations was problem and algorithm
dependent. In the case of the ABC algorithm, most improvements were shown on problem F04,
where, in more than 50% of runs, the results were improved, with almost no improvements in the case
of problem F07 (Table 9). The jDElscop algorithm gained the most in the case of problems F02 and F10,
where around 90% of all runs resulted in optimal solution improvement (Table 10). Overall, with the
proposed LTMA approach, the search space would be explored better and exploited since duplicate
individuals were eliminated. In most cases, a better solution was found.

Table 9. ABC algorithm on CEC-2015 with LTMAe.

Pro. DBO6 DAll6 Fit6 t6 B6 DBO9 DAll9 Fit9 t9 B9

F01
5372.3
±911.4

5372.3
±911.4

7471.8
±6093.4

0.3
±0.2 26%

5192.2
±981.3

5192.2
±981.3

6971.2
±5727.9

0.3
±0.1 25%

F02
36,731.3
±1296.9

36,731.3
±1296.9

12,767.4
±2991.4

0.3
±0.0 23%

36,503.8
±1069.2

36,503.8
±1069.2

12,019.9
±2916.2

0.4
±0.0 29%

F03
30,440.7
±1316.2

30,440.7
±1316.2

304.6
±0.9

15.2
±0.6 25%

30,172.2
±1532.7

30,172.2
±1532.7

304.5
±0.9

15.1
±0.3 40%

F04
18,153.2
±6884.0

23,244.3
±3216.3

400.1
±0.3

0.5
±0.0 60%

4797.5
±2010.3

5198.3
±1862.7

401.3
±6.2

0.5
±0.1 51%

F05
29,324.9
±1182.6

29,324.9
±1182.6

500.5
±0.1

3.1
±0.0 29%

29,554.8
±1137.6

29,554.8
±1137.6

500.5
±0.1

3.1
±0.0 29%

F06
2243.9
±284.7

2258.4
±220.8

600.2
±0.0

0.3
±0.0 2%

2244.8
±203.4

2244.8
±203.4

600.2
±0.0

0.3
±0.0 2%

F07
590.0
±141.9

636.3
±67.1

700.1
±0.0

0.3
±0.0 0%

634.6
±97.3

645.8
±69.9

700.2
±0.0

0.3
±0.0 2%

F08
1433.1
±244.4

1433.1
±244.4

801.1
±0.3

0.3
±0.0 12%

1432.5
±230.5

1432.5
±230.5

801.1
±0.3

0.3
±0.0 24%

F09
27,947.6
±1392.8

27,947.6
±1392.8

903.0
±0.2

0.4
±0.1 36%

28,205.2
±1600.9

28,205.2
±1600.9

903.0
±0.2

0.4
±0.0 40%

F10
30,065.2
±1706.8

30,065.2
±1706.8

9306.8
±7878.0

0.5
±0.0 21%

29,929.6
±1720.9

29,929.6
±1720.9

9571.1
±7387.4

0.5
±0.0 12%
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Table 10. jDElscop algorithm on CEC-2015 with LTMAe.

Pro. DBO6 DAll6 Fit6 t6 B6 DBO9 DAll9 Fit9 t9 B9

F01
34.0
±13.6

36,269.0
±5838.1

100.0
±0.0

0.4
±0.1 5%

36.6
±14.9

8772.1
±10,835.2

100.0
±0.0

0.4
±0.1 48%

F02
93.4
±41.4

12,908.8
±10,847.5

200.0
±0.0

0.4
±0.0 41%

90.0
±36.6

110.3
±37.6

200.0
±0.0

0.3
±0.0 89%

F03
12,208.1
±15,016.7

35,757.9
±6807.2

300.6
±1.1

15.2
±0.3 2%

8609.8
±11,189.7

26,191.1
±6487.8

300.6
±1.1

15.3
±0.3 1%

F04
4544.2

±11,004.4
44,841.8
±2746.7

400.0
±0.0

0.6
±0.0 17%

463.2
±178.6

510.3
±175.3

400.2
±0.7

0.5
±0.0 0%

F05
26,990.6
±12,096.8

27,169.1
±11,827.0

500.6
±0.3

3.1
±0.0 54%

24,287.9
±12,501.4

24,468.8
±12,314.9

500.7
±0.3

3.1
±0.0 51%

F06
15,763.2
±15,183.5

21,721.5
±14,162.7

600.1
±0.0

0.4
±0.0 12%

16,266.4
±14,745.1

20,168.4
±14,010.7

600.1
±0.1

0.4
±0.1 11%

F07
15,509.7
±14,363.5

21,797.1
±13,112.1

700.1
±0.0

0.4
±0.0 15%

14,768.1
±14,181.0

19,777.9
±13,410.9

700.1
±0.0

0.4
±0.1 14%

F08
13,746.8
±10,436.1

13,746.8
±10,436.1

801.0
±0.3

0.4
±0.0 63%

14,948.1
±21,325.4

14,948.1
±21,325.4

801.1
±0.4

0.4
±0.1 39%

F09
14,896.3
±10,625.5

14,896.3
±10,625.5

902.4
±0.4

0.4
±0.0 66%

12,068.1
±15,081.8

12,068.1
±15,081.8

902.4
±0.4

0.5
±0.1 55%

F10
130.4
±38.7

130.4
±38.7

1026.4
±37.7

0.5
±0.0 95%

125.5
±37.4

125.5
±37.4

1038.1
±47.1

0.5
±0.0 94%

5.3. Experiment III: Real-World Problem

The real-world optimization problem we used in our experiments dealt with searching for soil
models’ parameters, namely the thicknesses of the soil layers and their resistances [63]. It was assumed
that the soil was homogeneous within each layer. In our calculations, we used the three-layer soil
model, which was shown to obtain the best results in [64]. The three-layered model is shown in
Figure 9, where h1 and h2 are the thicknesses of the soil layers and p1 to p3 are specific soil resistances
of the soil layers. The obtained soil parameters based on the soil model were used in the Finite
Element Method (FEM) for proper dimensioning of the grounding systems. Grounding systems play
an important role in protecting people and devices in cases of defects in electro-energetic systems or
lightning strikes. In order to determine the soil’s parameters, information is required regarding the
soil’s structure in the surroundings of the grounding system. These data were obtained with different
measuring methods. In our experiments, we used three different measured datasets (problem instances
TE1, TE2, and TE3) obtained with the most commonly used Wenner four-electrode method [65]. In the
Wenner method, four electrodes are inserted into the earth at equal spacings d (Figure 9).
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Figure 9. Wenner measuring method and the three-layer soil structure.

The earth’s apparent resistivity is then measured according to:

pm
d =

2πdU
I

(6)

where d is the distance between two consecutive electrodes, I is the current injected between the two
outer electrodes, and U is the voltage measured between the two inner electrodes. Based on the same
definition, the analytical expression for apparent resistivity is calculated as:

pc
d = p1

{
1 + 2d

∫ ∞

0
f (λ) [J0(λd)− J0(2λd)] dλ

}
(7)

where p1 is the specific resistivity of the first soil layer and J0 is the zero order Bessel’s function of the
first kind, calculated using Equation (8).

f (λ) = α1(λ)− 1 (8)

For the three-layered soil model, α1 was calculated with the equations presented in Equation (9).

K1(λ) =
p2α2(λ)−p1
p2α2(λ)+p1

; α1(λ) = 1 + 2K1e−2λh1

1−K1e−2λh1

K2(λ) =
p3−p2
p3+p2

; α2(λ) = 1 + 2K2e−2λh2

1−K2e−2λh2

(9)

A numerical integration was adapted for the integration. Infinity was replaced with a large value,
denoted by λmax, and was set according to [66]. The goal of the optimization was to find the soil
parameters that best fit the measurement data. The fitness function was defined as:

Ff itness =
1
n

n

∑
i=1

∣∣∣∣ pc
i − pm

i
pm

i

∣∣∣∣ · 100(%) (10)

where pm
i are the measured and pc

i the calculated values of apparent resistivity, respectively. n is the
number of measured points.

For the experiment, we set MFES = 20,000. For EA assistance (ABC, jDElscop), we selected
LTMAt. Every experiment was repeated 50 times. In this section, we had 12 different configurations
(3 problem instances, 3 scenarios, and 2 EAs).

In the case of the ABC algorithm (TE1 problem), there were ≈7000 duplicate individuals, which
was 35% and was unexpectedly high, and it was similar for the TE2 and TE3 problems (Table 11).
In the case of the jDElscop algorithm, the percentage of duplicates was much lower, but, in the case of
the TE3 problem, the duplicate percentage was still high at 20%.
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The execution time of a single independent run (t) in the case of the real-world can fluctuate
greatly. On average, for the (TE1, TE2, and TE3) optimization process of a singe run for the ABC
algorithm, we needed 47.45 s for Pr = 6, 42.91 s for Pr = 9, and 72.43 s without LTMAt (Table 11).
We obtained speedups: 1.53 for Pr = 6 and 1.69 for Pr = 9. In the case of the jDElscop algorithm,
the number of generated duplicate individuals was lower than in the case of the ABC algorithm. On
average, for the (TE1, TE2 and TE3) optimization process of a singe run, we needed 17.68 s for Pr = 6,
16.69 s for Pr = 9, and 22.23 s without LTMAt. We obtained speedups: 1.26 for Pr = 6 and 1.33 for
Pr = 9 (Table 11).

We can observe from Figure 10 that with, the LTMA speedup for real-world problems can be
substantial (around 50%).

Table 11. Optimization of soil problem with the ABC and jDElscop algorithms.

EA Pro. DBO6 DAll6 Fit6 t6 DBO9 DAll9 Fit9 t9 Fit t

ABC TE1
7284.7
±434.3

7284.7
±434.3

1.2
±0.2

71.7
±14.0

7206.7
±549.7

7206.7
±549.7

1.2
±0.3

69.0
±12.3

1.2
±0.3

126.3
±17.0

ABC TE2
5545.6
±437.3

5545.6
±437.3

3.1
±0.5

41.4
±9.8

5481.2
±367.2

5481.2
±367.2

3.3
±0.9

35.8
±10.8

3.2
±1.2

55.1
±15.0

ABC TE3
6033.4
±753.1

6033.4
±753.1

2.0
±0.1

76.8
±23.1

6387.0
±968.8

6387.0
±968.8

2.0
±0.1

66.8
±19.5

2.1
±0.1

108.4
±34.9

jDElscop TE1
278.3
±317.5

278.3
±317.5

1.2
±0.4

31.8
±32.2

188.3
±102.1

188.3
±102.1

1.1
±0.0

24.9
±2.0

1.1
±0.0

27.3
±2.8

jDElscop TE2
349.0
±663.8

349.0
±663.8

4.5
±2.2

13.5
±5.4

446.7
±642.2

446.7
±642.2

4.9
±2.1

12.3
±5.0

4.8
±2.0

13.3
±5.7

jDElscop TE3
4709.4
±430.0

4709.4
±430.0

2.3
±0.2

25.5
±32.1

3752.5
±656.4

3752.5
±656.4

2.8
±2.0

29.5
±40.0

2.7
±2.3

48.3
±65.7

0
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Figure 10. Average speedup for a single run.

6. Conclusions

To investigate the generation of duplicate individuals over the whole evolutionary process,
we conducted more than 250 different configurations, divided between three experiments,
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during which we analyzed how much profit we could gain by not re-evaluating duplicate individuals
(their fitness values can just be accessed from the memory) and how many new solutions could be
generated when eliminating duplicates completely. The main conclusions of this study are:

• For identifying duplicate individuals (re-visited solutions), it is not enough to use a short term
memory (current population). The experiments showed that between 50% and 90% of duplicates
would not be discovered without long term memory (all generated solutions in the whole
evolutionary process).

• Current achievements in hardware allowed us to store all solutions (phenotype and genotype) in
the computer’s RAM, where we can identify duplicate individuals easily.

• A speedup of 10% or more can be achieved for hard real-world problems where fitness evaluations
are costly, simply by not re-evaluating duplicates (when at least 10% of duplicates are generated).
In the case of the soil model problem, ABC generated around 35% duplicate individuals, and,
with the proposed LTMA, a speedup of 1.59 was achieved.

• Better convergence can be achieved when duplicate individuals are replaced with non-revisited
individuals. In such a manner, the search space could be explored and exploited better.

• A long term memory can be attached in a uniform way to existing EAs.

Please note that the primary goal of this study was to show how researchers/practitioners may
increase/improve their algorithm’s efficiency motivated by detailed analyses obtained from LTMA.
Our focus was not to compare the performance of the selected algorithms, which has been done
intensively in the research community. Studying an algorithm without an in-depth analysis may
deceive us into drawing an inaccurate conclusion on the superiority of one algorithm over another.
For example, one might conclude that the ABC algorithm was inferior, because it created more
duplicates than the jDElscop algorithm and in most scenarios produced worse results. However, this
is not necessarily the case. The ABC algorithm had an innovative mechanism for maintaining diversity
using the “limit” parameter, which was, in our implementation, set indirectly by control parameters.
Conversely, the jDElscop algorithm used the mechanism of population reduction, which released
selection pressure. Both, consequently, influenced the number of duplicates [19]. In conclusion,
because the mechanisms of both algorithms depended on the control parameters, one cannot draw
conclusions about the superiority of individual algorithms based merely on this study.

EAs are very convenient for black-box optimization where we do not know much about a
problem’s characteristics. We are convinced that the long term memory module can be an important
contribution in the overall optimization’s success. EA users should be informed about how many
duplicate solutions have been generated and how the search spaces has been explored and exploited.
The search should not be completely blind. In our future work, we will investigate how visual analytics
can help EA researchers and users to understand EA’s inner workings better.

Last but not least, the suggested LTMA did not add much complexity to the EAs’ implementation,
and it helped reduce uncertainties about stochastic optimization efficiency by preventing the
evaluation of redundant solutions. Therefore, it should be used widely in computationally demanding
optimizations. Note that the proposed approach is not suitable for noisy and dynamic problems, where
an individual’s fitness changes frequently over time.
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