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Abstract: Q-rung orthopair fuzzy set (q-ROFS) is a powerful tool to describe uncertain information in
the process of subjective decision-making, but not express vast objective phenomenons that obey
normal distribution. For this situation, by combining the q-ROFS with the normal fuzzy number,
we proposed a new concept of q-rung orthopair normal fuzzy (q-RONF) set. Firstly, we defined the
conception, the operational laws, score function, and accuracy function of q-RONF set. Secondly,
we presented some new aggregation operators to aggregate the q-RONF information, including the
q-RONF weighted operators, the q-RONF ordered weighted operators, the q-RONF hybrid operator,
and the generalized form of these operators. Furthermore, we discussed some desirable properties of
the above operators, such as monotonicity, commutativity, and idempotency. Meanwhile, we applied
the proposed operators to the multi-attribute decision-making (MADM) problem and established a
novel MADM method. Finally, the proposed MADM method was applied in a numerical example on
enterprise partner selection, the numerical result showed the proposed method can effectively handle
the objective phenomena with obeying normal distribution and complicated fuzzy information,
and has high practicality. The results of comparative and sensitive analysis indicated that our
proposed method based on q-RONF aggregation operators over existing methods have stronger
information aggregation ability, and are more suitable and flexible for MADM problems.

Keywords: normal fuzzy number; Q-rung orthopair normal fuzzy sets; q-RONF information
aggregation operators; multi-attribute decision-making

1. Introduction

On the basis of Zadeh’s fuzzy sets [1], Atanassov [2] proposed intuitionistic fuzzy sets (IFS) to
characterize the uncertainty according to membership degree (MED) and non-membership degree
(NOMED). IFS made up for the insufficiency that Zadeh’s fuzzy sets can only characterize fuzzy
information by MED. IFS have attracted extensive attention of many scholars who further expanded the
IFS, such as interval IFS [3,4], 2-tuple IFS [5], trapezoidal IFS [6,7], intuitionistic normal fuzzy sets [8],
intuitionistic uncertain linguistic [9], triangular IFS [10,11], etc. IFS requires that the sum of MED and
NOMED is not more than 1, and this restricts its application in practical decision-making problems.
For example, when decision makers (DMs) independently give the MED and NOMED of one attribute
of the alternative, the sum of the them may be greater than 1, and their quadratic sum will be less
than or equal to 1. At the same time, Yager pointed out a situation, with an example [12], when the
MED given by the DM is

√
3/2, and NOMED is 1/2, then

√
3/2 + 1/2 > 1, but (

√
3/2)2 + (1/2)2

≤ 1
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(
√

3/2)2 + (1/2)2
≤ 1. For this situation, Yager [12,13] proposed Pythagorean fuzzy sets (PFS),

whose characteristic is that the quadratic sum of MED and NOMED is not greater than 1. Compared with
IFS, the PFS characterizes fuzzy information more effectively. Since PFS was proposed, many scholars
have conducted in-depth studies [13–23].

Although IFS and PFS have been extensively studied, their expression for fuzzy information is still
limited, especially in the extremely complex and contradictory information environment. When the
quadratic sum of MED and NOMED given by DMs is still greater than 1, but the sum of three or higher
powers is less than 1, IFS and PFS can not deal with such type of information. In order to compensate for
the deficiencies of IFS and PFS, and enhance the ability of characterizing fuzzy information. Yager [24]
further proposed the concept of q-rung orthopair fuzzy set (q-ROFS) whose characteristics are that the
sum of q power of MED and NOMED is bound to 1, when q > 1, and that when q = 1 and 2, q-ROFS
becomes IFS and PFS, respectively. Many scholars have carried out extensive research and discussion
on the concept of q-ROFS as following three aspects: (1) In terms of basic theory, some studies
analyzed some properties of q-rung orthopair fuzzy (q-ROF) functions [25–28], established the distance
measure and similarity measure between q-ROFSs [29,30], and defined some new concepts based on
q-ROFS [31,32]. (2) In terms of information aggregation operators, some authors established various
types of information aggregation operators based on classic operators under q-ROF environment. Such
as the family the q-ROF power aggregation operators [33], a series of q-ROF linguistic aggregation
operators [34,35], the family of q-ROF Muirhead mean operators [36,37] a sequence of q-ROF Hamy
mean operators [38]. In addition, the ROF information aggregation operators based on Archimedean
Muirhead mean operators [39], Bonferroni mean operator [40], Heronian mean operator [41–43],
and Choquet integral operator [44] were also developed. (3) In terms of the decision-making method,
the existing studies combined the q-ROFS with preference relation [45], distance measure [46], and the
TOPSIS method [47,48] to develop the corresponding multi-attribute decision-making method.

In real life, a large number of natural and social phenomenon obey normal distribution [8,49],
such as “product life span”, “stock price”, "commodity customer experience evaluation" and so on.
In view of these phenomenon, Yang and Ko [49] proposed normal fuzzy number (NFN) to characterize
them. Li and Liu [50] pointed out that compared with triangular and trapezoidal fuzzy numbers,
NFN has higher derivative continuity, which can characterize natural and social phenomenon more
extensively, and their membership functions are closer to human thinking. Li and Liu [50] used
examples to prove that the extension of intuitionistic fuzzy number (IFN) based on NFN is better than
IFN based on triangular, trapezoidal fuzzy numbers, etc. Therefore, Wang et al. [8] and Wang et al. [51]
defined intuitionistic normal fuzzy (INF) number and its operation rules and some information
aggregators. Based on these, the concept of interval-valued INF was defined [52], and the family of
INF-induced ordered operators [53], and a series of aggregation operators based on classic operators
under INF information environment were proposed [54–58].

In summary, PFS and IFS are special cases of q-rung orthopair fuzzy sets. The fuzzy information
characterized by q-ROFs is broader and more comprehensive. NIF is closer to human decision-making
thinking than triangular and trapezoidal fuzzy numbers. PFS and IFS based on triangular and
trapezoidal fuzzy numbers have been reported successively. However, q-rung orthopair fuzzy sets
based on INF have not been proposed yet.

In this paper, we defined q-rung orthopair normal fuzzy number, and its operational laws and
some aggregation operators, as well as a multi-attribute decision-making method based on q-ROFs
algorithm and information aggregator. The rest of this paper is arranged as follows: In Section 2,
the basic concepts of NFN and q-ROFs are reviewed. In Section 3, q-RONFN and some of its operational
rules are defined. In Section 4, some information aggregation operators in q-RONFs environment
are proposed. In Section 5, a multi-attribute decision-making method based on q-RONF Information
Aggregation operator is proposed. In Section 6, an example is given to prove the effectiveness of the
proposed method. Finally, in Section 7, a conclusion is drawn.
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2. Preliminaries

2.1. The Normal Fuzzy Number

Definition 1. ([49]) Let R be a real number set, the membership function of

Ã(x) = e−(
x−α
σ )2

(σ > 0) (1)

is called as a normal fuzzy number (NFN) Ã = (α, σ), the normal fuzzy number set (NFNS) is denoted by Ñ.

Lemma 1. ([59]) Let Ã, B̃ ∈ Ñ, denoted by Ã = (α, σ), B̃ = (β, τ), then

(1) λÃ = λ(α, σ) = (λα,λσ),λ > 0,

(2) Ã + B̃ = (α, σ) + (β, τ) = (α+ β, σ+ τ).

Definition 2. ([59]) Let Ã, B̃ ∈ Ñ, denoted by Ã = (α, σ), B̃ = (α, σ), then the distance between Ã and B̃ can
be defined as

d2
(
Ã, B̃

)
= (α− β)2 +

1
2
(σ− τ)2. (2)

2.2. The Q-rung Orthopair Fuzzy Number

Definition 3. ([24]) Let X be an ordinary fixed set, a q-rung orthopair fuzzy set (q-ROFS) A in X defined by
A =

{ 〈
x, uA(x), vA(x)

〉∣∣∣x ∈ X
}
, where uA(x) and vA(x) represent the MED and NOMED, respectively, and

uA(x) ∈ [0, 1], vA(x) ∈ [0, 1], and 0 ≤ uA(x)
q + vA(x)

q
≤ 1 (q ≥ 1). The degree of indeterminacy is given as

πA(x) = (uA(x)
q + vA(x)

q
− uA(x)

qvA(x)
q)

1/q. To simplify the expression, a q-rung orthopair fuzzy number
(q-ROFN) can be denoted as A = (uA, vA).

Compared with the IFS and PFS, the q-ROFS depicts fuzzy information more broadly. For example,
let a fuzzy number be A = 〈0.7, 0.8〉, the sum of MED and NOMED of A is 1.5, that exceeds 1,
the quadratic sum of them is 1.13, also more than 1, so the IFS and PFS cannot address A. However, the
sum of 3 power of MED and NOMED is less than 1, hence, we can use q-ROFS to calculate A with
making the parameter q = 3 in q-ROFS.

Definition 4. ([60]) Let a1 = (u1, v1) and a2 = (u2, v2) be two q-ROFNs, λ be a non-negative real number, then

(1) a1 ⊕ a2 =
((

uq
1 + uq

2 − uq
1uq

2

)1/q
, v1v2

)
,

(2) a1 ⊗ a2 =
(
u1u2,

(
vq

1 + vq
2 − vq

1vq
2

)1/q
)
,

(3) λa1 =

((
1− (1− uq

1)
λ
)1/q

, vλ1

)
,

(4) aλ1 =

(
uλ1 ,

(
1− (1− vq

1)
λ
)1/q

)
.

Definition 5. ([60]) Let a = (ua, va) be a q-ROFN, then the score function of a is defined as S(a) = uq
a − vq

a,
the accuracy function of a is defined as H(a) = uq

a + vq
a. For any two q-ROFNs, a1 = (u1, v1) and

a2 = (u2, v2), then

(1) If S(a1) > S(a2), then a1 > a2;
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(2) If S(a1) = S(a2), then
If H(a1) > H(a2), thena1 > a2;
If H(a1) = H(a2), then a1 = a2.

3. The Q-rung Orthopair Normal Fuzzy Number and Its Operations

Based on the notions and operations of q-ROFN and NFN, we presented the q-rung orthopair
normal fuzzy number (q-RONFN) and its operations.

Definition 6. Let X be an ordinary fixed non-empty set and (α, σ) ∈ Ñ, A =
〈
(α, σ), (ua, va)

〉
is a q-rung

orthopair normal fuzzy set (q-RONFS), when its membership function is defined as

uA(x) = uAe−(
x−α
σ )2

, x ∈ X (3)

and non- membership function is defined as

vA(x) = 1− (1− vA)e−(
x−α
σ )2

, x ∈ X, (4)

where 0 ≤ uA(x), vA(x) ≤ 1, 0 ≤ (uA(x))
q + (vA(x))

q
≤ 1, (q ≥ 1). When uA = 1 and vA = 0, the q-RONFS

will be transformed into a normal fuzzy number. To simplify the expression, a q-rung orthopair normal fuzzy
number (q-RONFN) is denoted as A =

〈
(α, σ), (uA, vA)

〉
.

Definition 7. Let a1 =
〈
(α1, σ1), (u1, v1)

〉
and a2 =

〈
(α2, σ2), (u2, v2)

〉
be any two q-RONFNs, and λ be a

nonnegative real number, then

(1) a1 ⊕ a2 =
(
(α1 + α2, σ1 + σ2),

(
uq

1 + uq
2 − uq

1uq
2

)1/q
, v1v2

)
,

(2) a1 ⊗ a2 =
(
(α1α2, σ1σ2), u1u2,

(
vq

1 + vq
2 − vq

1vq
2

)1/q
)
,

(3) λa1 =

(
(λα1,λσ1),

(
1− (1− uq

1)
λ
)1/q

, vλ1

)
,

(4) aλ1 =

((
αλ1 , σλ1

)
, uλ1 ,

(
1− (1− vq

1)
λ
)1/q

)
.

Proposition 1. Let a1 =
〈
(α1, σ1), (u1, v1)

〉
, a2 =

〈
(α2, σ2), (u2, v2)

〉
and a3 =

〈
(α3, σ3), (u3, v3)

〉
be any

three q-RONFNs, and λ,λ1,λ2 be nonnegative real numbers, we can obtain that

(1) a1 + a2 = a2 + a1,
(2) (a1 + a2) + a3 = a1 + (a2 + a3),
(3) a1 × a2 = a2 × a1,
(4) (a1 × a2) × a3 = a1 × (a2 × a3),
(5) λ1a1 + λ2a1 = (λ1 + λ2)a1,
(6) λ(a1 + a2) = λa1 + λa2,

(7)
(
aλ1

1

)λ2
= aλ1λ2

1 .

Proof. According to the Definition 7, we can easily infer that (1), (3), (5), (6) and (7) are obviously right,
(2) and (4) need be proved as follows:

For (2) (a1 + a2) + a3 = a1 + (a2 + a3).
Let the NFN of q-RONFN r be Ñr, the MED of (a1 + a2) + a3 and a1 + (a2 + a3) be u(a1+a2)+a3

and ua1+(a2+a3), and the NOMED of (a1 + a2) + a3 and a1 + (a2 + a3) be v(a1+a2)+a3
and va1+(a2+a3),

respectively, and we can obtain that

Ñ(r1+r2)+r3
= Ñr1+(r2+r3)= (α1 + α2 + α3, σ1 + σ2 + σ3),
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u(a1+a2)+a3
=

(
uq

1 + uq
2 − uq

1uq
2 + uq

3 − (u
q
1 + uq

2 − uq
1uq

2)u
q
3

)1/q

=
(
uq

1 + uq
2 + uq

3 − uq
1uq

2 − uq
1uq

3 − uq
2uq

3 + uq
1uq

2uq
3

)1/q

ua1+(a2+a3) =
(
uq

2 + uq
3 − uq

2uq
3 + uq

1 − (u
q
2 + uq

3 − uq
2uq

3)u
q
1

)1/q

=
(
uq

1 + uq
2 + uq

3 − uq
1uq

2 − uq
1uq

3 − uq
2uq

3 + uq
1uq

2uq
3

)1/q

u(a1+a2)+a3
= ua1+(a2+a3).

Similarly, we can get that v(a1+a2)+a3
= va1+(a2+a3).

Therefore, (a1 + a2) + a3 = a1 + (a2 + a3).
For (4) (a1 × a2) × a3 = a1 × (a2 × a3).
Let the normal fuzzy number of q-RONFNs r be Ñr, the MED of (a1 × a2) × a3 and a1 × (a2 × a3)

be u(a1×a2)×a3
and ua1×(a2×a3), and the NOMED of (a1 × a2) × a3 and a1 × (a2 × a3) be v(a1×a2)×a3

and
va1×(a2×a3), respectively, and we can obtain that

Ñ(r1×r2)×r3
= Ñr1×(r2×r3)= (α1 × α2 × α3, σ1 × σ2 × σ3),,

v(a1×a2)×a3
=

(
vq

1 + vq
2 − vq

1vq
2 + vq

3 − (v
q
1 + vq

2 − vq
1vq

2)v
q
3

)
=

(
vq

1 + vq
2 + vq

3 − vq
1vq

2 − vq
1vq

3 − vq
2vq

3 + vq
1vq

2vq
3

)
v(a1×a2)×a3

=
(
vq

2 + vq
3 − vq

2vq
3 + vq

1 − (v
q
2 + vq

3 − vq
2vq

3)v
q
1

)
=

(
vq

1 + vq
2 + vq

3 − vq
1vq

2 − vq
1vq

3 − vq
2vq

3 + vq
1vq

2vq
3

)
v(a1×a2)×a3

= va1×(a2×a3).

Similarly, we can get that u(a1×a2)×a3
= ua1×(a2×a3). �

Definition 8. Let a =
〈
(α, σ), (u, v)

〉
be a q-RONFN, its score function is defined as

S1(a) = α
(
uq

a − vq
a

)
, S2(a) = σ

(
uq

a − vq
a

)
,

its accuracy function is defined as

H1(a) = α
(
uq

a + vq
a

)
, H2(a) = σ

(
uq

a + vq
a

)
.

Definition 9. Let a1 =
〈
(α1, σ1), (u1, v1)

〉
, a2 =

〈
(α2, σ2), (u2, v2)

〉
be any two q-RONFNs, their score

functions are S1(a), S2(a), their accuracy functions are H1(a), H2(a), respectively, then we can get

(1) If S1(a1) > S1(a2), then a1 > a2,
(2) If S1(a1) = S1(a2) and H1(a1) > H1(a2), then a1 > a2,
(3) If S1(a1) = S1(a2) and H1(a1) = H1(a2),
If S2(a1) < S2(a2), then a1 > a2,
If S2(a1) = S2(a2) and H2(a1) < H2(a2), then a1 > a2,
If S2(a1) = S2(a2) and H2(a1) = H2(a2), then a1 = a2.

4. Q-Rung Orthopair Normal Fuzzy Aggregation Operators

Based on operational rules of q-RONFN, we will present some q-Rung orthopair normal fuzzy
(q-RONF) aggregation operators.

4.1. The q-RONF Weighted Aggregation Operators

Based on the operational rules of q-RONFN and Xu’s IFWA [61], the q-RONF weighted averaging
and geometry aggregation operators are presented as follows:
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Definition 10. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFNs, and w =

(w1, w2, · · · , wn)
T be the weight vector of ai, and 0 ≤ wi ≤ 1 (i = 1, 2, · · · , n)T,

∑n
i=1 wi = 1, then

q−RONFWA(a1, a2, · · · , an) =
n∑

i=1

wiai (5)

is called an q-RONF weighted averaging (q-RONFWA) operator.

Theorem 1. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFNs, the value by using

Definition 10 is still a q-RONFN, that is

q−RONFWA(a1, a2, · · · , an) =

〈
(

n∑
i=1

wiαi,
n∑

i=1

wiσi),


1−

n∏
i=1

(
1− uq

i

)wi

1/q

,
n∏

i=1

vwi
i


〉
. (6)

Proof. The mathematical induction method is used to prove the Theorem 1 as follows:
(1) When n = 2,
Since

w1a1 =
〈
(w1α1, w1σ1),

((
1−

(
1− uq

1

)w1
)1/q

, vw1
1

)〉
,

and
w2a2 =

〈
(w2α2, w2σ2),

((
1−

(
1− uq

2

)w2
)1/q

, vw2
2

)〉
,

then

q−RONFWA(a1, a2) = w1α1 ⊕w2α2

=

〈 (w1α1 + w2α2, w1σ1 + w2σ2),


((
1−

(
1− uq

1

)w1
)1/q)q

+
((

1−
(
1− uq

2

)w2
)1/q)q

−

((
1−

(
1− uq

1

)w1
)1/q)q((

1−
(
1− uq

2

)w2
)1/q)q


1/q

, vw1
1 vw2

2


〉

=

〈 (
2∑

i=1
wiαi,

2∑
i=1

wiσi),(((
1−

(
1− uq

1

)w1
)
+

(
1−

(
1− uq

2

)w2
)
−

(
1−

(
1− uq

1

)w1
)(

1−
(
1− uq

2

)w2
))1/q

,
2∏

i=1
vwi

i

) 〉

=

〈
(

2∑
i=1

wiαi,
2∑

i=1
wiσi),

(1− 2∑
i=1

(
1− uq

i

)wi
)1/q

,
2∏

i=1
vwi

i

〉
(2) Supposing n = k, k > 2, that is

q−RONFWA(a1, a2, · · · , ak) =

〈
(

k∑
i=1

wiαi,
k∑

i=1

wiσi),


1−

k∏
i=1

(
1− uq

i

)wi


1/q

,
k∏

i=1

vwi
i


〉
.
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If n = k + 1, according to the operational laws of q-RONFN, we can get

q−RONFWA(a1, a2, · · · , ak, ak+1) = q−RONFWA(a1, a2, · · · , ak) ⊕wk+1αk+1

=

〈
(

k∑
i=1

wiαi + wk+1αk+1,
k∑

i=1
wiσi + wk+1σk+1

)
,



(1− k∏
i=1

(
1− uq

i

)wi
)1/q

q

+
((

1−
(
1− uq

k+1

)wk+1
)1/q)q

−

(1− k∏
i=1

(
1− uq

i

)wi
)1/q

q((
1−

(
1− uq

k+1

)wk+1
)1/q)q



1/q

,
k∏

i=1
vwi

i vwk+1
k+1



〉

=

〈
(

k+1∑
i=1

wiαi,
k+1∑
i=1

wiσi

)
,

(
1−

k∏
i=1

(
1− uq

i

)wi
+ 1−

(
1− uq

k+1

)wk+1
−

(
1−

k∏
i=1

(
1− uq

i

)wi
)(

1−
(
1− uq

k+1

)wk+1
))1/q

,

k∏
i=1

vwi
i vwk+1

k+1


〉

=

〈(
k+1∑
i=1

wiαi,
k+1∑
i=1

wiσi

)
,

(1− k+1∏
i=1

(
1− uq

i

)wi
)1/q

,
k+1∏
i=1

vwi
i

〉
(3) According to steps (1) and (2), we can get Theorem 1 holds for any k. �

There are some properties can be easily proven as follows:

Theorem 2. (Idempotency). Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFNs,

if ai =
〈
(αi, σi), (ui, vi)

〉
are equal with ai = a (i = 1, 2, · · · , n), then

q−RONFWA(a1, a2, · · · , an) = a.

Proof. The process of proof is the same with Theorem 1. �

Theorem 3. (Boundedness). Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFNs.

If

a+ =
〈
(max

1≤i≤n
{αi}, min

1≤i≤n
{σi}),

(
max
1≤i≤n

{ui}, min
1≤i≤n

{vi}

)〉
,

and
a− =

〈
(min

1≤i≤n
{αi}, max

1≤i≤n
{σi}),

(
min
1≤i≤n

{ui}, max
1≤i≤n

{vi}

)〉
.

Then we have
a− ≤ q−ROFNWA(a1, a2, · · · , an) ≤ a+.

Proof. (1). The normal fuzzy number of q−RONFWA(a1, a2, · · · , an), we get

n∑
i=1

wi min
1≤i≤n

{αi} ≤
n∑

i=1
wiαi j ≤

n∑
i=1

wi max
1≤i≤n

{αi}

⇒ min
1≤i≤n

{αi}
n∑

i=1
wi ≤

n∑
i=1

wiαi j ≤ max
1≤i≤n

{αi}
n∑

i=1
wi

⇒ min
1≤i≤n

{αi} ≤
n∑

i=1
wiαi j ≤ max

1≤i≤n
{αi}
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and
n∑

i=1
wi min

1≤i≤n
{σi} ≤

n∑
i=1

wiσi j ≤
n∑

i=1
wi max

1≤i≤n
{σi}

⇒ min
1≤i≤n

{σi}
n∑

i=1
wi ≤

n∑
i=1

wiσi j ≤ max
1≤i≤n

{σi}
n∑

i=1
wi

⇒ min
1≤i≤n

{σi} ≤
n∑

i=1
wiσi j ≤ max

1≤i≤n
{σi}

(2). For the MED of q−RONFWA(a1, a2, · · · , an), we get(
1−

n∏
i=1

(
1− min

1≤i≤n
uq

i

)wi
)1/q

≤

(
1−

k+1∏
i=1

(
1− uq

i

)wi
)1/q

≤

(
1−

n∏
i=1

(
1−max

1≤i≤n
uq

i

)wi
)1/q

⇒

(
1−

(
1− min

1≤i≤n
uq

i

)∑n
i=1 wi

)1/q

≤

(
1−

n∏
i=1

(
1− uq

i

)wi
)1/q

≤

(
1−

(
1−max

1≤i≤n
uq

i

)∑n
i=1 wi

)1/q

⇒ min
1≤i≤n

{ui} ≤

(
1−

n∏
i=1

(
1− uq

i

)wi
)1/q

≤ max
1≤i≤n

{ui}

For the NOMED of q−RONFWA(a1, a2, · · · , an), we get

n∏
i=1

min
1≤i≤n

vwi
i ≤

n∏
i=1

vwi
i ≤

n∏
i=1

max
1≤i≤n

vwi
i

⇒ min
1≤i≤n

v
∑n

i=1 wi
i ≤

n∏
i=1

vwi
i ≤ max

1≤i≤n
v
∑n

i=1 wi
i

⇒ min
1≤i≤n

{vi} ≤
n∏

i=1
vwi

i ≤ max
1≤i≤n

{vi}

Then, we have

min
1≤i≤n

{αi}

(
min
1≤i≤n

{ui} −max
1≤i≤n

{vi}

)
≤ α

(1− n∏
i=1

(
1− uq

i

)wi
)1/q

−

n∏
i=1

vwi
i


≤ max

1≤i≤n
{αi}

(
max
1≤i≤n

{ui} − min
1≤i≤n

{vi}

)
and

⇒ S1(a−) ≤ S1(a) ≤ S1(a+).

Based on steps (1)–(3) and Definition 7, we have a− ≤ q−RONFWA(a1, a2, · · · , an) ≤ a+. �

Theorem 4. (Monotonicity). Let ai =
〈
(αi, σi), (ui, vi)

〉
and ãi =

〈
(α̃i, σ̃i), (ũi, ṽi)

〉
(i = 1, 2, · · · , n) be any

two sets of the q-RONFN, if αi ≥ α̃i, σi ≤ σ̃i, ui ≥ ũi, vi ≤ ṽi for all i, then

q−RONFWA(a1, a2, · · · , an) ≥ q−RONFWA(̃a1, ã2, · · · , ãn)

Proof. The process of proof is the same with Theorem 2. �

Definition 11. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFN, and w =

(w1, w2, · · · , wn)
T be the weight vector of ai, and 0 ≤ wi ≤ 1 (i = 1, 2, · · · , n)T,

∑n
i=1 wi = 1, then

q−RONFWG(a1, a2, · · · , an) =
n∏

i=1

(ai)
wi (7)

is called an q-RONF weighted geometry (q-RONFWG) operator.
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Theorem 5. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFN, by using Definition

11, the value is still a q-RONFN, that is

q−RONFWG(a1, a2, · · · , an) =

〈 n∏
i=1

αwi
i ,

n∏
i=1

σwi
i

,

 n∏
i=1

uwi
i ,

1−
n∏

i=1

(
1− vq

i

)wi

1/q
〉
. (8)

Proof. The mathematical induction method is used to prove Theorem 5, as follows:
(1) When n = 2,
Since

aw1
1 =

〈
(αw1

1 , σw1
1 ),

(
uw1

1 ,
(
1−

(
1− vq

1

)w1
)1/q)〉

and
aw2

2 =
〈
(αw2

2 , σw2
2 ),

(
uw2

2 ,
(
1−

(
1− vq

2

)w2
)1/q)〉

then

q−RONFWG(a1, a2) = αw1
1 ⊗ α

w2
2

=

〈 (αw1
1 αw2

2 , σw1
1 σw2

2 ),

uw1
1 uw2

2 ,




((
1−

(
1− vq

1

)w1
)1/q)q

+
((

1−
(
1− vq

2

)w2
)1/q)q

−

((
1−

(
1− vq

1

)w1
)1/q)q((

1−
(
1− vq

2

)w2
)1/q)q


1/q

〉

=

〈 (
2∏
i
αwi

i ,
2∏

i=1
σwi

i

)
,(

2∏
i=1

uwi
i ,

((
1−

(
1− vq

1

)w1
)
+

(
1−

(
1− vq

2

)w2
)
−

(
1−

(
1− vq

1

)w1
)(

1−
(
1− vq

2

)w2
))1/q

) 〉

=

〈(
2∑

i=1
αwi

i ,
2∑

i=1
σwi

i

)
,

 2∏
i=1

uwi
i ,

(
1−

2∑
i=1

(
1− vq

i

)wi
)1/q〉

(2) Supposing n = k, k > 2, that is

q−RONFWG(a1, a2, · · · , ak) =

〈
 k∏

i

αwi
i ,

k∏
i=1

σwi
i


,


k∏

i=1

uwi
i ,

1−
k∑

i=1

(
1− vq

i

)wi


1/q

〉
.

If n = k + 1, according to the operational laws of q-RONFN, we can get

q−RONFWG(a1, a2, · · · , ak, ak+1) = q−RONFWG(a1, a2, · · · , ak) ⊗wk+1αk+1

=

〈
(

k∏
i=1

αwi
i α

wk+1
k+1 ,

k∏
i=1

σwi
i σ

wk+1
k+1

)
,

k∏
i=1

uwi
i uwk+1

k+1 ,



(1− k∏
i=1

(
1− vq

i

)wi
)1/q

q

+
((

1−
(
1− vq

k+1

)wk+1
)1/q)q

−

(1− k∏
i=1

(
1− vq

i

)wi
)1/q

q((
1−

(
1− vq

k+1

)wk+1
)1/q)q



1/q

〉

=

〈 (
k+1∏
i=1

αwi
i ,

k+1∏
i=1

σwi
i

)
,k+1∏

i=1
uwi

i ,
(
1−

k∏
i=1

(
1− vq

i

)wi
+ 1−

(
1− vq

k+1

)wk+1
−

(
1−

k∏
i=1

(
1− vq

i

)wi
)(

1−
(
1− vq

k+1

)wk+1
))1/q

〉

=

〈(
k+1∏
i=1

αwi
i ,

k+1∏
i=1

σwi
i

)
,

k+1∏
i=1

uwi
i ,

(
1−

k+1∏
i=1

(
1− vq

i

)wi
)1/q〉
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(3) Based on steps (1) and (2), we can get that Theorem 5 holds for any k. �

According to Theorems 2–4, we can similarly prove the properties of idempotency, monotonicity
and boundedness for q-RONFNWG operator.

4.2. The Q-RONF Ordered Weighted Aggregation Operators

Considering the ordered position weight of each q-RONFN, according to the ordered
weight averaging (OWA) operator [61] and the ordered weighted geometric (OWG) operator [62],
some q-RONFNs ordered weighted aggregation operators are presented as follows:

Definition 12. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFN, and w j =

(w1, w2, · · · , wn)
T be the weight vector of aggregation-associated, and 0 ≤ wi ≤ 1 (i = 1, 2, · · · , n)T,

∑n
i=1 wi =

1, aθ(i) =
〈
(αθ(i), σθ(i)),

(
uθ(i), vθ(i)

)〉
(i = 1, 2, · · · , n) be the ith largest of them, then

(1) A q-RONF ordered weighted averaging (q-RONFOWA) operator is a mapping q-RONFOWA: an
→ a ,

where
q−RONFOWA(a1, a2, · · · , an) =

n∑
i=1

wiaθ(i)

=

〈
(

n∑
i=1

wiαθ(i),
n∑

i=1
wiσθ(i)),

(1− n∏
i=1

(
1− uq

θ(i)

)wi
)1/q

,
n∏

i=1
vwi
θ(i)

〉 (9)

(2) A q-RONF ordered weighted geometric (q-RONFOWG) operator is a mapping q-RONFOWG: an
→ a ,

where

q−RONFOWG(a1, a2, · · · , an) =

〈 n∏
i=1

αwi
θ(i)

,
n∏

i=1

σwi
θ(i)

,

 n∏
i=1

uwi
θ(i)

,

1−
n∏

i=1

(
1− vq

θ(i)

)wi
1/q

〉
. (10)

According to Theorems 2 and 3. We can similarly prove the properties of idempotency and
boundedness for q-RONFOWA and q-RONFOWG operators. What is more, the q-RONFOWA and
q-RONFOWG operators also have the property of commutativity, the proving process for the property
of commutativity of q-RONFOWA is showed, as follows:

Theorem 6. (commutativity). Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFN,

if (̃a1, ã2, · · · , ãn) is any permutation of (a1, a2, · · · , an), then

q−RONFOWA(̃a1, ã2, · · · , ãn) = q−RONFOWA(a1, a2, · · · , an).

Proof. Since (̃a1, ã2, · · · , ãn) is any permutation of (a1, a2, · · · , an), let ãθ(i) = aθ(i) (i = 1, 2, · · · , n) be the
ith largest of them, based on the definition 7, we can get

q−RONFOWG(̃a1, ã2, · · · , ãn) = q−RONFOWG(a1, a2, · · · , an).

�

4.3. The Generalized q-RONF Weighted Aggregation Operators

As generalizations of the q-RONFWA and q-RONFWG operators, some generalized q-rung
normal fuzzy weighted aggregation operators are introduced in the following.
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Definition 13. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFN, and wi =

(w1, w2, · · · , wn)
T be the weight vector of ai, and 0 ≤ wi ≤ 1 (i = 1, 2, · · · , n)T,

∑n
i=1 wi = 1, λ be a parameter

and λ ∈ (−∞, 0)∪ (0,+∞) then

Gq−RONFWA(a1, a2, · · · , an) =

 n∑
i=1

wiaλi

1/λ

(11)

is called a generalized q-RONF weighted averaging (Gq-RONFWA) operator.

Theorem 7. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFN, based on the

operations of q-RONFN, the Gq-RONFWA operator is still a q-RONFN, that is

Gq−RONFWA(a1, a2, · · · , an) =

〈
( n∑

i=1
wiα

λ
i

)1/λ

,
(

n∑
i=1

wiσ
λ
i

)1/λ,

(1− n∏
i=1

(
1− uqλ

i

)wi
)1/q1/λ

,1−

1−
(

n∏
i=1

((
1−

(
1− vq

i

)λ)1/q
)wi

)q1/λ
1/q



〉
. (12)

Proof. The mathematical induction method is used to prove the follow formula firstly:

n∑
i=1

wiα
λ
i =

〈 (
n∑

i=1
wiα

λ
i ,

n∑
i=1

wiσ
λ
i

)
,(1− n∏

i=1

(
1− uqλ

i

)wi
)1/q

,
n∏

i=1

((
1−

(
1− vq

i

)λ)1/q
)wi


〉
.

(1) When n = 2,
Since

w1aλ1 =

〈
(w1α

λ
1 , w1σ

λ
1 ),

((
1−

(
1− uλq

1

)w1
)1/q

,
((

1− (1− vq
1)
λ
)1/q

)w1
)〉

,

and

w2aλ2 =

〈
(w2α

λ
2 , w2σ

λ
2 ),

((
1−

(
1− uλq

2

)w2
)1/q

,
((

1− (1− vq
2)
λ
)1/q

)w2
)〉

,
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then

2∑
i=1

wiaλi = w1aλ1 ⊕w2aλ2

=

〈 (w1αλ1 + w2αλ2 , w1σλ1 + w2σλ2 ),


((

1−
(
1− uλq

1

)w1
)1/q

)q

+

((
1−

(
1− uλq

2

)w2
)1/q

)q

−((
1−

(
1− uλq

1

)w1
)1/q

)q((
1−

(
1− uλq

2

)w2
)1/q

)q


1/q

,
((

1− (1− vq
1)
λ
)1/q

)w1
((

1− (1− vq
2)
λ
)1/q

)w2

〉

〈 (w1αλ1 + w2αλ2 , w1σλ1 + w2σλ2 ),

 1−
(
1− uλq

1

)w1
+ 1−

(
1− uλq

2

)w2

−

(
1−

(
1− uλq

1

)w1
)(

1−
(
1− uλq

2

)w2
) 

1/q

,
((

1− (1− vq
1)
λ
)1/q

)w1
((

1− (1− vq
2)
λ
)1/q

)w2

〉

=

〈(
2∑

i=1
wiα

λ
i ,

2∑
i=1

wiσ
λ
i

)
,

(1− 2∏
i=1

(
1− uqλ

i

)wi
)1/q

,
2∏

i=1

((
1−

(
1− vq

i

)λ)1/q
)wi

〉
(2) Supposing n = k, k > 2, that is

k∑
i=1

wiaλi = w1aλ1 ⊕w2aλ2 ⊕ · · · ⊕wkaλk =

〈 (
k∑

i=1
wiα

λ
i ,

k∑
i=1

wiσ
λ
i

)
,(1− k∏

i=1

(
1− uqλ

i

)wi
)1/q

,
k∏

i=1

((
1−

(
1− vq

i

)λ)1/q
)wi


〉
.

If n = k + 1, according to the operational laws of q-RONFN, we can get

k+1∑
i=1

wiaλi +wiaλi = w1aλ1 ⊕w2aλ2 ⊕ · · · ⊕wkaλk ⊕wk+1aλk+1

=

〈
(

k∑
i=1

wiα
λ
i + wk+1α

λ
k+1,

k∑
i=1

wiσ
λ
i + wk+1σ

λ
k+1

)
,



(1− k∏
i=1

(
1− uqλ

i

)wi
)1/q

q

+

((
1−

(
1− uλq

k+1

)wk+1
)1/q

)q

−

(1− k∏
i=1

(
1− uqλ

i

)wi
)1/q

q((
1−

(
1− uλq

k+1

)wk+1
)1/q

)q



1/q

,

k∏
i=1

((
1−

(
1− vq

i

)λ)1/q
)wi((

1−
(
1− vq

k+1

)λ)1/q
)wk+1



〉

=

〈
(

k+1∑
i=1

wiα
λ
i ,

k+1∑
i=1

wiσ
λ
i

)
,

(
1−

k∏
i=1

(
1− uqλ

i

)wi
+ 1−

(
1− uλq

k+1

)wk+1
−

(
1−

k∏
i=1

(
1− uqλ

i

)wi
)(

1−
(
1− uλq

k+1

)wk+1
))1/q

,

k+1∏
i=1

((
1−

(
1− vq

i

)λ)1/q
)wi


〉

=

〈(
k+1∑
i=1

wiα
λ
i ,

k+1∑
i=1

wiσ
λ
i

)
,

(1− k+1∏
i=1

(
1− uqλ

i

)wi
)1/q

,
k+1∏
i=1

((
1−

(
1− vq

i

)λ)1/q
)wi

〉



Mathematics 2019, 7, 1142 13 of 26

then

 n∑
i=1

wiα
λ
i

1/λ

=

〈 ( n∑
i=1

wiα
λ
i

)1/λ

,
(

n∑
i=1

wiσ
λ
i

)1/λ,
(1− n∏

i=1

(
1− uqλ

i

)wi
)1/q1/λ

,

1−

1−
(

n∏
i=1

((
1−

(
1− vq

i

)λ)1/q
)wi

)q1/λ
1/q

〉
.

�

Of particular note, if λ = 1, the Gq-RONFWA operator is reduced to the q-RONFWA operator.
The Gq-RONFWA operator has the properties such as boundedness, and idempotency and monotonicity,
which can be exemplified similar to Theorems 2–4.

Definition 14. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFN, and wi =

(w1, w2, · · · , wn)
T be the weight vector of ai, and 0 ≤ wi ≤ 1 (i = 1, 2, · · · , n)T,

∑n
i=1 wi = 1, λ be a parameter

and λ ∈ (−∞, 0)∪ (0,+∞) then

Gq−RONFWG(a1, a2, · · · , an) =
1
λ

n∏
i=1

(λai)
wi (13)

is called a generalized q-RONFWG (Gq-RONFWG) operator.

Theorem 8. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFN, based on the

operations of q-RONFN, the Gq-RONFWG operator is still a q-RONFN, that is

Gq−RONFWG(a1, a2, · · · , an) =

〈
(

1
λ

n∏
i=1

(λαi)
wi , 1

λ

n∏
i=1

(λσi)
wi

)
,

1−

1−
(

n∏
i=1

((
1−

(
1− uq

i

)λ)1/q
)wi

)q1/λ
1/q

,(1− n∏
i=1

(
1− vqλ

i

)wi
)1/q1/λ


〉
. (14)

Proof. The mathematical induction method is used to prove the following formula firstly:

n∏
i=1

(λai)
wi =

〈 n∏
i=1

(λαi)
wi ,

n∏
i=1

(λσi)
wi

,

 n∏
i=1

((
1−

(
1− uq

i

)λ)1/q
)wi

,

1−
n∏

i=1

(
1− vqλ

i

)wi

1/q
〉
.

(1) When n = 2,
Since

(λa1)
w1 =

〈(
(λα1)

w1 , (λσ1)
w1

)
,
(((

1−
(
1− uq

1

)λ)1/q
)w1

,
(
1−

(
1− vλq

1

)w1
)1/q

)〉
,

and

(λa2)
w2 =

〈(
(λα2)

w2 , (λσ2)
w2

)
,
(((

1−
(
1− uq

2

)λ)1/q
)w2

,
(
1−

(
1− vλq

2

)w2
)1/q

)〉
.
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Then

2∏
i=1

(λai)
wi = (λa1)

w1 ⊗ (λa1)
w1

=

〈
(
(λα1)

w1(λα2)
w2 , (λσ1)

w1(λσ2)
w2

)
,
((

1−
(
1− uq

1

)λ)1/q
)w1

((
1−

(
1− uq

2

)λ)1/q
)w2

,
((

1−
(
1− vλq

2

)w2
)1/q

)q

+

((
1−

(
1− vλq

2

)w2
)1/q

)q

−((
1−

(
1− vλq

2

)w2
)1/q

)q(((
1−

(
1− vλq

2

)w2
)1/q

)q)q


1/q 〉

〈 (
(λα1)

w1(λα2)
w2 , (λσ1)

w1(λσ2)
w2

)
,
((

1−
(
1− uq

1

)λ)1/q
)w1

((
1−

(
1− uq

2

)λ)1/q
)w2

,
(
1−

(
1− vλq

2

)w2
)
+

(
1−

(
1− vλq

2

)w2
)
−(

1−
(
1− vλq

2

)w2
)(

1−
(
1− vλq

2

)w2
) 

1/q
〉

=

〈(
2∏

i=1
(λαi)

wi ,
2∏

i=1
(λσi)

wi

)
,

 2∏
i=1

((
1−

(
1− uq

i

)λ)1/q
)wi

,
(
1−

2∏
i=1

(
1− vqλ

i

)wi
)1/q〉

(2) Supposing n = k, k > 2, that is

k∏
i=1

(λai)
wi = (λa1)

w1 ⊗ (λa1)
w1 ⊗ · · · ⊗ (λak)

wk

=

〈 (
k∏

i=1
(λαi)

wi ,
k∏

i=1
(λσi)

wi

)
, k∏

i=1

((
1−

(
1− uq

i

)λ)1/q
)wi

,
(
1−

k∏
i=1

(
1− vqλ

i

)wi
)1/q

〉

If n = k + 1, according to the operational laws of q-RONFN, we can get

k+1∏
i=1

(λai)
wi = (λa1)

w1 ⊗ (λa1)
w1 ⊗ · · · ⊗ (λak)

wk ⊗ (λak+1)
wk+1

=

〈
(

k∏
i=1

(λαi)
wi(λαk+1)

wk+1 ,
k∏

i=1
(λσi)

wi(λσk+1)
wk+1

)
,

k∏
i=1

((
1−

(
1− uq

i

)λ)1/q
)wi((

1−
(
1− uq

k+1

)λ)1/q
)wk+1

,

(1− k∏
i=1

(
1− vqλ

i

)wi
)1/q

q

+

(1− k∏
i=1

(
1− vqλ

k+1

)wk+1
)1/q

q

−(1− k∏
i=1

(
1− vqλ

i

)wi
)1/q

q(1− k∏
i=1

(
1− vqλ

k+1

)wk+1
)1/q

q



1/q



〉

〈
(

k∏
i=1

(λαi)
wi(λαk+1)

wk+1 ,
k∏

i=1
(λσi)

wi(λσk+1)
wk+1

)
,

k∏
i=1

((
1−

(
1− uq

i

)λ)1/q
)wi((

1−
(
1− uq

k+1

)λ)1/q
)wk+1

,
1−

k∏
i=1

(
1− vqλ

i

)wi
+ 1−

k∏
i=1

(
1− vqλ

k+1

)wk+1
−(

1−
k∏

i=1

(
1− vqλ

i

)wi
)(

1−
k∏

i=1

(
1− vqλ

k+1

)wk+1
)


1/q



〉

=

〈(
k+1∏
i=1

(λαi)
wi ,

k+1∏
i=1

(λσi)
wi

)
,

k+1∏
i=1

((
1−

(
1− uq

i

)λ)1/q
)wi

,
(
1−

k+1∏
i=1

(
1− vqλ

i

)wi
)1/q〉
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then

1
λ

n∏
i=1

(λai)
wi =

〈 1
λ

n∏
i=1

(λαi)
wi ,

1
λ

n∏
i=1

(λσi)
wi

,



1−

1−
(

n∏
i=1

((
1−

(
1− uq

i

)λ)1/q
)wi

)q1/λ
1/q

,(1− n∏
i=1

(
1− vqλ

i

)wi
)1/q1/λ


〉
.

�

If λ = 1, the Gq-RONFWG operator is reduced to the q-RONFWG operator. The Gq-RONFWG
operator has the properties of boundedness and idempotency, these properties can be exemplified
similar to Theorems 2–4.

4.4. Generalized q-RONF Ordered Weighted Aggregation Operators

As generalizations of the q-RONFOWA and q-RONFOWG operators, some generalized q-RONF
ordered weighted aggregation operators are introduced in the following.

Definition 15. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFN, and w j =

(w1, w2, · · · , wn)
T be the weight vector of aggregation-associated, and 0 ≤ wi ≤ 1 (i = 1, 2, · · · , n)T,

∑n
i=1 wi =

1, aθ(i) =
〈
(αθ(i), σθ(i)),

(
uθ(i), vθ(i)

)〉
(i = 1, 2, · · · , n) be the ith largest of them, then

(1) A generalized q-RONFN ordered weighted aggregation (Gq-RONFOWA) operator is a mapping
Gq-RONFOWA: an

→ a , where

Gq−RONFOWA(a1, a2, · · · , an) =

(
n∑

i=1
wiaλθ(i)

)1/λ

=

〈
( n∑

i=1
wiα

λ
θ(i)

)1/λ

,
(

n∑
i=1

wiσ
λ
θ(i)

)1/λ,
(1− n∏

i=1

(
1− uqλ

θ(i)

)wi
)1/q1/λ

,

1−

1−

 n∏
i=1

(1− (
1− vq

θ(i)

)λ)1/qwi


q
1/λ

1/q
〉 (15)

(2) A generalized q-RONFOWG (Gq-RONFOWG) operator is a mapping Gq-RONFOWG: an
→ a , where

Gq−RONFOWG(a1, a2, · · · , an) =
1
λ

n∏
i=1

(
λaθ(i)

)wi

=

〈(
1
λ

n∏
i=1

(
λαθ(i)

)wi , 1
λ

n∏
i=1

(
λσθ(i)

)wi
)
,



1−

1−

 n∏
i=1

(1− (
1− uq

θ(i)

)λ)1/qwi


q
1/λ

1/q

,

(1− n∏
i=1

(
1− vqλ

θ(i)

)wi
)1/q1/λ


〉 (16)

In the Equations (15) and (16), if λ = 1, the Gq-RONFOWA and Gq-RONFOWG operators are
reduced to the q-RONFOWA operator q-RONFOWG. According to Theorems 2–4. We can similarly
prove the properties of idempotency and boundedness and commutativity of q-RONFOWA operator
q-RONFOWG operators.

4.5. q-RONF Hybrid Aggregation Operators

q-RONFWA, q-RONFWG, Gq-RONFWA and Gq-RONFWG operators only consider the
importance of q-RONFN argument themselves, but they neglect the influence of the ordered position
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of the argument on the decision result. By contrast, q-RONFOWA, q-RONFOWG, GRONFOWA, and
Gq-RONFOWG operators only pay attention to the ordered position of every q-RONFN argument,
but they have no regard for the importance of the argument themselves. To solve the problems of
operators above, we need to develop some hybrid aggregation operators to aggregate the q-RONFN
information, which simultaneously consider both the arguments and ordered positions.

Definition 16. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFN, n is the

balancing coefficient, and w j = (w1, w2, · · · , wn)
T be the weight vector of aggregation-associated, and 0 ≤

wi ≤ 1 (i = 1, 2, · · · , n)T,
∑n

i=1 wi = 1, ω j = (ω1,ω2, · · · ,ωn)
T be the location weight vector, with 0 ≤ ωi ≤

1 (i = 1, 2, · · · , n)T,
∑n

i=1 ωi = 1.
(1) A q-RONF hybrid averaging (q-RONFHA) operator is a mapping q-RONFHA: an

→ a , where

q−RONFHA(a1, a2, · · · , an) =
n∑

i=1
ωiâθ(i)

=

〈
(

n∑
i=1

ωiα̂θ(i),
n∑

i=1
ωiσ̂θ(i)),

(1− n∏
i=1

(
1− ûq

θ(i)

)ωi
)1/q

,
n∏

i=1
v̂ωi
θ(i)

〉 (17)

(2) A q-RONF hybrid geometric (q-RONFHG) operator is a mapping q-RONFHG: an
→ a , where

q−RONFHG(a1, a2, · · · , an) =
n∏

i=1
ˆ̂aωi
θ(i)

=

〈(
n∏

i=1
ˆ̂αωi
θ(i),

n∏
i=1

ˆ̂σωi
θ(i)

)
,

 n∏
i=1

ˆ̂uωi
θ(i),

(
1−

n∏
i=1

(
1− ˆ̂vq

θ(i)

)ωi
)1/q〉 (18)

where âθ(i) is the ith largest of q-RONF âi, and âi = nwiai (i = 1, 2, · · · , n), ˆ̂aθ(i) is the ith largest of q-RONF
ˆ̂ai, and ˆ̂ai = anwi

i (i = 1, 2, · · · , n).

Definition 17. Let ai =
〈
(αi, σi), (ui, vi)

〉
(i = 1, 2, · · · , n) be a collection of the q-RONFN, n is the balance

coefficient, λ be a parameter and λ > 0, w j = (w1, w2, · · · , wn)
T be the weight vector of aggregation-associated,

and 0 ≤ wi ≤ 1 (i = 1, 2, · · · , n)T,
∑n

i=1 wi = 1, ω j = (ω1,ω2, · · · ,ωn)
T be the location weight vector,

with 0 ≤ ωi ≤ 1 (i = 1, 2, · · · , n)T,
∑n

i=1 ωi = 1.
(1) A generalizations q-RONF hybrid averaging (Gq-RONFHA) operator is a mapping Gq-RONFHA:

an
→ a , where

Gq−RONFHA(a1, a2, · · · , an) =

(
n∑

i=1
ωiâλθ(i)

)1/λ

=

〈
( n∑

i=1
ωiα̂

λ
θ(i)

)1/λ

,
(

n∑
i=1

ωiσ̂
λ
θ(i)

)1/λ,
(1− n∏

i=1

(
1− ûqλ

θ(i)

)ωi
)1/q1/λ

,

1−

1−

 n∏
i=1

(1− (
1− v̂q

θ(i)

)λ)1/qωi


q
1/λ

1/q
〉 (19)



Mathematics 2019, 7, 1142 17 of 26

(2) A generalizations q-RONF hybrid geometric (Gq-RONFHG) operator is a mapping Gq-RONFHG:
an
→ a , where

Gq−RONFHG(a1, a2, · · · , an) =
1
λ

n∏
i=1

(
λ ˆ̂aθ(i)

)ωi

=

〈(
1
λ

n∏
i=1

(
λ ˆ̂αθ(i)

)wi , 1
λ

n∏
i=1

(
λ ˆ̂σθ(i)

)wi
)
,



1−

1−

 n∏
i=1

(1− (
1− ˆ̂uq

θ(i)

)λ)1/qwi


q
1/λ

1/q

,

(1− n∏
i=1

(
1− ˆ̂vqλ

θ(i)

)wi
)1/q1/λ


〉 (20)

where âθ(i) is the ith lagest of q-RONF âi, and âi = nwiai (i = 1, 2, · · · , n), ˆ̂aθ(i) is the i-th largest of q-RONF
ˆ̂ai, and ˆ̂ai = anwi

i (i = 1, 2, · · · , n).

5. A Multi-Criteria Decision-Making Method Based on Q-rung Orthopair Normal Fuzzy
Information

For a multi-attribute decision making (MADM) problem under q-RONF environment, let A =

{A1, A2, · · · , An} denote n alternative schemes, C = {C1, C2, · · · , Cm} denote m attribute sets for every
alternative, and the corresponding weight is w = {w1, w2, · · · , wm}. The q-RONFN of scheme Ai under
attribute C j is ai j =

〈
(αi j, σi j), (ui j, vi j)

〉
(i = 1, 2, · · · , n; j = 1, 2, · · · , m). Where, ui j is the degree to

which scheme Ai belongs to normal fuzzy numbers (αi j, σi j) under attribute C j; vi j is the degree to
which scheme Ai does not belong to normal fuzzy numbers (αi j, σi j) under attribute C j, 0 ≤ ui j, vi j ≤ 1,
0 ≤ (ui j)

q + (vi j)
q
≤ 1, (q ≥ 1), A n*m decision matrix D =

(
ai j

)
n×m

is composed by the set of n
alternatives and the set of m attributes, and the following are the steps of MADM under q-RONF
information environment:

Step 1. Normalizing the decision matrix.
Considering the differences among of the attributes’ dimensions, in order to eliminate the influence

of different dimensions on decision results, it is necessary to normalize the decision matrix D =
(
ai j

)
n×m

to D =
(
ai j

)
n×m

, in which ai j =
〈
(αi j, σi j), (ui j, vi j)

〉
.

For benefit-oriented attributes [51]:

αi j =
αi j

max
i

(αi j)
, σi j =

σi j

max
i

(σi j)
·
σi j

αi j
, ui j = ui j, vi j = vi j.

For cost-oriented attributes [51]:

αi j =
min

i
(αi j)

αi j
, σi j =

σi j

max
i

(σi j)
·
σi j

αi j
, ui j = ui j, vi j = vi j.

Step 2. Aggregating scheme attribute values
The information sets ai j =

〈
(αi j, σi j), (ui j, vi j)

〉
of attribute C j in scheme Ai are aggregated into

ai =
〈
(αi, σi), (ui, vi)

〉
by using q-RONFWA operator; the following results can be obtained

ai = q−RONFWA(ai1, ai2, · · · , aim)

Step 3. Calculating score value S(ai) and accuracy value H(ai) of ai by using score function and
accuracy function

Step 4. Sorting the alternatives based on the q-RONFN sorting rules and choosing the best one.
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6. Numerical Example

6.1. Ranking All Alternatives to Get Decision Results

As economic globalization makes enterprises face more complex internal and external environment,
finding an appropriate partner is an important way to maintain their competitiveness, which is affected
by many factors. In order to select a suitable global partner, an enterprise has selected five candidate
enterprises in the global scope. The set of alternative enterprises is A = {A1, A2, A3, A4, A5}, and four
attributes are considered, namely, R& D capability (C1), business operation level (C2), international
cooperation level (C3) and credit level (C4). The set of attributes C = {C1, C2, C3, C4} is formed, and they
are all benefit-oriented indicators. The corresponding weight is w = {0.3, 0.2, 0.2, 0.3}T, and the
decision information matrix as shown in Table 1 is constructed according to the decision information.
In addition, considering the problem of q-RONF information aggregation based on OWA operator,
the corresponding position weight vector is given as ω = {0.2, 0.3, 0.3, 0.2}T.

Table 1. Initial decision matrix.

C1 C2 C3 C4

A1 <(8, 0.7), (0.6, 0.7)> <(4, 0.5), (0.2, 0.4)> <(8, 0.5), (0.1, 0.7)> <(4, 0.3), (0.6, 0.2)>
A2 <(6, 0.4), (0.7, 0.9)> <(5, 0.6), (0.4, 0.3)> <(4, 0.4), (0.7, 0.2)> <(8, 0.5), (0.6, 0.4)>
A3 <(9, 0.8), (0.5, 0.4)> <(7, 0.8), (0.7, 0.2)> <(4, 0.3), (0.8, 0.8)> <(6, 0.6), (0.3, 0.5)>
A4 <(7, 0.6), (0.7, 0.8)> <(8, 0.7), (0.8, 0.6)> <(5, 0.4), (0.6, 0.9)> <(6, 0.4), (0.7, 0.3)>
A5 <(5, 0.3), (0.8, 0.4)> <(7, 0.5), (0.5, 0.5)> <(5, 0.3), (0.6, 0.6)> <(8, 0.6), (0.8, 0.7)>

Step 1 The initial decision matrix D =
(
ai j

)
5×4

is normalized and the normalized matrix D =
(
ai j

)
5×4

is obtained. The results are shown in Table 2.

Table 2. Normalized decision matrix.

C1 C2 C3 C4

A1 <(0.889,0.077), (0.6,0.7)> <(0.5,0.078), (0.2,0.4)> <(1,063),(0.1, 0.7)> <(0.5,0.038),(0.6, 0.2)>
A2 <(0.667,0.033), (0.7,0.9)> <(0.625,0.09),(0.4,0.3)> <(0.5,0.08), (0.7, 0.2)> <(1, 0.052),(0.6,0.4)>
A3 <(1,0.089),(0.5,0.4)> <(0.875,0.114),(0.7,0.2> <(0.5,0.045),(0.8, 0.8)> <(0.75,0.1),(0.3, 0.5)>
A4 <(0.778,0.064), (0.7,0.8)> <(1,0.077),(0.8,0.6)> <(0.625,0.064),(0.6,0.9)> <(0.75,0.044), (0.7, 0.3)>
A5 <(0.556,0.023), (0.8,0.4)> <(0.875,0.045),(0.5,0.5> <(0.625,0.036),(0.6,0.6)> <(1,0.075),(0.8, 0.7)>

Step 2 q-RONFWA operator is used to aggregate the information in Table 2 to get the comprehensive
q-RONFs of each scheme.

a1 =<(0.717, 0.062), (0.516, 0.43)>; a2 =<(0.725, 0.06), (0.635, 0.419)>;
a3 =<(0.8, 0.089), (0.622, 0.428)>;a4 =<(0.783, 0.061), (0.71, 0.576)>;
a5 =<(0.767, 0.045), (0.735, 0.537)>
Step 3 The sorting result of score values based on q-RONFWA operator is calculated, as shown in

the following:
S(A1) = 0.042; S(A2) = 0.132; S(A3) = 0.13; S(A4) = 0.131; S(A5) = 0.186
Step 4 According to the score value of each scheme, 5 schemes can be ranked as A5 > A2 > A4 >

A3 > A1, so the best one is A5.

6.2. Comparative Analysis

In order to analyze the validity and rationality of the proposed method in this paper, the sorting
results based on different operators were analyzed, and compared with some existing methods.

Based on the steps in Section 5, the other 11 q-RONF aggregation operators proposed in this paper
are used to calculate the sorting results. The results are shown in Table 3, which shows that the optimal
scheme is A5 based on q-RONFWA and q-RONFWG operators, which only consider the importance of
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attribute information themselves. However, the sorting result is A5 by q-RONFOWA and q-RONFOWG
operators, which attach the importance of weighted priority by using q-RONFOWA and q-RONFOWG
operators. That indicates that weighted priority affects the sorting result of alternatives. Further, the
sorting result based on generalized operators was analyzed, and letλ= 2. Table 3 shows that the optimal
decision results based on Gq-RONFWA, Gq-RONFWG and Gq-RONFOWG operators are A5, and the
optimal scheme based on Gq-RONFOWA operator is A3. In the generalization operators, the optimal
schemes based on q-RONFHA, q-RONFHG, Gq-RONFHA operators are A5, which indicates that the
parameter λ and priority position weight also affect the sorting result. In practical decision-making
problems, the most appropriate information aggregation operator can be chosen according to the actual
requirement to obtain the corresponding decision-making results.

Table 3. Schemes sorting results based on different aggregation operators.

Aggregation
Operator

The Score Value of Alternative Alternative
RankingA1 A2 A3 A4 A5

q-RONFWA 0.042 0.132 0.13 0.131 0.186 A5 > A2 > A4 >
A3 > A1

q-RONFWG −0.112 −0.09 −0.045 −0.058 0.094 A5 > A3 > A4 >
A2 > A1

q-RONFOWA 0.0141 0.1291 0.1605 0.1381 0.151 A3 > A5 > A4 >
A2 > A1

q-RONFOWG −0.127 −0.052 −0.046 −0.06 0.0662 A3 > A2 > A4 >
A5 > A1

Gq-RONFWA 0.0702 0.1557 0.1805 0.1568 0.2134 A5 > A3 > A4 >
A2 > A1

Gq-RONFWG −0.144 −0.171 −0.104 −0.107 0.0646 A5 > A3 > A4 >
A1 > A2

Gq-RONFOWA 0.047 0.151 0.2066 0.1669 0.1766 A3 > A5 > A4 >
A2 > A1

Gq-RONFOWG −1.58 −1.443 −1.094 −1.109 0.4111 A5 > A3 > A4 >
A2 > A1

q-RONFHA 0.106 0.218 0.259 0.291 0.359 A5 > A4 > A3 >
A2 > A1

q-RONFHG −0.1483 −0.1483 −0.1172 −0.164 −0.0012 A5 > A3 > A2 >
A1 > A4

Gq-RONFHA 0.163 0.266 0.3224 0.3223 0.42 A5 > A3 > A4 >
A2 > A1

Gq-RONFHG −1.182 −2.413 −1.665 −2.073 −0.263 A5 > A3 > A1 >
A4 > A2

Compared with the results calculated by the existing information aggregation operators based on
intuitionistic normal fuzzy numbers, the normal intuitionistic fuzzy weighted Bonferroni mean operator
(the parameters p = q = 2) proposed by Liu and Liu [54] was applied to the q-RONF environment.
The optimal result is the same as those based on q-RONFWA and q-RONFWG in this paper as A5.
The normal intuitionistic fuzzy Heronian mean averaging and arithmetic operators (the parameters
p = q = 2) proposed by Zhang et al. [58] were applied to q-RONF environment, and the optimal result
is also A5. The comparative analysis shows that the proposed method is validity.

6.3. Sensitivity Analysis of Parameters q and λ

In this Section, the influence of parameters q and λ on sorting result was analyzed. Firstly, the
influences of the change of parameter q in q-RONFWA and q-RONFOWA on the sorting result are
discussed. As shown in Figures 1 and 2, the sorting result based on q-RONFWA operator shows that
when q changes from 2 to 12, the final sorting result is always maintained at A5 > A2 > A4 > A3 > A1,
and the optimal selection is always A5. The sorting result based on q-RONFWA operator shows that
when q > 3, the sorting result is always maintained at A5 > A3 > A4 > A2 > A1, and only when q = 3,
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the sorting result is A3 > A5 > A4 > A2 > A1, indicating that the change of q has little influence on the
sorting result, which shows that the proposed method has strong stability.Mathematics 2019, 7, x FOR PEER REVIEW 22 of 28 
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The influences of parameter λ on the sorting result in generalized information aggregation
operators are analyzed. As shown in Figures 3 and 4, based on the influence of parameter λ in
q-RONFWA operator on the sorting result, when 2≤ λ≤ 5, the sorting result is A5 > A3 > A4 > A2 > A1,
A5 is the best choice. When λ ≥ 6, the sorting result is A3 > A5 > A4 > A2 > A1, and the optimal
scheme is A3. Based on the influence of parameter λ in q-RONFOWA operator on the sorting result,
when 2 ≤ λ ≤ 4, the sorting result is A3 > A5 > A4 > A2 > A1, and the optimal scheme is A3. When
λ ≥ 5, A3 > A4 > A5 > A2 > A1, although the optimal scheme remains unchanged, its ranking result
changes. Thus, it is clear that the change of parameter λ has a certain impact on the sorting result.
Decision makers can adjust parameter λ according to their subjective preferences and actual needs to
obtain the desired results.
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The influence of the simultaneous changes of parameters q and λ on the ranking results was
further analyzed, as shown in Figures 5 and 6. The influence of the change of q and λ in Gq-RONFHA
operator on the sorting result shows that the total sorting is changed with the change of q and λ. For
example, when q = 3 and λ = 2, the sorting is A5 > A3 > A4 > A2 > A1. If both q and λ increase at the
same time, the sorting will change slightly, for example, when q = 13 and λ = 12, the sorting will be
A5 > A3 > A4 > A1 > A2. According to the change of q and λ in Gq-RONFHG operator, when q = 3
and λ = 2, then A5 > A3 > A1 > A4 > A2; if both q and λ increase, for example when q ≥ 4 and λ ≥ 3,
then A5 > A1 > A3 > A4 > A2. It indicates that the simultaneous changes of parameters q and λ have
some influence on the ranking results. However, within a certain range where the two parameters
change together, the optimal results remain unchanged, which shows that the method presented in
this paper has certain stability.
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6.4. Discussion

According to the above numerical example, we can easily find the proposed methods can depict
the social and natural phenomena that obey normal distribution, and take into account that the sum
of MED and NOMED is greater than 1, but the fuzzy information whose q power is less than 1.
As such, our methods can analyze more complicated fuzzy information and objective phenomena; its
decision process is closer to the way of human thinking. Based on the new concept of q-RONF set,
we presented 12 aggregation operators under q-RONF environment; the research results showed that
these operators have stronger information aggregation ability than existing operators. The proposed
q-RONF set and the aggregation operators can set different q values according to actual requirements
to get more appropriate decision results. As a result, our method is more flexible and more suitable for
decision-making in a more complex and changeable decision-making environment.

To sum up, the proposed method has stronger applicability and flexibility in solving MADM
problems under uncertain environments, especially in solving decision-making problems that are
difficult to deal with normal fuzzy information environment or q-RON information environment.
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7. Conclusions

The q-rung orthopair fuzzy set (q-ROFS) can characterize fuzzy information more effectively and
extensively, and it has more flexibility than IFS and PFS, but it is difficult for q-ROFS to characterize
normal distribution in human society and nature. To solve this problem, in this paper, and considering
the characterization ability of normal fuzzy numbers and the description breadth of q-ROFS for fuzzy
information. The paper proposes a new concept of q-rung orthopair normal fuzzy (q-RONF) set by
combining normal fuzzy numbers and q-ROFS. In addition, some basic properties of q-RONF set are
examined, some information aggregation operators were proposed and applied as well. The main
contributions of this paper are as follows:

(1) The concept and the operation rules of q-RONF set were defined, their related properties of
the operation rules were proved. Meanwhile, the score function and the accuracy function under the
q-RONF information environment were defined.

(2) Some information aggregation operators in q-RONF environment was proposed,
including q-RONF weighted averaging and geometric operators, q-RONF order weighted averaging
and geometric operators, generalized q-RONF weighted averaging and geometric operators, generalized
order weighted averaging, and geometric operators, q-RONF hybrid averaging and geometric operators,
generalized q-RONF hybrid averaging and geometric operators. Further, some properties of the above
aggregation operators are analyzed, such as commutativity, idempotency, and boundedness.

(3) A multi-attribute decision-making method based on q-RONF information aggregation operators
was proposed.

In future work, the q-RONFS can be extended to interval q-RONFS, the Choquet and power
integral operators can be applied into q-RONFS to develop new aggregation operators. Moreover, the
q-RONFS can be widely used in practical decision making, such as the supply of chain management
and system control.
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