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Abstract: An algorithm is introduced to find an answer to both inclusion problems and fixed point
problems. This algorithm is a modification of Tseng type methods inspired by Mann’s type iteration
and viscosity approximation methods. On certain conditions, the iteration obtained from the
algorithm converges strongly. Moreover, applications to the convex feasibility problem and the
signal recovery in compressed sensing are considered. Especially, some numerical experiments of the
algorithm are demonstrated. These results are compared to those of the previous algorithm.
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1. Introduction

The concept of inclusion problems and fixed point problems has been interesting to many
mathematical researchers. The reason is that these problems can be applied to several other problems.
For instance, these problems are applicable to solving convex programming, the minimization problem,
variational inequalities, and the split feasibility problem. As a result, some applications of such
problems are able to be taken into consideration, such as machine learning, the signal recovery
problem, the image restoration problem, sensor networks in computerized tomography and data
compression, and intensity modulated radiation therapy treatment planning, see [1–9].

First we define all following notations needed throughout the paper. Suppose that H is a real
Hilbert space. Define self-maps S and A on H, and a multi-valued operator B : H → 2H . Any x ∈ H is
said to be a fixed point of S if Sx = x. Denote the set of all such x by Fix(S). Definitely, the fixed point
problem for the operator S is a problem of seeking a fixed point of S. Then the solution set is Fix(S).
Next, the inclusion problem for the operators A and B is a problem of searching for a point x∗ ∈ H
with 0 ∈ (A + B)x∗. Assume the notation (A + B)−1(0) defined as the solution set of the problem.
Finally, the inclusion and fixed point problem is obviously a combination of these two problems. This
means that it is a problem of looking for a point

x∗ ∈ H with 0 ∈ (A + B)x∗ and x∗ ∈ Fix(S).

Thus, the solution set for this problem is (A + B)−1(0) ∩ Fix(S).
In literature, a number of tools have been brought to investigate the inclusion problems,

see [7,10–13]. One of the most popular methods, called the forward–backward splitting method,
was suggested by Lions and Mercier [14], and Passty [15]. In 1997, Chen and Rockafellar [16] were
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interested in this method. As a result, the weak convergence theorem was obtained. In order to show
that the forward–backward splitting method converges weakly, the additional hypotheses on A and B
have to be assumed. Later, Tseng [17] improved this method by weakening the previous assumptions
on A and B for weak convergence. This method is called the modified forward–backward splitting
method, or Tseng’s splitting algorithm. Recently, Gibali and Thong [6] studied another modified
method. To be more precise, the step size rule for the problems was changed according to Mann and
viscosity ideas. In addition, this new method converges strongly under suitable assumptions and is
convenient as a practical matter.

Besides, there has been numerous research on the inclusion and fixed point problems. The method
of approximation of a solution has been developed. In fact, Zhang and Jiang [18] suggested a hybrid
algorithm for the inclusion and fixed point problems for some operators. A few years later, Thong and
Vinh [19] investigated another method relying on the inertial forward–backward splitting algorithm,
Mann algorithm, and viscosity method. On top of that, a very recent work of Cholamjiak, Kesornprom,
and Pholasa [20] has been introduced to solve the inclusion problem of two monotone operators and
the fixed point problems of nonexpansive mappings.

With preceding inspirational research, this work suggests another algorithm to solve the inclusion
and fixed point problems. This study focuses on the inclusion problems for A and B such that A
is a Lipschitz continuous and monotone operator and B is a maximal monotone operator, and the
fixed point problem for S such that S is nonexpansive. The main result guarantees that this algorithm
converges strongly with some appropriate assumptions. Furthermore, some examples of numerical
experiment of the proposed algorithm are provided to demonstrate the significant results.

To begin, some definitions and known results needed to support our work are given in the next
section. Then the new algorithm is given along with essential conditions in Section 3. The proof that
the iteration constructed by this algorithm converges strongly is provided in detail. Next, applications
and numerical results to the convex feasibility problem and the signal recovery in compressed sensing
are discussed to show the efficiency of the algorithm in Section 4. Lastly, this work is summarized in
the Conclusion Section.

2. Mathematical Preliminaries

In what follows, recall the real Hilbert space H. Let C be a nonempty, closed and convex subset of
H. Define the metric projection PC from H onto C by

PCx = arg min
y∈C
‖x− y‖.

It has been known for a fact that PC can be distinguished by

〈x− PCx, y− PCx〉 ≤ 0 (1)

for any x ∈ H and y ∈ C.
Now assume that x, y, z ∈ H. Then the following equalities and inequality are valid for inner

product spaces,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, (2)

‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2, (3)

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2 − αγ‖x− z‖2 − βγ‖y− z‖2 (4)

for any α, β, γ ∈ [0, 1] such that α + β + γ = 1.
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To obtain the desired results, the following definitions are needed to be used later.

Definition 1. A self-map S on H is called

(i) firmly nonexpansive if for each x, y ∈ H,

‖Sx− Sy‖2 ≤ 〈Sx− Sy, x− y〉,

(ii) β-cocoercive (or β-inverse strongly monotone) if there is β > 0 satisfying, for each x, y ∈ H,

〈Sx− Sy, x− y〉 ≥ β‖Sx− Sy‖2,

(iii) L-Lipschitz continuous if there is L > 0 satisfying, for each x, y ∈ H,

‖Sx− Sy‖ ≤ L‖x− y‖,

(iv) nonexpansive if S is L-Lipschitz continuous when L = 1,
(v) L-contraction if S is L-Lipschitz continuous when L < 1.

According to these definitions, it can be observed that every β-cocoercive mapping is monotone

and
1
β

-Lipschitz continuous.

Definition 2. Assume that S : H → 2H is a multi-valued operator. The set

gra(S) = {(x, u) ∈ H × H : u ∈ Sx}

is called the graph of S.

Definition 3. An operator S : H → 2H is called

(i) monotone if for all (x, u), (y, v) ∈ gra(S),

〈u− v, x− y〉 ≥ 0,

(ii) maximal monotone if there is no proper monotone extension of gra(S).

Definition 4. Let S : H → 2H be a maximal monotone. For each λ > 0, the operator

JS
λ = (I + λS)−1

is called the resolvent operator of S.

It is well known that if S : H → 2H is a multi-valued maximal monotone and λ > 0, then JS
λ is a

single-valued firmly nonexpansive mapping, and S−1(0) is a closed convex set.
Now, to accomplish the purpose of this work, some crucial lemmas are needed as follows. Here,

the notations ⇀ and→ represent weak and strong convergence, respectively.

Lemma 1. [21] If B : H → 2H is maximal monotone and A : H → H is Lipschitz continuous and monotone,
then A + B is maximal monotone.

Lemma 2. [22] Let C be a closed convex subset of H, and S : C → C a nonexpansive mapping with Fix(S) 6= ∅.
If there exists {xn} in C satisfying xn ⇀ z and ‖xn − Sxn‖ → 0, then z = Sz.
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Lemma 3. [23] Assume that {an} and {cn} are nonnegative sequences of real numbers such that
∞

∑
n=1

cn < ∞,

and {bn} is a sequence of real numbers with lim sup
n→∞

bn ≤ 0. Let {δn} be a sequence in (0, 1) with
∞

∑
n=1

δn = ∞.

If there exists n0 ∈ N such that for any n ≥ n0,

an+1 ≤ (1− δn)an + δnbn + cn,

then lim
n→∞

an = 0.

Lemma 4. [24] Assume that {Γn} is a sequence of real numbers. Suppose that there is a subsequence {Γnj}j≥0
of {Γn} satisfying Γnj < Γnj+1 for each j ≥ 0. Let {ψ(n)}n≥n∗ be a sequence of integers defined by

ψ(n) = max{k ≤ n : Γk < Γk+1}. (5)

Then {ψ(n)}n≥n∗ is a nondecreasing sequence with lim
n→∞

ψ(n) = ∞. Moreover, for each n ≥ n∗, we have
Γψ(n) ≤ Γψ(n)+1 and Γn ≤ Γψ(n)+1.

3. Convergence Analysis

To find a solution to the inclusion and fixed point problems, a new algorithm is introduced.
The convergence of the sequence obtained from the algorithm is proved in Theorem 1. First, some
assumptions are required in order to accomplish our goal. In particular, the following Conditions 1
through 4 are maintained in this section. Here, denote the solution set (A + B)−1(0) ∩ Fix(S) by Ω.

Condition 1. Ω is nonempty.
Condition 2. A is L-Lipschitz continuous and monotone, and B is maximal monotone.
Condition 3. S is nonexpansive, and let f : H → H be ρ-Lipschitz continuous, where ρ ∈ [0, 1).

Condition 4. Let {αn} and {βn} be sequences in (0, 1) such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞, and there

exist positive real numbers a and b with 0 < a < βn < b < 1− αn for each n ∈ N.

Second, the following algorithm is constructed for solving the inclusion and fixed point problems.
This algorithm is inspired by the algorithm of Tseng for monotone variational inclusion problems,
and the iterative method of Mann [25] and Moudafi [26] viscosity approximating scheme for fixed
point problems.
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Algorithm 1 An iterative algorithm for solving inclusion and fixed point problems

Initialization: Let λ1 > 0 and µ ∈ (0, 1). Assume x1 ∈ H.
Iterative Steps: Obtain the iteration {xn} as follows:

Step 1. Define

yn = (I + λnB)−1(I − λn A)xn,
zn = yn − λn(Ayn − Axn),

and

xn+1 = αn f (xn) + (1− αn − βn)xn + βnSzn.

Step 2. Define

λn+1 =

{
min

{
µ‖xn−yn‖
‖Axn−Ayn‖ , λn

}
if Axn − Ayn 6= 0;

λn otherwise.
(6)

Replace n by n + 1 and then repeat Step 1.

With this algorithm, the following lemmas can be achieved in the same manner as in [6].

Lemma 5. [6] As given in the algorithm together with all four conditions assumed, {λn} is a convergent
sequence with a lower bound of min

{
λ1, µ

L
}

.

Lemma 6. [6] As given in the algorithm together with all four conditions assumed, the following inequalities
are true. For any p ∈ Ω,

‖zn − p‖2 ≤ ‖xn − p‖2 −
(

1− µ2 λ2
n

λ2
n+1

)
‖xn − yn‖2, (7)

and

‖zn − yn‖ ≤ µ
λn

λn+1
‖xn − yn‖. (8)

We are almost ready to show the strong convergence theorem for our algorithm. The remaining
fact needed for the theorem is stated and verified below.

Lemma 7. As given in the algorithm together with all four conditions assumed, suppose that

lim
n→∞

‖xn − yn‖ = lim
n→∞

‖xn − zn‖ = lim
n→∞

‖zn − Szn‖ = 0.

If there is a weakly convergent subsequence {xnk} of {xn}, then the limit of {xnk} belongs to the
solution set Ω.

Proof. Let z ∈ H such that xnk ⇀ z. From lim
n→∞

‖xn − yn‖ = 0, by similar proof as Lemma 7 in [6],

we have z ∈ (A+ B)−1(0). Since lim
n→∞

‖xn− zn‖ = 0 and xnk ⇀ z, it follows that znk ⇀ z. This together

with lim
n→∞

‖zn − Szn‖ = 0, by Lemma 2, z ∈ Fix(S). Therefore, z ∈ Ω.
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Finally, the main theorem is presented and proved as follows.

Theorem 1. Assume that Conditions 1–4 are valid. Let {xn} be a sequence obtained from the algorithm with
some initial point x1 ∈ H, λ1 > 0 and µ ∈ (0, 1).Then xn → p, where p = PΩ ◦ f (p).

Proof. Since lim
n→∞

(
1− µ2 λ2

n

λ2
n+1

)
= 1− µ2 > 0, one can find n0 ∈ N such that for each n ≥ n0,

1− µ2 λ2
n

λ2
n+1

> 0. (9)

Consequently, by Equation (7), for any n ≥ n0,

‖zn − p‖ ≤ ‖xn − p‖. (10)

Next, we prove all following claims.
Claim 1. {xn}, {yn}, {zn} and { f (xn)} are bounded sequences.

Since Condition 3 and the inequality Equation (10) hold, the following relation is obtained for
each n ≥ n0:

‖xn+1 − p‖ = ‖αn( f (xn)− p) + (1− αn − βn)(xn − p) + βn(Szn − p)‖
≤ αn‖ f (xn)− p‖+ (1− αn − βn)‖xn − p‖+ βn‖Szn − p‖
≤ αn‖ f (xn)− f (p)‖+ αn‖ f (p)− p‖+ (1− αn − βn)‖xn − p‖+ βn‖zn − p‖
≤ αnρ‖xn − p‖+ αn‖ f (p)− p‖+ (1− αn)‖xn − p‖

= [1− αn(1− ρ)]‖xn − p‖+ αn(1− ρ)
‖ f (p)− p‖

1− ρ

≤ max
{
‖xn − p‖, ‖ f (p)− p‖

1− ρ

}
.

Therefore, ‖xn+1 − p‖ ≤ max
{
‖xn0 − p‖, ‖ f (p)−p‖

1−ρ

}
for any n ≥ n0. Consequently, {xn} is

bounded, and so are {yn} and {zn}. In addition, { f (xn)} is also bounded because f is a contraction.
Thus, we have Claim 1.

Now for each n ∈ N, set Γn = ‖xn − p‖2.
Claim 2. For any n ∈ N,

βn

(
1− µ2 λ2

n

λ2
n+1

)
‖xn − yn‖2 + βn(1− αn − βn)‖xn − Szn‖2 ≤ Γn − Γn+1 + αn‖ f (xn)− p‖2.

Using Equation (4), we get

Γn+1 =‖αn( f (xn)− p) + (1− αn − βn)(xn − p) + βn(Szn − p)‖2

=αn‖ f (xn)− p‖2 + (1− αn − βn)Γn + βn‖Szn − p‖2 − αn(1− αn − βn)‖ f (xn)− xn‖2

− βn(1− αn − βn)‖xn − Szn‖2 − αnβn‖ f (xn)− Szn‖2 (11)

≤αn‖ f (xn)− p‖2 + (1− αn − βn)Γn + βn‖zn − p‖2 − βn(1− αn − βn)‖xn − Szn‖2.
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Applying Equation (7), we have

Γn+1 ≤αn‖ f (xn)− p‖2 + (1− αn)Γn − βn(1− αn − βn)‖xn − Szn‖2

− βn

(
1− µ2 λ2

n

λ2
n+1

)
‖xn − yn‖2

≤αn‖ f (xn)− p‖2 + Γn − βn(1− αn − βn)‖xn − Szn‖2

− βn

(
1− µ2 λ2

n

λ2
n+1

)
‖xn − yn‖2.

Therefore, Claim 2 is obtained as follows:

βn

(
1− µ2 λ2

n

λ2
n+1

)
‖xn − yn‖2 + βn(1− αn − βn)‖xn − Szn‖2 ≤ Γn − Γn+1 + αn‖ f (xn)− p‖2.

Moreover, we show that the inequality Equation (12) below is true.
Claim 3. For each n ≥ n0,

Γn+1 ≤[1− αn(1− ρ)]Γn

+ αn(1− ρ)

[
2

1− ρ
(βn‖xn − Szn‖‖xn+1 − p‖+ 〈 f (p)− p, xn+1 − p〉)

]
. (12)

Indeed, setting tn = (1− βn)xn + βnSzn. By Condition 3, we get

‖tn − p‖ ≤ (1− βn)‖xn − p‖+ βn‖Szn − p‖
≤ (1− βn)‖xn − p‖+ βn‖zn − p‖ (13)

≤ ‖xn − p‖

for n ≥ n0, and

‖xn − tn‖ = βn‖xn − Szn‖. (14)

Using the definition of Γn, and Equations (2), (3), (13), and (14), for all n ≥ n0, we obtain

Γn+1 =‖(1− αn)(tn − p) + αn( f (xn)− f (p))− αn(xn − tn)− αn(p− f (p))‖2

≤‖(1− αn)(tn − p) + αn( f (xn)− f (p))‖2 − 2αn〈xn − tn + p− f (p), xn+1 − p〉
≤(1− αn)‖tn − p‖2 + αn‖ f (xn)− f (p)‖2 − 2αn〈xn − tn + p− f (p), xn+1 − p〉
≤(1− αn)Γn + αnρΓn + 2αn〈xn − tn, p− xn+1〉+ 2αn〈 f (p)− p, xn+1 − p〉
≤[1− αn(1− ρ)]Γn + 2αn‖xn − tn‖‖xn+1 − p‖+ 2αn〈 f (p)− p, xn+1 − p〉
=[1− αn(1− ρ)]Γn + 2αnβn‖xn − Szn‖‖xn+1 − p‖+ 2αn〈 f (p)− p, xn+1 − p〉
=[1− αn(1− ρ)]Γn

+ αn(1− ρ)

[
2

1− ρ
(βn‖xn − Szn‖‖xn+1 − p‖+ 〈 f (p)− p, xn+1 − p〉)

]
.

Recall that our task is to show that xn → p which is now equivalent to show that Γn → 0.
Claim 4. Γn → 0.

Consider the following two cases.
Case a. We can find N ∈ N satisfying Γn+1 ≤ Γn for each n ≥ N.
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Since each term Γn is nonnegative, it is convergent. Further, notice that the argument in

Condition 4 implies that lim
n→∞

αn = 0 and lim
n→∞

βn ∈ (0, 1). Due to the fact that lim
n→∞

(
1− µ2 λ2

n

λ2
n+1

)
> 0,

according to Claim 2,

lim
n→∞

‖xn − yn‖ = lim
n→∞

‖xn − Szn‖ = 0. (15)

From Equation (8), we immediately get

lim
n→∞

‖zn − yn‖ = 0.

In addition, by using the triangle inequality, the following inequalities are obtained:

‖xn − zn‖ ≤ ‖xn − yn‖+ ‖zn − yn‖, (16)

‖zn − Szn‖ ≤ ‖xn − zn‖+ ‖xn − Szn‖. (17)

Obviously, lim
n→∞

‖xn − zn‖ = lim
n→∞

‖zn − Szn‖ = 0. Note that for each n ∈ N,

‖xn+1 − xn‖ ≤ ‖xn+1 − Szn‖+ ‖xn − Szn‖
≤ αn‖ f (xn)− xn‖+ (2− βn)‖xn − Szn‖. (18)

Consequently, by Equation (15) and Condition 4, lim
n→∞

‖xn+1 − xn‖ = 0. Next, for the reason that

{xn} is bounded, there is z ∈ H so that xnk ⇀ z for some subsequence {xnk} of {xn}. Then Lemma 7
implies that z ∈ Ω. As a result, by the definition of p and Equation (1), it is straightforward to show that

lim sup
n→∞

〈 f (p)− p, xn − p〉 = lim
k→∞
〈 f (p)− p, xnk − p〉 = 〈 f (p)− p, z− p〉 ≤ 0. (19)

Consider that the following result is obtained because lim
n→∞

‖xn+1 − xn‖ = 0.

lim sup
n→∞

〈 f (p)− p, xn+1 − p〉 ≤ lim sup
n→∞

〈 f (p)− p, xn+1 − xn〉+ lim sup
n→∞

〈 f (p)− p, xn − p〉 ≤ 0. (20)

Applying Lemma 3 to the inequality from Claim 3 with δn = αn(1 − ρ), an = Γn, cn = 0,
and bn = 2

1−ρ (βn‖xn − Szn‖‖xn+1 − p‖+ 〈 f (p)− p, xn+1 − p〉), as a consequence, lim
n→∞

Γn = 0.

Case b. We can find nj ∈ N satisfying nj ≥ j and Γnj < Γnj+1 for all j ∈ N.
According to Lemma 4, the inequlity Γψ(n) ≤ Γψ(n)+1 is obtained, where ψ : N → N is as in

Equation (5), and n ≥ n∗ for some n∗ ∈ N. This implies, by Claim 2, for each n ≥ n∗, as follows.

βψ(n)

(
1− µ2

λ2
ψ(n)

λ2
ψ(n)+1

)
‖xψ(n) − yψ(n)‖2 + βψ(n)(1− αψ(n) − βψ(n))‖xψ(n) − Szψ(n)‖2

≤ Γψ(n) − Γψ(n)+1 + αψ(n)‖ f (xψ(n))− p‖2

≤ αψ(n)‖ f (xψ(n))− p‖2.

Similar as in Case a, since αn → 0, we obtain

lim
n→∞

‖xψ(n) − yψ(n)‖ = lim
n→∞

‖xψ(n) − Szψ(n)‖ = 0,
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and furthermore,

lim sup
n→∞

〈 f (p)− p, xψ(n)+1 − p〉 ≤ 0. (21)

Finally, by Claim 3, for all n ≥ max{n∗, n0}, the following inequalities hold.

Γψ(n)+1 ≤[1− αψ(n)(1− ρ)]Γψ(n)

+ αψ(n)(1− ρ)

[
2

1− ρ

(
βψ(n)‖xψ(n) − Szψ(n)‖‖xψ(n)+1 − p‖+ 〈 f (p)− p, xψ(n)+1 − p〉

)]
≤[1− αψ(n)(1− ρ)]Γψ(n)+1

+ αψ(n)(1− ρ)

[
2

1− ρ

(
βψ(n)‖xψ(n) − Szψ(n)‖‖xψ(n)+1 − p‖+ 〈 f (p)− p, xψ(n)+1 − p〉

)]
.

Some simple calculations yield

Γψ(n)+1 ≤
2

1− ρ

(
βψ(n)‖xψ(n) − Szψ(n)‖‖xψ(n)+1 − p‖+ 〈 f (p)− p, xψ(n)+1 − p〉

)
. (22)

This follows that lim sup
n→∞

Γψ(n)+1 ≤ 0. Thus, lim
n→∞

‖xψ(n)+1 − p‖2 = lim
n→∞

Γψ(n)+1 = 0. In addition,

by Lemma 4,

lim
n→∞

Γn ≤ lim
n→∞

Γψ(n)+1 = 0.

Hence, xn converges strongly to p.

4. Applications and Its Numerical Results

The inclusion and fixed points problems are usable to many problems. Owing to this,
some applications can be considered. In particular, the algorithm constructed in Section 3 is used
for the convex feasibility problem and the signal recovery in compressed sensing. Not only the
numerical results of the algorithm, but also the comparison to the numerical results of Gibali and
Thong, Algorithm 3.1 in [6], are shown for each problem. As a reference, all numerical experiments
presented are obtained from Matlab R2015b running on the same laptop computer.

Example 1. Assume that H = L2([0, 2π]). For x, y ∈ L2([0, 2π]), let 〈x, y〉 =
∫ 2π

0 x(t)y(t)dt be an inner

product on H, and, as a consequence, let ‖x‖ = (
∫ 2π

0 |x(t)|2dt)
1
2 be the induced norm on H. Define the

half-space

C =
{

x ∈ L2([0, 2π]) : 〈1, x〉 ≤ 1
}
=

{
x ∈ L2([0, 2π]) :

∫ 2π

0
x(t)dt ≤ 1

}
,

where 1 ≡ 1 ∈ L2([0, 2π]). Suppose that Q is the closed ball of radius 4 centered at sin ∈ L2([0, 2π]). That is,

Q =
{

x ∈ L2([0, 2π]) : ‖x− sin ‖2 ≤ 16
}
=

{
x ∈ L2([0, 2π]) :

∫ 2π

0
|x(t)− sin(t)|2dt ≤ 16

}
.

Next, given the mappings S, T : L2([0, 2π])→ L2([0, 2π]) such that S = PC∩Q and (Tx)(s) = x(s) for

x ∈ L2([0, 2π]), define Ax = ∇
(

1
2‖Tx− PQTx‖2

)
= T∗(I − PQ)Tx and B = ∂iC, the subdifferential of

indicator function on C. Then the convex feasibility problem is a problem of finding a point

x∗ ∈ H such that x∗ ∈ C ∩Q.

Clearly, A is L-Lipschitz continuous, where L = ‖T‖2 = 1, and B is maximal monotone, see [27]. For
each n ∈ N, choose αn = 1

n+1 and βn = n
2(n+1) , and assume that µ = 0.85 and λ1 = 7.55. The stopping
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criterion is set to be when ‖xn − yn‖ < 10−5. To solve this problem, we apply our algorithm, and, additionally,
Algorithm 3.1 [6] to the problem. Then the numerical experiments are presented in Table 1.

Table 1. Numerical experiments of Example 1.

x1
Algorithm 3.1 [6] New Algorithm

f (x(t)) = sin(t)
2 x(t) f (x(t)) = 0

Elapsed Time (s) No. of Iter. Elapsed Time (s) No. of Iter. Elapsed Time (s) No. of Iter.

t2

10 7.0002 18 2.4982 5 3.4568 7

2t

16 3.1846 7 2.1644 4 3.3865 6

e
t
4
2 + t2

24 71.3141 36 202.3074 8 22.7358 9

e
t
3
2 51.2146 31 110.1887 8 10.7544 8

2 sin4(5t)− 3 cos(−2t) 8.8008 20 5.3593 9 2.0276 4

Accordingly, the new algorithm yields better results than Algorithm 3.1 [6] with the appropriate choice of
the function f . In detail, the new algorithm spends less elapsed time and has fewer iterations than Algorithm 3.1
[6]. This difference occurs since the new algorithm contains the terms of mappings f and S which allow us to be
more flexible with better options for f and S. In fact, Algorithm 3.1 [6] is a special case of our algorithm.

Example 2. Recall that the signal recovery in compressed sensing is able to expressed in a mathematical model
as follows.

b = Tx + ε, (23)

where x ∈ RN is the original signal, b ∈ RM is the observed data, T : RN → RM×N is a bounded linear
operator, and ε ∈ RM is the Gaussian noise distributed as N(0, σ2) for M, N ∈ N such that M < N. Solving
the linear equation system of Equation (23) has been known to be equivalent to solving the convex unconstrained
optimization problem:

min
x∈RN

1
2
‖Tx− b‖2

2 + τ‖x‖1, (24)

where τ > 0 is a parameter. Next, let A = ∇g be the gradient of g and B = ∂h the subdifferential of h, where
g(x) = 1

2‖Tx− b‖2
2 and h(x) = τ‖x‖1. Then ∇g(x) = Tt(Tx− b) is 1

‖T‖2 -cocoercive, and (I − γ∇g) is

nonexpansive for any 0 < γ < 2
‖T‖2 , see [28]. Moreover, ∂h is maximal monotone, see [13]. Additionally, by

Proposition 3.1 (iii) of [4],

x is a solution to Equation (24)⇔ 0 ∈ ∇g(x) + ∂h(x)⇔ x = proxγh(I − γ∇g)(x) for any γ > 0,

where proxγh(x) = arg min
u∈RN

{
h(u) +

1
2γ
‖x− u‖2

}
.

In this experiment, the size of signal is selected to be N = 512, and M = 256, where the original signal
contains m nonzero elements. Let T be the Gaussian matrix generated by command randn(M, N). Choose
S = prox 1

‖T‖2
h(I− 1

‖T‖2∇g) and f (·) = 1
10 (·). Assume the same αn, βn, µ, and λ1 as in the preceding example.

Given that the initial point x1 is chosen to be Ttb, use the mean-squared error to measure the restoration accuracy.
Precisely, MSEn = 1

N ‖xn − x‖2 < 5× 10−5, where x is the original signal. Then the results are displayed in
Table 2. In other words, the number of iterations and elapsed time of each algorithm are provided for different
numbers of nonzero elements. The numerical results show that our algorithm has a better elapsed time and
number of iterations than Algorithm 3.1 [6].
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Table 2. Numerical comparison between Algorithm 3.1 [6] and the new algorithm for σ = 0.01.

m Nonzero Elements Algorithm 3.1 [6] New Algorithm

Elapsed Time (s) No. of Iter. Elapsed Time (s) No. of Iter.

m = 8 0.3263 1703 0.1293 688

m = 16 0.4655 3331 0.1985 1285

m = 24 0.5966 4607 0.2990 1777

m = 32 0.6644 4778 0.3321 1808

m = 40 0.7323 5644 0.4051 2144

On top of that, we compare the recovery signals of each algorithm. In Figure 1, the original signal and the
measurement are shown in the case when m = 40 and σ = 0.01. Then the signals recovered by using Algorithm
3.1 [6] and the new algorithm are presented in Figure 2. Therefore, the errors of each algorithm are compared in
Figure 3. The outcome is that the signal recovered from our algorithm contains less error than Algorithm 3.1 [6].

50 100 150 200 250 300 350 400 450 500

-2

-1

0

1

2
Original signal

50 100 150 200 250

-10

0

10

Measurement

Figure 1. The original signal and the measurement when m = 40 and σ = 0.01.
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Figure 2. The recovery signals by Algorithm 3.1 [6] and the new algorithm when m = 40 and σ = 0.01.
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Figure 3. Error plotting of Algorithm 3.1 [6] and the new algorithm when m = 40 and σ = 0.01.
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Next, another numerical result is given for σ = 0.1 in Table 3. Likewise, the original signal and the
measurement are shown when m = 40 in Figure 4. By using Algorithm 3.1 [6] and the new algorithm, the
signal is recovered as in Figure 5. Then Figure 6 shows that the error of the result obtained from our algorithm is
less than the result obtained from Algorithm 3.1 [6].
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Figure 4. The original signal and the measurement when m = 40 and σ = 0.1.
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Figure 5. The recovery signals by Algorithm 3.1 [6] and the new algorithm when m = 40 and σ = 0.1.
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Figure 6. Error plotting of Algorithm 3.1 [6] and the new algorithm when m = 40 and σ = 0.1.

Table 3. Numerical comparison between Algorithm 3.1 [6] and the new algorithm for σ = 0.1.

m Nonzero Elements Algorithm 3.1 [6] New Algorithm

Elapsed Time (s) No. of Iter. Elapsed Time (s) No. of Iter.

m = 8 0.3848 2059 0.1292 811

m = 16 0.5229 3598 0.2583 1417

m = 24 0.5954 4098 0.2927 1562

m = 32 0.9350 5537 0.4221 2218

m = 40 1.1025 7350 0.5007 2865

Overall, based on Tables 2 and 3, similar results as in Example 1 is obtained. The new algorithm improves
the elapsed time, and reduces the number of iterations compared to Algorithm 3.1 [6]. This means that the new
algorithm displays better results than Algorithm 3.1 [6], mainly because of the more general setting in the new
algorithm.

5. Conclusions

To sum up, a modified Tseng type algorithm is created based on the methods of Mann iterations
and viscosity approximation. The purpose is to find a common solution to the inclusion problem
of an L-Lipschitz continuous and monotone single-valued operator and a maximal monotone
multivalued operator, and the fixed point problem of a nonexpansive operator. With some extra
conditions, the iteration defined by the algorithm converges strongly to the solution of the problem.
In applications, this algorithm can be applied to the convex feasibility problem and the signal recovery
in compressed sensing. The numerical experiments of our algorithm yield better results compared to
the previous algorithm.
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