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Radoja Domanovića 12, 34000 Kragujeva, Serbia; mpavlovic@kg.ac.rs
5 Faculty of Mechanical Enginering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia;

radens@beotel.rs or sradenovic@mas.bg.ac.rs
* Correspondence: manuel.delasen@ehu.eus

Received: 15 November 2019; Accepted: 2 December 2019; Published: 4 December 2019
����������
�������

Abstract: In this paper we consider (s − q)-graphic contraction mapping in b-metric like spaces.
By using our new approach for the proof that a Picard sequence is Cauchy in the context of
b-metric-like space, our results generalize, improve and complement several approaches in the
existing literature. Moreover, some examples are presented here to illustrate the usability of the
obtained theoretical results.
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1. Introduction and Preliminaries

First, we present some definitions and basic notions of partial-metric, metric-like, b-metric, partial
b-metric and b-metric-like spaces as the generalizations of standard metric spaces. After that, we give
a process diagram, where arrows stand for generalization relationships.

Definition 1. [1] Let X be a nonempty set. A mapping ppm : X× X → [0,+∞) is said to be a p-metric if the
following conditions hold for all x, y, z ∈ X :(

ppm1
)

x = y if and only if ppm (x, x) = ppm (x, y) = ppm (y, y) ;(
ppm2

)
ppm (x, x) ≤ ppm (x, y) ;(

ppm3
)

ppm (x, y) = ppm (y, x) ;(
ppm4

)
ppm (x, y) ≤ ppm (x, z) + ppm (z, y)− ppm (z, z) .

Then, the pair
(
X, ppm

)
is called a partial metric space.

Definition 2. [2] Let X be a nonempty set. A mapping bml : X× X → [0,+∞) is said to be metric-like if the
following conditions hold for all x, y, z ∈ X :

(bl1) bml (x, y) = 0 implies x = y;
(bl2) bml (x, y) = bml (y, x) ;
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(bl3) bml (x, z) ≤ bml (x, y) + bml (y, z) .
In this case, the pair (X, bml) is called a metric-like space.

Definition 3. [3,4] Let X be a nonempty set and s ≥ 1 a given real number. A mapping b : X× X → [0,+∞)

is called a b-metric on the set X if the following conditions hold for all x, y, z ∈ X :
(b1) b (x, y) = 0 if and only if x = y;
(b2) b (x, y) = b (y, x) ;
(b3) b (x, z) ≤ s [b (x, y) + b (y, z)] .

In this case, the pair (X, b) is called a b-metric space (with coefficient s ≥ 1).

Definition 4. [5,6] Let X be a nonempty set and s ≥ 1. A mapping bpb : X× X → [0,+∞) is called a partial
b-metric on the set X if the following conditions hold for all x, y, z ∈ X :(

bpb1
)

x = y if and only if ppb (x, x) = ppb (x, y) = ppb (y, y) ;(
bpb2

)
bpb (x, x) ≤ bpb (x, y) ;(

bpb3
)

bpb (x, y) = bpb (y, x) ;(
bpb4

)
bpb (x, y) ≤ s

[
bpb (x, z) + bpb (z, y)

]
− bpb (z, z) .

Then, the pair
(

X, bpb

)
is called a partial b-metric space.

Definition 5. [7] Let X be a nonempty set and s ≥ 1. A mapping bbl : X×X → [0,+∞) is called b-metric-like
on the set X if the following conditions hold for all x, y, z ∈ X:

(bbl1) bbl (x, y) = 0 implies x = y;
(bbl2) bbl (x, y) = bbl (y, x) ;
(bbl3) bbl (x, z) ≤ s [bbl (x, y) + bbl (y, z)] .

In this case, the pair (X, bbl) is called a b-metric-like space with coefficient s ≥ 1.

Now, we give the process diagram of the classes of generalized metric spaces that were
introduced earlier:

Metric space → Partial metric space → Metric-like space
↓ ↓ ↓

b-Metric space → Partial b-metric space → b-Metric-like space

For more details on other generalized metric spaces see [8–14].
The next proposition helps us to construct some more examples of b-metric (respectively partial

b-metric, b-metric-like) spaces.

Proposition 1. Let (X, d) (resp.
(
X, ppm

)
, (X, bml)) be a metric (resp. partial metric, metric-like) space and

D (x, y) = (d (x, y))k (resp. Ppm (x, y) =
(

ppm (x, y)
)k , Bml (x, y) = (bml (x, y))k), where k > 1 is a real

number. Then D (resp. Ppm, Bpm) is b-metric (resp. partial b-metric, b-metric-like) with coefficient s = 2k−1.

Proof. The proof follows from the fact that

uk + vk ≤ (u + v)k ≤ (a + b)k ≤ 2k−1
(

ak + bk
)

,

for all nonnegative real numbers a, b, u, v with u + v ≤ a + b.

It is clear that each metric-like space, i.e., each partial b-metric space, is a b-metric-like space,
while the converse is not true. For more such examples and details see [1,2,5–7,15–27]. Moreover, for
various metrics in the context of the complex domain see [28,29].
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The definitions of convergent and Cauchy sequences are formally the same in partial metric,
metric-like, partial b-metric and b-metric like spaces. Therefore, we give only the definition of
convergence and Cauchyness of the sequences in b-metric-like space. Moreover, these two notions are
formally the same in metric and b-metric spaces.

Definition 6. [7] Let {xn} be a sequence in a b-metric-like space (X, bbl) with coefficient s.

(i) The sequence {xn} is said to be convergent to x if limn→∞ bbl (xn, x) = bbl (x, x);
(ii) The sequence {xn} is said to be bbl-Cauchy in (X, bbl) if limn,m→∞ bbl (xn, xm) exists and

is finite;
(iii) One says that a b-metric-like space (X, bbl) is bbl-complete if for every bbl-Cauchy sequence

{xn} in X there exists an x ∈ X, such that limn,m→∞ bbl (xn, xm) = bbl (x, x) = limn→∞ bbl (xn, x) .

Remark 1. In a b-metric-like space the limit of a sequence need not be unique and a convergent sequence
need not be a bbl-Cauchy sequence (see Example 7 in [18]). However, if the sequence {xn} is bbl-Cauchy with
limn,m→∞ bbl (xn, xm) = 0 in the bbl-complete b-metric-like space (X, bbl) with coefficient s ≥ 1, then the limit
of such a sequence is unique. Indeed, in such a case if xn → x (bbl (xn, x)→ bbl (x, x)) as n→ ∞ we get that
bbl (x, x) = 0. Now, if xn → x and xn → y where x 6= y, we obtain that:

1
s

bbl (x, y) ≤ bbl (x, xn) + bbl (xn, y)→ bbl (x, x) + bbl (y, y) = 0 + 0 = 0. (1)

From (bbl1) it follows that x = y, which is a contradiction. The same is true as well for partial metric, metric
like and partial b-metric spaces.

The next definition and the corresponding proposition are important in the context of fixed
point theory.

Definition 7. [30] The self-mappings f , g : X → X are weakly compatible if f (g (x)) = g ( f (x)) , whenever
f (x) = g (x) .

Proposition 2. [30] Let T and S be weakly compatible self-maps of a nonempty set X. If they have a unique
point of coincidence w = f (u) = g (u) , then w is the unique common fixed point of f and g.

In this paper we shall use the following result to prove that certain Picard sequences are Cauchy.
The proof is completely identical with the corresponding in [31] (see also [25]).

Lemma 1. Let {xn} be a sequence in a b-metric-like space (X, bbl) with coefficient s ≥ 1 such that

bbl (xn, xn+1) ≤ λbbl (xn−1, xn) (2)

for some λ, 0 ≤ λ < 1
s , and each n = 1, 2, ....Then {xn} is a bbl-Cauchy sequence in (X, bbl) such that

limn,m→∞ bbl (xn, xm) = 0.

Remark 2. It is worth noting that the previous lemma holds in the context of b-metric-like spaces for each
λ ∈ [0, 1). For more details see [6,32].

2. Main Results

In line with Jachymski [33], let (X, bbl) be a b-metric-like space and D denote the diagonal of the
Cartesian product X× X. Consider a directed graph G such that the set V (G) of its vertices coincides
with X, and the set E (G) of its edges contains all loops, i.e., E (G) ⊇ D. We also assume that G has
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no parallel edges, so we can identify G with the pair (V (G) , E (G)) . Moreover, we may treat G as a
weighted graph by assigning the distance between its vertices to each edge (see [33]).

By G−1 we denote the conversion of a graph G, i.e., the graph obtained from G by reversing the
direction of edges. Thus, we have

E
(

G−1
)
= {(x, y) ∈ X× X : (y, x) ∈ E (G)} . (3)

The letter G̃ denotes the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat G̃ as a directed graph for which the set of its edges is
symmetric under the convention

E
(

G̃
)
= E (G) ∪ E

(
G−1

)
. (4)

If x and y are vertices in a graph G, then a path in G from x to y of length N (N ∈ N) is a sequence
{xi}N

i=0 of N + 1 vertices such that x0 = x, xN = y and (xi−1, xi) ∈ E (G) for i = 1, ..., N. A graph G is
connected if there is a path between any two vertices. G is weakly connected if G̃ is connected.

Recently, some results have appeared providing sufficient conditions for a self mapping of X to
be a Picard operator when (X, d) is endowed with a graph. The first result in this direction was given
by Jachymski [33]. Moreover, see [34–36].

Definition 8. [33] We say that a mapping f : X → X is a Banach G-contraction or simply a G-contraction if
f preserves edges of G, i.e.,

for all x, y ∈ X : (x, y) ∈ E (G) implies ( f (x) , f (y)) ∈ E (G) (5)

and f decreases the weights of edges of G as for all x, y ∈ X, there exists λ ∈ (0, 1) , such that

(x, y) ∈ E (G) implies d ( f (x) , f (y)) ≤ λd (x, y) . (6)

Definition 9. [37] A mapping g : X → X is called orbitally continuous, if given x ∈ X and any sequence
{kn} of positive integers,

gkn (x)→ y as n→ ∞ implies g
(

gkn (x)
)
→ g (y) as n→ ∞. (7)

Definition 10. [33] A mapping g : X → X is called G-continuous, if for any given x ∈ X and any sequence
{xn}n∈N ⊂ X with the properties that for all n ∈ N the pair (xn, xn+1) ∈ E (G) and that xn → x as n→ ∞
it follows that g (xn)→ g (x).

Definition 11. [33] A mapping g : X → X is called orbitally G-continuous, if given x, y ∈ X and any
sequence {kn} of positive integers for all n ∈ N,

gkn x → y and
(

gkn (x) , gkn+1 (x)
)
∈ E (G) implies g

(
gkn (x)

)
→ g (y) as n→ ∞. (8)

In this section, we consider self-mappings f , g : X → X with f (X) ⊂ g (X). Let x0 ∈ X be an
arbitrary point, then there exists x1 ∈ X such that z0 = f (x0) = g (x1). By repeating this step we can
build a sequence {zn} such that zn = f (xn) = g (xn+1) and the following property:

The property G f ,g(xn). If {g (xn)}n∈N is a sequence in X such that (g (xn) , g (xn+1)) ∈ E (G)

for all n ≥ 1 and g (xn) → x, then there is a subsequence {g (xni )}i∈N of {g (xn)}n∈N such that
(g (xni ) , x) ∈ E (G) for all i ≥ 1. Note that the property G f ,g(xn) depends only on the pair of mappings
f and g, and does not depend on the sequence {xn}. Here, we use notation Gg f in the following
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sense: x ∈ X belongs to Gg f if and only if there exists a sequence {xn}n∈N in X such that x0 = x,
f (xn−1) = g (xn) for n ∈ N, and (g (xn) , g (xm)) ∈ E (G) for all m, n ∈ N.

Now, we present the first result of this section.

Theorem 1. (Hardy-Rogers) Let f , g : X → X be self-mappings defined on a b-metric-like space (X, bbl) (with
coefficient s ≥ 1) endowed with a graph G, and which satisfy

sqbbl ( f (x) , f (y)) ≤ c1bbl (g (x) , g (y)) + c2bbl (g (x) , f (x)) + c3bbl (g (y) , f (y))

+c4bbl (g (x) , f (y)) + c5bbl (g (y) , f (x)) , (9)

for all x, y ∈ X with (g (x) , g (y)) ∈ E (G) where q ≥ 2, ci ≥ 0, i = 1, . . . , 5 and either

c1 + c2 + c3 + 2c4 + 2c5 <
1
s

(10)

or
c1 + 2c2 + 2c3 + c4 + c5 <

1
s

. (11)

Suppose that f (X) ⊂ g (X) and at least one of f (X) , g (X) is bbl-complete subspace of (X, bbl) . Then:
(i) If the pair ( f , g) has property G f ,g(xn) and Gg f 6= ∅, then f and g have a point of coincidence in X.
(ii) If x and y in X are points of coincidence of f and g such that (x, y) ∈ E (G), then x = y. Hence,

points of coincidence of f and g are unique in X. Moreover, if the pair ( f , g) is weakly compatible, then f and g
have a unique common fixed point in X.

Proof. (i) Assume that Gg f 6= ∅, there exists x0 ∈ Gg f . Since f (X) ⊂ g (X) , there exists x1 ∈ X such
that f (x0) = g (x1) , again we can find x2 ∈ X such that f (x1) = g (x2) . Repeating this step, we can
build a sequence zn = f (xn) = g (xn+1) such that (zn, zm) ∈ E (G) . If zk = zk+1 for some k ∈ N, then
f (xk+1) = g (xk+1) is a point of coincidence of f and g. Therefore, let zn 6= zn+1 for all n ∈ N. By
Condition (9), we can get that

bbl (zn, zn+1) ≤ sqbbl (zn, zn+1) = sqbbl ( f (xn) , f (xn+1))

≤ c1bbl (g (xn) , g (xn+1)) + c2bbl (g (xn) , f (xn)) + c3bbl (g (xn+1) , f (xn+1))

+c4bbl (g (xn) , f (xn+1)) + c5bbl (g (xn+1) , f (xn)) . (12)

Since zn = f (xn) = g (xn+1) then Condition (12) becomes

bbl (zn, zn+1) ≤ c1bbl (zn−1, zn) + c2bbl (zn−1, zn) + c3bbl (zn, zn+1)

+c4bbl (zn−1, zn+1) + c5bbl (zn, zn)

≤ c1bbl (zn−1, zn) + c2bbl (zn−1, zn) + c3bbl (zn, zn+1) + sc4bbl (zn−1, zn)

+sc4bbl (zn, zn+1) + 2sc5bbl (zn−1, zn) , (13)

or equivalently:
bbl (zn, zn+1) ≤ λbbl (zn−1, zn) , (14)

where λ = c1+c2+sc4+2sc5
1−c3−sc4

. Since, c1 + c2 + c3 + sc4 + 2sc5 ≤ sc1 + sc2 + sc3 + 2sc4 + 2sc5 < 1, it follows
that λ < 1. Therefore, by Remark 2 of Lemma 1, the sequence zn = f (xn) = g (xn+1) is a bbl-Cauchy
sequence. The bbl-completeness of f (X) leads to u ∈ f (X) ⊂ g (X) such that zn → u = g (v) for some
v ∈ X. As z0 ∈ Gg f , this implies that (zn, zm) ∈ E (G) for n, m = 1, 2, ... and so (zn, zn+1) ∈ E (G) .
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By property G f ,g(xn), there is a subsequence {zni}i∈N of {zn}n∈N such that (zni , u) ∈ E (G) . Applying
(bbl3), we get

bbl ( f (v) , g (v)) ≤ sbbl ( f (v) , f (xni )) + sbbl ( f (xni ) , g (v))

≤ sqbbl ( f (v) , f (xni )) + sbbl ( f (xni ) , g (v))

≤ c1bbl (g (v) , g (xni )) + c2bbl (g (v) , f (v)) + c3bbl (g (xni ) , f (xni ))

≤ +c4bbl (g (v) , f (xni )) + c5bbl (g (xni ) , f (v)) + sbbl ( f (xni , g (v)))

= c1bbl
(

g (v) , zni−1
)
+ c2bbl (g (v) , f (v)) + c3bbl

(
zni−1, zni

)
+c4bbl (g (v) , zni ) + c5bbl

(
zni−1, f (v)

)
+ sbbl (zni , g (v)) . (15)

Since bbl
(
zni−1, f (v)

)
≤ sbbl

(
zni−1, g (v)

)
+ sbbl (g (v) , f (v)), Condition (15) becomes

(1− c2 − c5s) bbl ( f (v) , g (v))

≤ c1bbl
(

g (v) , zni−1
)
+ c3bbl

(
zni−1, zni

)
+ c4bbl (g (v) , zni )

+c5sbbl
(
zni−1, g (v)

)
+ sbbl (zni , g (v)) . (16)

Taking the limit in Condition (16) as i→ ∞ we obtain that bbl ( f (v) , g (v)) = 0, because c2 + c5s ≤
c1s + c2s + c3s + 2c4s + 2c5s < 1. That is, f (v) = g (v) = u is a point of coincidence for the mappings f
and g, i.e., (i) is proved in the case if f (X) is bbl-complete. The proof for the case if g (X) is bbl-complete
is similar.

(ii) Assume that x and y are two different points of coincidence of f and g with (x, y) ∈ E (G) .
This means that there are different points x1 and y1 from X such that: f (x1) = g (x1) = x and
f (y1) = g (y1) = y. Now, according to Condition (9) we get

sbbl (x, y) ≤ sqbbl (x, y) = sqbbl ( f (x1) , f (y1))

≤ c1bbl (g (x1) , g (y1)) + c2bbl (g (x1) , f (y1)) + c3bbl (g (y1) , f (y1))

+c4bbl (g (x1) , f (y1)) + c5bbl (g (y1) , f (x1))

= c1bbl (x, y) + c2bbl (x, y) + c3bbl (y, y)

+c4bbl (x, y) + c5bbl (y, x)

≤ (c1 + c2 + 2c3s + c4 + c5) bbl (y, x)

≤ (c1s + 2c2s + 2c3s + c4s + c5s) bbl (y, x) < bbl (y, x) . (17)

Hence, if x 6= y we get a contradiction.
If f and g are weakly compatible, then by Proposition 2 f and g have a unique common

fixed point.

Example 1. Let X = [0,+∞) and f , g : X → X be the mappings such that

f (x) = ex − 1 and g(x) = e4x − 1.

Consider b-metric-like space (X, bbl) under the distance bbl(x, y) = (x + y)2 with coefficient s = 2, and
the graph G = (V, E) with V = X and E = {(x, x) : x ∈ X} ∪ {(0, x) : x ∈ X}. Assume that c1 = 1

4 and
c2 = c3 = c4 = c5 = 1

25 for which Inequalities (10) and (11) hold. Note that (g(x), g(y)) ∈ E if and only
if x = y, x ≥ 0 or x = 0, y > 0 or y = 0, x > 0. For q = 2 let us check whether Condition (9) holds in
these cases.
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Case 1: x = y, x ≥ 0;

c1bbl(g(x), g(x)) + c2bbl(g(x), f (x)) + c3bbl(g(x), f (x)) + c4bbl(g(x), f (x)) + c5bbl(g(x), f (x))
= c1

(
e4x − 1 + e4x − 1

)2
+ (c2 + c3 + c4 + c5)

(
e4x − 1 + ex − 1

)2

= 4c1 (ex − 1)2 (e3x + e2x + ex + 1
)2

+ (c2 + c3 + c4 + c5) (ex − 1)2 (e3x + e2x + ex + 2
)2

≥ 4c1 (ex − 1)2 42 + (c2 + c3 + c4 + c5) (ex − 1)2 52 =
(

1
4 · 64 + 4

25 · 25
)
(ex − 1)2

> 4 (ex − 1 + ex − 1)2 = sqbbl( f (x), f (x)).

Case 2: x = 0, y > 0 (similarly for y = 0, x > 0);

c1bbl(g(0), g(y)) + c2bbl(g(0), f (0)) + c3bbl(g(y), f (y)) + c4bbl(g(0), f (y)) + c5bbl(g(y), f (0))
= c1

(
e4y − 1

)2
+ c2(0 + 0)2 + c3

(
e4y − 1 + ey − 1

)2
+ c4 (ey − 1)2 + c5

(
e4y − 1

)2

= (c1 + c5) (ey − 1)2 (e3y + e2y + ey + 1
)2

+ c3 (ey − 1)2 (e3y + e2y + ey + 2
)2

+ c4 (ey − 1)2

> (c1 + c5) (ey − 1)2 42 + c3 (ey − 1)2 52 + c4 (ey − 1)2 =
(

29
100 · 16 + 1

25 · 25 + 1
25

)
(ey − 1)2

> 4 (ey − 1)2 = sqbbl( f (0), f (y)).

Hence, f and g satisfy Condition (9) for all x, y ∈ X such that (g(x), g(y)) ∈ E.
Moreover, there is x1 = x0

4 such that g(x1) = f (x0), x2 = x0
42 such that g(x2) = f (x1), and so on.

In this way, we can built the sequence xn = x0
4n , n ∈ N such that g(xn) = f (xn−1). For x0 6= 0 it is clear

that (g(xn), g(xm)) /∈ E. For x0 = 0, xn = 0, n ∈ N is obtained. Thus, the constant sequence xn = 0 is
only convergent sequence such that (g(xn), g(xm)) = (0, 0) ∈ E, and for each subsequence (g(xni ))i∈N of
(g(xn))n∈N holds (g(xni ), 0) = (0, 0) ∈ E. This means that x0 ∈ Gg f 6= ∅ and the pair ( f , g) possesses the
property G f ,g(xn).

It is obvious that f (X) ⊂ g(X) and g(X) = X is bbl-complete. Since the mappings f and g are weakly
compatible at x = 0 ( f (0) = g(0) implies g( f (0)) = f (g(0))), all conditions of Theorem 1 are satisfied. So, 0
is the unique common fixed point of mappings f and g in X.

Example 2. Now consider the same b-metric-like space (X, bbl) endowed with the graph G as in Example 1,
and the mappings f , g : X → X such that

f (x) =

{
ex − 1 , x 6= 0

1 , x = 0
and g(x) =

{
e4x − 1 , x 6= 0

2 , x = 0
.

In this case we have Gg f = ∅. Namely, for x0 = 0, xn = 1
4n ln 2, n ∈ N is now obtained, and

(g(xn), g(xm)) /∈ E. Hence, the conditions of Theorem 1 are not satisfied. Moreover, we can easily see that the
mappings f and g have no coincidence point nor common fixed points.

As corollaries of our Theorem 1, we obtain the next results in the context of b-metric-like spaces
endowed with a graph:

Corollary 1. (Jungck) Let f , g : X → X be self-mappings defined on a b-metric-like space (X, bbl)

(with coefficient s ≥ 1) endowed with a graph G, and satisfy

sqbbl ( f (x) , f (y)) ≤ c1bbl (g (x) , g (y)) (18)

for all x, y ∈ X with (g (x) , g (y)) ∈ E (G) when c1 < 1
s . Suppose that f (X) ⊂ g (X) and at least one of

f (X) , g (X) is a bbl-complete subspace of (X, bbl) . Then
(i) If the property G f ,g(xn) is satisfied and Gg f 6= ∅, then f and g have a point of coincidence in X.
(ii) If x and y in X are points of coincidence of f and g such that (x, y) ∈ E (G), then x = y. Hence,

points of coincidence of f and g are unique in X. Moreover, if the pair ( f , g) is weakly compatible, then f and g
have a unique common fixed point in X.
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Corollary 2. (Kannan) Let f , g : X → X be self-mappings defined on a b-metric-like space (X, bbl)

(with coefficient s ≥ 1) endowed with a graph G, and satisfy

sqbbl ( f (x) , f (y)) ≤ c2bbl (g (x) , f (x)) + c3bbl (g (y) , f (y)) (19)

for all x, y ∈ X with (g (x) , g (y)) ∈ E (G) when

c2 + c3 <
1
2s

. (20)

Suppose that f (X) ⊂ g (X) and at least one of f (X) , g (X) is a bbl-complete subspace of (X, bbl) . Then
(i) If the property G f ,g(xn) is satisfied and Gg f 6= ∅, then f and g have a point of coincidence in X.
(ii) If x and y in X are points of coincidence of f and g such that (x, y) ∈ E (G), then x = y. Hence,

points of coincidence of f and g are unique in X. Moreover, if the pair ( f , g) is weakly compatible, then f and g
have a unique common fixed point in X.

Corollary 3. (Chatterjea) Let f , g : X → X be self-mappings defined on a b-metric-like space (X, bbl) (with
coefficient s ≥ 1) endowed with a graph G, and satisfy

sqbbl ( f (x) , f (y)) ≤ c4bbl (g (x) , f (y)) + c5bbl (g (y) , f (x)) , (21)

for all x, y ∈ X with (g (x) , g (y)) ∈ E (G) when

c4 + c5 <
1
2s

. (22)

Suppose that f (X) ⊂ g (X) and at least one of f (X) , g (X) is a bbl-complete subspace of (X, bbl) . Then
(i) If the property G f ,g(xn) is satisfied and Gg f 6= ∅, then f and g have a point of coincidence in X.
(ii) If x and y in X are points of coincidence of f and g such that (x, y) ∈ E (G), then x = y. Hence,

points of coincidence of f and g are unique in X. Moreover, if the pair ( f , g) is weakly compatible, then f and g
have a unique common fixed point in X.

Corollary 4. (Reich) Let f , g : X → X be self-mappings defined on a b-metric-like space (X, bbl)

(with coefficient s ≥ 1) endowed with a graph G, and satisfy

sqbbl ( f (x) , f (y)) ≤ c1bbl (g (x) , g (y)) + c2bbl (g (x) , f (x)) + c3bbl (g (y) , f (y)) (23)

for all x, y ∈ X with (g (x) , g (y)) ∈ E (G) when

c1 + 2c2 + 2c3 <
1
s

(24)

Suppose that f (X) ⊂ g (X) and at least one of f (X) , g (X) is a bbl-complete subspace of (X, bbl) . Then
(i) If the property G f ,g(xn) is satisfied and Gg f 6= ∅, then f and g have a point of coincidence in X.
(ii) If x and y in X are points of coincidence of f and g such that (x, y) ∈ E (G), then x = y. Hence,

points of coincidence of f and g are unique in X. Moreover, if the pair ( f , g) is weakly compatible, then f and g
have a unique common fixed point in X.

Now, we announce our last result in this section in the context of b-metric-like spaces endowed
with the graph. The proof is similar enough with the corresponding proof of Theorem 1 and therefore
we omit it.
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Theorem 2. (Das-Naik-Ćirić) Let f , g : X → X be self-mappings defined on a b-metric-like space (X, bbl)

(with coefficient s ≥ 1) endowed with a graph G, and satisfy

sqbbl ( f (x) , f (y)) ≤ λ max {bbl (g (x) , g (y)) , bbl (g (x) , f (x)) , bbl (g (y) , f (y)) ,

bbl (g (x) , f (y)) , bbl (g (y) , f (x))} (25)

for all x, y ∈ X with (g (x) , g (y)) ∈ E (G) when λ ∈ [0, 1
s ). Suppose that f (X) ⊂ g (X) and at least one of

f (X) , g (X) is a bbl-complete subspace of (X, bbl) . Then
(i) If the property G f ,g(xn) is satisfied and Gg f 6= ∅, then f and g have a point of coincidence in X.
(ii) If x and y in X are points of coincidence of f and g such that (x, y) ∈ E (G), then x = y. Hence,

points of coincidence of f and g are unique in X. Moreover, if the pair ( f , g) is weakly compatible, then f and g
have a unique common fixed point in X.
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