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Abstract: In this paper, a new non-linear recursive sequence is firstly introduced. Then, using this
sequence, a computational problem involving the convolution of the Legendre polynomial is studied
using the basic and combinatorial methods. Finally, we give an interesting identity.
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1. Introduction

For any λ > 0, the generating function for the Gegenbauer polynomials Cλ
n (x) of index λ is

(
1− 2xt + t2

)−λ
=

∞

∑
n=0

Cλ
n (x) · tn, (1)

so that C
1
2
n (x) = Pn(x), the Legendre polynomial. For example, the first several terms of Pn(x) are

P0(x) = 1, P1(x) = x, and P2(x) = 3
2 x2 − 1

2 , and the second order non-linear recursive formula is

Pn+1(x) =
2n + 1
n + 1

· xPn(x)− n
n + 1

· Pn−1(x), n ≥ 1.

It is well known that these polynomials satisfy the differential equation

(1− x2)
d2y
dx2 − 2x

dy
dx

+ n(n + 1)y = 0, (n = 0, 1, 2, · · · ),

with general expression

Pn(x) =
1

2nn!
· dn

dxn

[
(x2 − 1)n

]
=

[ n
2 ]

∑
k=0

(−1)k(2n− 2k)!
2nk!(n− k)!(n− 2k)!

· xn−2k, n ≥ 1.

The Legendre polynomials Pn(x) are orthogonal polynomials (see [1]), and they play an important
role in mathematical theory and application. Therefore, the polynomials Pn(x) attract a large number
of mathematical experts and mathematics enthusiasts to study their various properties, and get a series
of interesting results. Some theoretical results are as in [2,3], especially the important works [4–6] of T.
Kim et al., where they obtained a series of interesting identities involving the Legendre polynomials
and their generalization. Some important applications of the Legendre polynomials can also be found
in [7–11].

Mathematics 2019, 7, 114; doi:10.3390/math7020114 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-4995-2726
http://dx.doi.org/10.3390/math7020114
http://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/7/2/114?type=check_update&version=3


Mathematics 2019, 7, 114 2 of 7

In this paper, we consider the computational problem of the convolution sums

C
k
2
n (x) = ∑

a1+a2+···+ak=n
Pa1(x) · Pa2(x) · · · Pak−1(x) · Pak (x), (2)

where the summation is taken over all k-dimensional nonnegative integer coordinates (a1, a2, · · · , ak),
such that a1 + a2 + · · ·+ ak = n.

If k = 2m is an even number, then, from the generating function (1) and the definition of the
second kind Chebyshev polynomials Un(x) (see [12]), we have

∞

∑
n=0

Un(x) · tn =

(
1√

1− 2xt + t2

)2
=

∞

∑
n=0

(
∑

a+b=n
Pa(x)Pb(x)

)
· tn.

This time, (2) becomes the convolution sum of the second kind Chebyshev polynomials Un(x).
Related results can be found in [12–17].

When k = 2m + 1 is an odd number, Yalan Zhou and Xia Wang [18] studied the computational
problem of (1), and they used the elementary method and some complex calculation to obtain three
identities for (2) with k = 3, 5, 7. In this paper, as a comment on article [18], we will study this problem
again and give an effective calculation of formula (1), by using the basic and combinatorial methods.
For convenience, we use the Pochhammer symbols, defined by

(a)0 = 1, (a)n+1 = (a)n(a + n), (a)n =
n

∏
i=1

(a + i− 1) .

Using this notation, we shall prove the following main result:

Theorem 1. For any positive integer k and integer n ≥ 0, we obtain the identity

(2k− 1)!! ∑
a1+a2+···+a2k+1=n

Pa1(x)Pa2(x) · · · Pak (x)

=
k

∑
j=1

C(k, j)
n

∑
i=0

(n + k + 1− i− j)!
(n− i)!

·
(i+j+k−2

i )

xk−1+i+j · Pn+k+1−i−j(x),

where (2k − 1)!! = 1 × 3 × 5 · · · (2k − 1) = 2k
(

1
2

)
k
, and C(k, i) is a recurrence sequence defined by

C(k, 1) = 1, C(k + 1, k + 1) = (2k− 1)!!, and C(k + 1, i + 1) = C(k, i + 1) + (k− 1 + i) · C(k, i) for all
1 ≤ i ≤ k− 1.

This theorem represents a complex summation of Legendre polynomials as a linear combination
of some Pn(x), and the coefficients C(k, i) are very regular. This is the greatest advantage of the main
theorem. Moreover, the recursive formula for the C(k, i) is easy to calculate.

Especially taking k = 1 and 2, from the main theorem we can immediately derive the following
two corollaries:

Corollary 1. For any positive integer n ≥ 1, we have:

∑
a+b+c=n

Pa(x) · Pb(x) · Pc(x) =
n

∑
i=0

n + 1− i
xi+1 · Pn+1−i(x).
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Corollary 2. For any positive integer n ≥ 1, we have:

∑
a+b+c+d+e=n

Pa(x) · Pb(x) · Pc(x) · Pd(x) · Pe(x)

=
1
3
·

n

∑
i=0

(n + 2− i)(n + 1− i)(i + 1)
x2+i · Pn+2−i(x)

+
1
6

n

∑
i=0

(n + 1− i)(i + 2)(i + 1)
x3+i · Pn+1−i(x).

If taking n = 0 in theorem, we can also obtain the following two results.

Corollary 3. For any positive integer k, we have the identity

k

∑
j=1

C(k, j) · (k + 1− j)!
xj−1 · Pk+1−j(x) = (2k− 1)!! · xk.

Corollary 4. For any positive integer k, we have the polynomial congruence

k

∑
j=1

C(k, j) · (k + 1− j)! · xk+1−j · Pk+1−j(x) ≡ 0 mod x2k.

For clarity, we compute some values of C(k, i) in the following Table 1.

Table 1. Values of C(k, i).

C(k, i) i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

k=1 1
k=2 1 1
k=3 1 3 3
k=4 1 6 15 15
k=5 1 10 45 105 105
k=6 1 15 105 420 945 945
k=7 1 21 210 1260 4725 10,395 10,395
k=8 1 28 378 3150 17,325 62,370 135,135 135,135
k=9 1 36 630 6930 51,975 270,270 945,945 2,027,025 2,027,025

Using these data and mathematical induction we can easily verify that

C(n + 2l, n) = 2n−1
(

n + l − 1
l

)(
1
2
+ l
)

n−1
,

C(n + 2l + 1, n) = 2n−1
(

n + l − 1
l

)(
3
2
+ l
)

n−1
.

In terms of double factorials,

C(n + 2l, n) =
(

n + l − 1
l

)
(2n + 2l − 3)!!

(2l − 1)!!

and

C(n + 2l + 1, n) =
(

n + l − 1
l

)
(2n + 2l − 1)!!

(2l + 1)!!
.

From these formulae, we may immediately deduce the following interesting result:
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Let p be an odd prime p. Then, for any positive integer i with 1 < i ≤ p, we have the congruence

C(p, i) ≡ 0 mod p.

2. Several Simple Lemmas

We give two simple lemmas in this part, which will be used to prove the theorem. We introduce
the first lemma:

Lemma 1. Let f (t) =
(
1− 2xt + t2)− 1

2 . Then, for any positive integer k, we have the identity

(2k− 1)!! · f 2k+1(t) =
k

∑
i=1

C(k, i)

(x− t)k−1+i · f (k+1−i)(t),

where the definition of C(k, i) is the same as in the theorem, and f (h)(t) denotes the h-order derivative of f (t)
with respect to t.

Proof. We use mathematical induction to prove the result. According to the definition and properties
of the derivative, we have

f ′(t) = (x− t) ·
(

1− 2xt + t2
)− 3

2
= (x− t) · f 3(t)

and

f ′′(t) = − f 3(t) + 3(x− t) f 2(t) f ′(t) = − f 3(t) + 3(x− t)2 f 5(t),

or

f 3(t) =
1

x− t
· f ′(t) =

1

∑
i=1

C(1, i)

(x− t)i · f (2−i)(t) (3)

and

3 · f 5(t) =
1

(x− t)2 · f ′′(t) +
1

(x− t)3 f ′(t) =
2

∑
i=1

C(2, i)

(x− t)1+i · f (3−i)(t). (4)

That is to say, when k = 1 and 2, the result of Lemma 1 is true. Suppose that Lemma 1 is true if
2 ≤ k = h. That is,

(2h− 1)!! · f 2h+1(t) =
h

∑
i=1

C(h, i)

(x− t)h−1+i · f (h+1−i)(t). (5)

From (3), (5), and the definitions of C(k, i), we obtain

(2h + 1)!! · f 2h(t) · f ′(t) = (2h + 1)!!(x− t) · f 2h+3(t)

=
h

∑
i=1

(h− 1 + i)C(h, i)

(x− t)h+i · f (h+1−i)(t) +
h

∑
i=1

C(h, i)

(x− t)h−1+i · f (h+2−i)(t)

=
(2h− 1)C(h, h)

(x− t)2h · f ′(t) +
h−1

∑
i=1

(h− 1 + i)C(h, i)

(x− t)h+i · f (h+1−i)(t)

+
C(h, 1)

(x− t)h · f (h+1)(t) +
h−1

∑
i=1

C(h, i + 1)

(x− t)h+i · f (h+1−i)(t)



Mathematics 2019, 7, 114 5 of 7

=
(2h− 1)C(h, h)

(x− t)2h · f ′(t) +
C(h, 1)

(x− t)h · f (h+1)(t) (6)

+
h−1

∑
i=1

C(h, i + 1) + (h− 1 + i)C(h, i)

(x− t)h+i · f (h+1−i)(t)

=
(2h− 1)C(h, h)

(x− t)2h · f ′(t) +
C(h, 1)

(x− t)h · f (h+1)(t) +
h−1

∑
i=1

C(h + 1, i + 1)

(x− t)h+i · f (h+1−i)(t)

=
(2h− 1)C(h, h)

(x− t)2h · f ′(t) +
C(h, 1)

(x− t)h · f (h+1)(t) +
h

∑
i=2

C(h + 1, i)

(x− t)h−1+i · f (h+2−i)(t)

=
h+1

∑
i=1

C(h + 1, i)

(x− t)h−1+i · f (h+2−i)(t).

From (6), we have

(2h + 1)!! · f 2h+3(t) =
h+1

∑
i=1

C(h + 1, i)

(x− t)h+i · f (h+2−i)(t).

It is to say that Lemma 1 is also suitable for k = h + 1.

Lemma 2. For any positive integers h and k, we have the power series expansion

f (h)(t)
(x− t)k =

∞

∑
n=0

(
n

∑
i=0

(n− i + h)!
(n− i)!

·
(

i + k− 1
i

)
· Pn−i+h(x)

xi+k

)
tn

for all |t| < |x|.

Proof. From the definition of f (t), we have

f (t) =
∞

∑
n=0

Pn(x) · tn.

Then, for any positive integer h, utilizing the properties of the power series, we have

f (h)(t) =
∞

∑
n=0

(n + h)(n + h− 1) · · · (n + 1) · Pn+h(x) · tn

=
∞

∑
n=0

(n + h)!
n!

· Pn+h(x) · tn. (7)

Similarly, for all positive integer k > 1 and all |t| < |x|, we also have

1
x− t

=
1
x
·

∞

∑
n=0

tn

xn

and

1
(x− t)k =

1
(k− 1)! · xk ·

∞

∑
n=0

(n + k− 1)(n + k− 2) · · · (n + 1) · tn

xn

=
1
xk ·

∞

∑
n=0

(
n + k− 1

n

)
· tn

xn . (8)
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Applying (7), (8), and the properties of the power series, we have

f (h)(t)
(x− t)k =

1
xk ·

(
∞

∑
n=0

(n + h)!
n!

· Pn+h(x) · tn

)(
∞

∑
n=0

(
n + k− 1

n

)
· tn

xn

)

=
1
xk

∞

∑
n=0

(
n

∑
i=0

(n− i + h)!
(n− i)!

· Pn−i+h(x) ·
(

i + k− 1
i

)
· 1

xi

)
tn.

This proves Lemma 2.

3. Proof of the Theorem

Now, we will complete the proof of our main result. According to Lemma 1 and the definition of
f (t), for any positive integer k, we have the following result from the properties of the power series

(2k− 1)!! f 2k+1(t) = (2k− 1)!!

(
∞

∑
n=0

Pn(x) · tn

)2k+1

= (2k− 1)!!
∞

∑
n=0

(
∑

a1+a2+···+a2k+1=n
Pa1(x)Pa2(x) · · · Pak (x)

)
· tn. (9)

On the other hand, from Lemma 2, we have

k

∑
i=1

Ck(i)

(x− t)k−1+i · f (k+1−i)(t) =
k

∑
j=1

Ck(j)
f (k+1−j)(t)

(x− t)k−1+j

=
∞

∑
n=0

(
k

∑
j=1

Ck(j)
n

∑
i=0

(n + k + 1− i− j)!Pn+k+1−i−j(x)
(n− i)!

·
(i+j+k−2

i )

xk−1+i+j

)
tn. (10)

Then from (9), (10), Lemma 1, and comparing the coefficients of the power series, we have:

(2k− 1)!! ∑
a1+a2+···+a2k+1=n

Pa1(x)Pa2(x) · · · Pak (x)

=
k

∑
j=1

C(k, j)
n

∑
i=0

(n + k + 1− i− j)!
(n− i)!

·
(i+j+k−2

i )

xk−1+i+j · Pn+k+1−i−j(x).

This completes the proof of our main theorem.

4. Conclusions

The main results of this paper include one theorem and four corollaries. The theorem gave
an exact expression for the convolution sums (2) with any odd number k = 2h + 1. This result is
meaningful. It not only reveals the close connection between the Legendre polynomials, but also
makes a complex convolution sum (2) able to be expressed as a simple combination of some Legendre
polynomials. Especially for k = 3 and 5, the corresponding results Corollary 1 and Corollary 2 are
easy to understand. These works have good reference for further research on the classical Legendre
polynomials and their generalization. In addition, the theorem also shows that the calculation of (2)
can be realized by a computer.
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