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Abstract: In this article, a stabilized mixed finite element (FE) method for the Oseen viscoelastic fluid
flow (OVFF) obeying an Oldroyd-B type constitutive law is proposed and investigated by using
the Streamline Upwind Petrov–Galerkin (SUPG) method. To find the approximate solution of velocity,
pressure and stress tensor, we choose lowest-equal order FE triples P1-P1-P1, respectively. However,
it is well known that these elements do not fulfill the in f -sup condition. Due to the violation of
the main stability condition for mixed FE method, the system becomes unstable. To overcome
this difficulty, a standard stabilization term is added in finite element variational formulation.
The technique is applied herein possesses attractive features, such as parameter-free, flexible in
computation and does not require any higher-order derivatives. The stability analysis and optimal
error estimates are obtained. Three benchmark numerical tests are carried out to assess the stability
and accuracy of the stabilized lowest-equal order feature of the OVFF.

Keywords: Oseen viscoelastic fluid; lowest-equal order FE (finite element); Streamline Upwind
Petrov–Galerkin (SUPG); stabilized method

1. Introduction

The research interest in viscoelastic fluids has increased, due to the connections with industrial
applications. Generally, the structure of the viscoelastic fluids are formed by natural complex high
molecular weight molecules which may have many internal degrees of freedom [1]. This is indeed a
big motivation to the numerical and mathematical analysis of the governing equations [2]. Over the
last century, there has been a significant challenge to formulate suitable constitutive model equations
to describe the large deformation of the viscoelastic fluid. These were successfully introduced by James
G. Oldroyd [3] in 1950 to critically study the behavior of the dilute solution of a polymeric molecule.
Moreover, over the past few years, there have been many constitutive equations which have been
proposed to describe viscoelastic fluids, e.g., the Phan–Thien–Tanner model, the Johnson–Segalman
model, the Maxwell model and so on [4–6].

In the FE literature, Baranger and Sandri [7] carried out pioneering work, where they studied an
Oldroyd-B fluid in discontinuous approximation and proved existence, uniqueness and error analysis.
Later, Sandri extended the idea to the continuous approximation of the stress field for the stationary
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case [8], and the time-dependent case of the same continuous interpolation was analysed by Baranger
in [9].

In Newtonian fluid flow, the Oseen equations are abridged to linearize the system. This is
because the Oseen fluid flow model is the reduced linearized form of the Newtonian fluid which is
described by the Navier–Stokes equation [10,11]. Moreover, the viscoelastic fluid flow model equations
are non-linear equations in many terms. Hence, by taking the assumption of creeping fluid flow,
the inertial part (u · ∇ u) of the momentum equation can be ignored. In this sense, the non-linearity
arise only in the constitutive equation [12,13] which may be introduce in a linear form by fixing u(x)
with a known velocity field b(x). The resulting system of equations can explicitly described the
parameter space for α, λ and ‖ ∇b ‖∞, which ensure the well-posedness of the continuous problem
and its numerical approximation [14].

In the FE framework, the main difficulty arises in the viscoelastic fluid flow due to its hyperbolic
constitutive equation. It needs a stabilization (upwinding ) technique to approximate the FE solution.
There are two main approaches that are mainly used to solve the Oldroyd-B model by using the OVFF
technique; the discontinuous Galerkin (DG) approximation and the (SUPG) estimate to deal with
the spurious oscillations of the hyperbolic constitutive equation; see [15–20]. Herein, we consider
SUPG method to solve the OVFF as an upwinding technique [21]. To the best of our knowledge,
V.J. Ervin et al. introduced the SUPG method in [22] to approximate the model equations with
the standard FE or Hood–Taylor FE pair (P2 for velocity, P1 for pressure and P1 for continuous
stress), where the existence and uniqueness of a solution to the problem was shown. Later, the same
authors studied a defect correction method in [23], where they used the same standard FE (P2-P1)
to approximate the velocity and pressure but for discontinuous stress. They have used the conforming
mixed elements, which satisfies the in f -sup condition.

Generally, in practice of employing mixed FE methods to solving the model equations, the in f -sup
condition are considered as mile stones to insure the stability and accuracy of the scheme. Thus,
the FE spaces for pressure and velocity are consider stable if they satisfy the in f -sup condition,
since the in f -sup condition is an essential condition which imposes a complete correlation between
two FE spaces so that they both have the required properties when utilized for the model equations.
On the other hand, some mixed FE pairs which do not satisfy the in f -sup condition are also popular in
FE literature, i.e., lowest-equal order FE pair.

It is well-known that because of the simple logic and less computational cost, the lowest-equal
order FE pairs are the most attractive choice. Therefore, this method is achieving more
interest in computational fluid dynamics. Recent studies have focused on stabilization of the
lowest-equal order FE pair to solve the Stokes equation [24,25], Navier–Stokes [26], Stokes–Darcy
equation [27], and the Oseen equations [28]. Numerical tests show that the violation of the in f -sup or
Ladyzhenskaya-Babuska-Brezzi (LBB) condition bring about physical pressure oscillations. In order
to avoid the instability of model equations, the stabilized FE methods are applied to the incompressible
flow. However, different stabilization methods have been developed and analyzed to circumvent the
difficulties related with the stability of mixed FE methods which are studied in [29] and also several
other ways have been used in the literature to stabilize the lowest-equal order FE pairs, e.g., the penalty
methods, the regular methods, the multiscale enrichment methods [30], the local Gauss integration
methods [31,32], projection methods [33] and many others [34,35].

This work is motivated by the lack of theoretical analysis and numerical computation of the OVFF
with the approximation of lowest-equal order FE triples. Herein, we proved and executed the posednes
for the OVFF with the lowest equal order triples. Moreover, the considered model is obtained by
imposing a given velocity field b(x) in the objective derivative instead of the unknown velocity u(x)
in the Oldroyd-B constitutive law, since, the stabilization techniques are often used to overcome the
difficulty associated with the stability of the mixed FE method. Especially, the lowest-equal order FE are
easily implementable in a scientific computational sense as compared to the high order FE. In this paper,
a standard pressure term (stabilized) is added with the incompressibility condition in order to cure the
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classical in f -sup condition between the velocity and the pressure spaces (as in the Stokes equations),
and the SUPG scheme is employed in order to treat the hyperbolic nature of viscoelastic constitutive
equations. In this context, there is no specific analysis available yet to approximation the OVFF by
using the lowest-equal order triples.

Above all, the new approach differs from the existing stabilization techniques in different aspects;
most notably, it is free of nonstandard data structures, approximation of higher order derivatives
and specification of the mesh dependent parameters; it is optimally accurate and it always lead to
symmetric system. Consequently, this new stabilized method can be easily applied by classical FE
code with little additional coding effort.

The rest part of the paper is organized as follows. In Section 2, we introduce the viscoelastic
fluid flow governing equations and the variational formulation. In Section 3, the new stabilized FE
approximations are presented. In Section 4, the stability and error estimates for the stabilized FE
solutions are achieved, respectively. In Section 5, we presented three different numerical experiments to
verify the stability of the theocratical analysis. Finally, we summarize our work with a short conclusion
in Section 6.

2. Model Equations

The steady-state (Johnson–Segalman) model equations can be seen in different viscoelastic
articles; for the extensive theoretical modeling and numerical analysis for the considered model,
we refer to [9,10,19,23] and the references therein. We considered the following equations:

τ + λ((u · ∇τ) + ga(τ,∇u))− 2αD(u) = 0. (1)

where τ denotes the polymeric stress tensor, u the velocity vector and λ denotes the Weissenberg
number, which can be defined as the product of the relaxation time and a characteristic strain rate.
While 0 < α < 1 is represented as the fraction of viscoelastic viscosity [36]. The rate of the strain tensor
can be written as

D(u) =
1
2
(∇u + (∇u)T),

and the ga(τ,∇u) is given by

ga(τ,∇u) =
1− a

2
(τ(∇u) + (∇u)Tτ)− 1 + a

2
((∇u)τ + τ(∇u)T). (2)

Note: for the assumption of a ∈ [−1, 1] is defined to the material parameter, specifically
for the choice of a = 1 the Oldroyd-B constitutive model is always reducing from the
Johnson-Segalman model.

We can write the momentum equation as

(u · ∇)u−∇ · τtot = f,

where f denotes the body force. Here, the total stress tensor is given by τtot = −pI + τN + τ

and it is the combination of the Newtonian part and the viscoelastic part. The Newtonian part
can be further defined as τN = 2(1− α)D(u).

Since the viscoelastic fluid flows are very important to solve many practical (engineering)
problems in non-Newtonian fluid mechanics, especially those being part to flow instabilities [9],
we substituted the value of the total stress tensor in momentum equation it yields;

(u · ∇)u− 2(1− α)∇ · D(u)−∇ · τ +∇p = f. (3)

In [5], Guillopé and Saut proved the following model equations with some assumptions for
the “slow flow” i.e., in their contribution the (u · ∇)u term in (3) is ignored due to creeping flow.
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We also motivated with the same assumption and recast the stationary Oldroyd-B viscoelastic fluid
flow for a domain Ω in R2 with the Lipschitz continuous boundary Γ.

τ + λ
(
(u · ∇)τ + ga(τ,∇u)

)
− 2αD(u) = 0 in Ω, (4)

∇p− 2(1− α)∇ · D(u)−∇ · τ = f in Ω, (5)

∇ · u = 0 in Ω, (6)

u = 0 on Γ. (7)

The dimensionless steady-state model equations under the open, bounded and connected domain
Ω are considered, with the homogenous Dirichlet boundary condition for the velocity u. Since, in this
case there is no inflow boundary, and thus, no boundary condition is required for stress [36]. To this
end, we can re-write the OVFF model as
problem (O) Find (τ,u, p) such that:

τ + λ(b · ∇)τ + λga(τ,∇b)− 2αD(u) = 0 in Ω, (8)

∇p− 2(1− α)∇ · D(u)−∇ · τ = f in Ω, (9)

∇ · u = 0 in Ω, (10)

u = 0 on Γ. (11)

To make the system linear, we modify it with the known velocity b(x) in nonlinear terms of the
constitutive equation instead of the unknown velocity u(x).

The Variational Formulation

In this section, we introduce some functional basic spaces for the mathematical analysis. The L2

inner product is denoted by (·, ·) and while the special case for the L2(Ω) and L∞(Ω) norms
are assumed as ‖ · ‖ and ‖ · ‖∞„ respectively. Moreover, the sobolev function space Wm,p(Ω)

is represented as ‖ · ‖Wm,p . The special notation for the sobolev case Wm,2(Ω) is being written as Hm(Ω).
However, the norms and semi norms are represented in classical notations (see [37] ), i.e., ‖ · ‖m and | · |m.
We define the following functional spaces:

Velocity Space : X : = H1
0(Ω)2 := {v ∈ H1(Ω)2 : v = 0 on Γ},

Pressure Space : Q : = L2
0(Ω) = {q ∈ L2(Ω);

∫
Ω

qdx = 0},

Stress Space : S : = {τ = (τij); τij = τji : τij ∈ L2(Ω); i, j = 1, 2}
∩{τ = (τij); (b · ∇)τ ∈ L2(Ω)2×2}.

It is of course well-known that the standard FEs X and Q (velocity and pressure spaces) satisfies
the in f -sup condition for the well-posedness of mixed formulations. However, there are many FE
spaces satisfying in f -sup condition, among the others the MINI (P1b,P1) elements, the Hood-Taylor
(P2,P1) elements, Raviart–Thomas elements, Brezzi–Douglas–Marini finite element are common
for the velocity u and pressure p, and discontinuous element (P1dc) for stress tensor τ [14].

We make the following assumption for b(x), which is consistent with the existence result which
has been set up for the viscoelasticity [38] for some M > 0 as follows:

b ∈ H1
0(Ω), ∇ · b = 0, ‖ b ‖∞ ≤ M, ‖ ∇b ‖∞≤ M < ∞.

The corresponding weak formulation of (8)–(11) is then given by

(τ, σ + λδ1(b · ∇σ)) + (λb · ∇τ, σ + λδ1(b · ∇σ)) + (λga(τ,∇b), σ

+λδ1(b · ∇σ))− (2αD(u), σ + λδ1(b · ∇σ)) = 0 ∀σ ∈ S, (12)
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−(p,∇ · v) + 2(1− α)(D(u), D(v)) + (τ, D(v)) = (f,v) ∀v ∈ X, (13)

(q,∇ · u) = 0 ∀q ∈ Q. (14)

where δ1 is a positive constant. Multiplying Equations (13) and (14) by 2α and adding the result
to (12). Then for more simplicity, (12)–(14) can be reformulated to find (τ, u, p) ∈ S× X×Q such that

M ((τ, u, p), (σ, v, q)) = 2α(f,v). (15)

Hence

M ((τ, u, p), (σ, v, q)) = (τ, σ + λδ1(b · ∇σ)) + (λb · ∇τ, σ + λδ1(b · ∇σ))

+ (λga(τ,∇b), σ + λδ1(b · ∇σ))

− (2αD(u), σ + λδ1(b · ∇)σ) + 2α(τ, D(v))

+ 4α(1− α)(D(u), D(v))− 2α(p,∇ · v) + 2α(q,∇ · u) (16)

3. Approximation of the Problem with Finite Element Technique

In this section, we describe the FE framework for the proposed scheme and approximation
properties. To this end, we introduce Ω ⊂ Rd (where dimension d=2,3) as a domain and let Th

is a triangulation of Ω, such as triangles K: Ω̄ = {∪K : K ∈ Th}. We consider P1(K) denote the space
polynomial of degree on K ∈ Th. Assume that some positive constant υ1,υ2;

υ1h ≤ hK ≤ υ2RK

where hK is the diameter of triangle K, RK is the diameter of the greatest ball included in K,
and h = maxK∈Th hK. We introduce the corresponding FE spaces to approximate (τ, u, p)
in a discrete way.

Xh := {v ∈ X ∩ C0(Ω̄)d; v|K ∈ P1(K)d, ∀K ∈ Th},

Qh := {q ∈ Q ∩ C0(Ω̄); q|K ∈ P1(K); ∀K ∈ Th},

Sh := {σ ∈ S; σ|K ∈ P1(K)d×d; ∀K ∈ Th}.

Note: It is well-known that the standard FEs Xh and Qh does not fulfill the in f -sup condition
because of the lowest-equal order triples. To ensure stabilization, we introduce the local pressure
projection Π : L2(Ω) → R0. Where R0 is a piecewise constant space associated with the partition
Th. This bilinear, symmetric stabilization term is analysed, proposed and applied in [25,26].
Where, the stabilization term is stated as

G(ph, qh) = (ph −Πph, qh −Πqh). (17)

We mention the following lemmas which was given in article [24].

Lemma 1. Let Qh and Xh be the spaces defined above. There exist positive constants C1 and C2 satisfies:

sup
vh∈Xh

∫
Ω ph∇ · vhdΩ
‖ vh ‖1

≥ C1 ‖ ph ‖0 −C2 ‖ ∇ph ‖0 ∀ ph ∈ Qh. (18)

Lemma 2. Let Qh and Xh be the spaces then there exist a positive constant C satisfies:

Ch ‖ ∇ph ‖0≤‖ ph −Πph ‖0 . (19)
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Stabilization Scheme

In order to filter the unstable factors, we can add the local stabilization term, which is based
on pressure projection. Moreover, the stabilized methods in [24–26] are identical from a numerical
point of view for the lowest-equal order approximations.

To seek (uh, τh, ph) ∈ (Xh × Sh ×Qh) satisfies ∀(vh, σh, qh) ∈ (Xh × Sh ×Qh) such that;

M̃ ((τh, uh, ph), (σh, vh, qh)) = 2α(f, vh). (20)

where

M̃ ((τh, uh, ph), (σh, vh, qh)) = (τh, σh + λδ1(b · ∇)σh) + (λb · ∇τh, σh + λδ1(b · ∇)σh)

+ (λga(τ
h,∇b), σh + λδ1(b · ∇σh)) + 2α(τ, D(vh))

− 2α(D(uh), σh + λδ1(b · ∇)σh) + 4α(1− α)(D(uh), D(vh))

− 2α(ph,∇ · vh) + 2α(qh,∇ · uh) + 2αG(ph, qh). (21)

For our convenience, we use some approximation properties [23], which we will use in our
subsequent analysis. If there exists the interpolations (τ̃h, ũh, p̃h) ∈ (Sh × Xh ×Qh) such that

‖ u− ũh ‖0 +h ‖ ∇(u− ũh) ‖0 ≤ Ch2 ‖ u ‖2, (22)

‖ τ − τ̃h ‖0 +h | τ − τ̃h |1 ≤ Ch2 ‖ τ ‖2, (23)

‖ p− p̃h ‖0 ≤ Ch ‖ p ‖1 . (24)

Throughout the paper we apply C as generic positive constant. In that case, we suppose this
positive constant depends only on domain and always independent of the mesh size h, whose value
may change from place to place. To show that (20) is a stable variational problem, we assume

‖ Πp ‖0≤ C ‖ p ‖0, ‖ p−Πp ‖0≤ Ch ‖ p ‖1 . (25)

To end this section, we give some facts, which are easy to understand and also applicable
in the analysis, i.e., let us consider the incompressibility condition ∇ · u = 0 and u = 0 on Γ,
then it is not difficult to see that 2(D(u), D(v)) = (∇u,∇v), and also we have ‖ D(u) ‖ ≤ ‖ ∇u ‖.

4. Existence, Uniqueness and Error Bounds of the Problem

In this section, we prove the existence and uniqueness of the new proposed FE scheme for
the approximation of the OVFF which satisfies the solution for all the positive λ, M, α, d and δ1 [10,21].

Theorem 1. (Continuity) Given f ∈ H−1(Ω), if 1 − 2λMd > 0, δ1 > 0, there exist a unique solution
(τh, uh, ph) ∈ (Sh × Xh ×Qh) satisfying (20).

Proof. We know

M̃ ((τh, uh, qh), (σh, vh, qh)) = F(σh, vh, qh) ∀(σh, vh, qh) ∈ (Sh, Xh, Qh). (26)

The right hand side of (26) can be stated as F(·) : Sh × Xh ×Qh −→ R is a functional defined by

F(σh, vh, qh) = 2α(f, vh).

Hence,

| F(σh, vh, qh) | ≤ 2α ‖ f ‖−1‖ vh ‖1 (27)
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≤ 2α ‖ f ‖−1|‖ (τh, vh, qh) |‖(Sh×Xh×Qh) .

where

|‖ (σh, vh, qh) |‖(Sh×Xh×Qh) = (‖ σh ‖2
0 + ‖ b · ∇σh ‖2

0 + ‖ vh ‖2
1 + ‖ qh ‖2

0)
1
2 . (28)

We will show the bilinear form M̃ (·, ·, ·) is continuous and coercive in (Sh×Xh×Qh)× (Sh×Xh×Qh)

such that

M̃ ((τh, uh, ph), (σh, vh, qh))

≤ ‖ τh + λb · ∇τh + λga(τh,∇b)− 2αD(uh) ‖0‖ σh + λδ1b · ∇σh ‖0

+ ‖ 4α(1− α)D(uh) + 2ατh ‖0‖ D(vh) ‖0 +2αd ‖ qh ‖0‖ ∇uh ‖0

+ 2αd ‖ ph ‖0‖ ∇vh ‖0 +2α ‖ ph ‖0‖ qh ‖0,

≤
(
‖ τh ‖0 +λ ‖ b · ∇τh ‖0 +2λMd ‖ τh ‖0 +2α ‖ D(uh) ‖0

)
‖ σh + λδ1b · ∇σh ‖0

+
(

4α(1− α) ‖ D(uh) ‖0 +2α ‖ τh ‖0

)
‖ D(vh) ‖0 +2αd ‖ qh ‖0‖ ∇uh ‖0

+ 2αd ‖ ph ‖0‖ ∇vh ‖0 +2α ‖ ph ‖0‖ qh ‖0,

≤ C1

(
(1 + 2α) ‖ τh ‖0 +λ ‖ b · ∇τh ‖0 +2λMd ‖ τh ‖0 +6α ‖ D(uh) ‖0

)
‖ (vh, σh) ‖(Sh×Xh)

+ 2αd ‖ qh ‖0‖ ∇uh ‖0 +2αd ‖ ph ‖0‖ ∇vh ‖0 +2α ‖ ph ‖0‖ qh ‖0,
≤ C |‖ (τh, uh, ph) |‖(Sh×Xh×Qh)|‖ (σh, vh, qh) |‖(Sh×Xh×Qh) .

(29)

Thus, it suffices to show the continuous property of the stabilized method.

Theorem 2. (coercivity) Let us consider a constant 1− 2λMd, Υ > 0 exist in such a way that the following
inequality holds for all (τh, uh, ph) ∈ (Sh × Xh ×Qh)

sup
(σh ,vh ,qh)∈Sh×Xh×Qh

M̃ ((τh, uh, ph), (σh, vh, qh))

|‖ (σh, vh, qh) |‖
≥ Υ |‖ (τh, uh, ph) |‖ . (30)

Proof. To find weak coercivity of M̃ , we suppose a positive constant Υ which is independent of h,
for all ph ∈ Qh ⊂ Q, and interpolation wh ∈ Xh of w, there exists a positive constant Υ0 and w ∈ X
such that

(div w, ph) = ‖ ph ‖2
0, (31)

‖ wh ‖1 ≤ Υ0 ‖ ph ‖0 . (32)

Thanks to [24] ∫
Ω

ph∇ ·whdΩ ≥ C1 ‖ ph ‖2
0 −C2 ‖ (I −Π)ph ‖0‖ ph ‖0 . (33)

Using the fact about the velocity field b = 0 on boundary and∇ · b = 0, and integration by parts gives
the following results [21],

(τh, b · ∇τh) = −(τh, b · ∇τh)⇒ (τh, b · ∇τh) = 0.

Now by setting the values (σh = τh, vh = uh − ξwh, qh = ph, ) in (20), where ξ is a real and positive
parameter, we have

M̃ ((τh, uh, ph), (τh,uh − ξwh, ph))

= M̃ ((τh, uh, ph), (τh, uh, ph))− M̃ ((τh, uh, ph), (0, ξwh, 0)). (34)

The right hand side of the Equation (34) can be bounded as
term (34)1
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M̃ ((τh, uh, ph), (τh, uh, ph)) =
(

τh, τh + λδ1(b · ∇)τh
)
+ λ

(
(b · ∇)τh, τh + δ1(b · ∇)τh

)
+ λ

(
ga(τ

h,∇b), τh + δ1(b · ∇)τh
)
+ 2α(τ, D(uh))

− 2α
(

D(uh), τh + λδ1(b · ∇)τh
)
+ 4α(1− α)

(
D(uh), D(uh)

)
− 2α

(
ph,∇ · uh

)
+ 2α

(
ph,∇ · uh

)
+ 2α ‖ (I −Π)ph ‖2

0,

=‖ τh ‖2
0 +δ2

1λ2 ‖ b · ∇τh ‖2
0 +λ

(
ga(τ

h,∇b), τh + δ1(b · ∇)τh
)

− 2αλ(D(uh), b · ∇τh) + 4α(1− α) ‖ D(uh) ‖2
0 +2α ‖ (I −Π)ph ‖2

0 .

A straight forward computation here is,

| (λτh∇b, τh) | ≤ λMd ‖ τh ‖2
0 .

Similarly

λ | (∇bTτh, τh) |, λ | (∇bτh, τh) |, λ | (τh∇bT , τh) |≤ λMd ‖ τh ‖2
0 .

Hence

λ | (ga(τ
h,∇b), τh) | ≤ 2λMd ‖ τh ‖2

0,

λ | (ga(τ
h,∇b), δ1b · ∇τh) | ≤ 2λMd ‖ τh ‖0 δ1 ‖ b · ∇τh ‖0 . (35)

By using Young’s inequality

M̃ ((τh, uh, ph), (τh, uh, ph)) ≥ ‖ τh ‖2
0 +δ2

1λ2 ‖ b · ∇τh ‖2
0 +4α(1− α) ‖ D(uh) ‖2

0
− 2λMd ‖ τh ‖2

0 −2λMd ‖ τh ‖0 δ1 ‖ b · ∇τh ‖0

− 2α ‖ D(uh) ‖0 δ1λ ‖ b · ∇τh ‖0 +2α ‖ (I −Π)ph ‖2
0,

≥ (1− 2λMd− ε1δ1λMd) ‖ τh ‖2
0 +(1− Md

ε1
− ε2)δ

2
1λ2 ‖ b · ∇τh ‖2

0

+ (4α(1− α)− α2δ1
ε2

) ‖ D(uh) ‖2
0 +2α ‖ (I −Π)ph ‖2

0 .

(36)

term(34)2

−M̃ ((τh, uh, ph), (0, ξwh, 0)) ≥ −4α(1− α)ξ(D(uh), D(wh))− 2αξ(τh, D(wh))

+ 2αξ(ph,∇ ·wh). (37)

By using (31)–(33) and Young’s inequality, the right side of Equation (37), can be estimate as

−4α(1− α)ξ(D(uh), D(wh)) ≥ −4α(1− α)ξ ‖ D(uh) ‖0‖ D(wh) ‖0

≥ −4α(1− α)ξ ‖ D(uh) ‖ Υ0 ‖ ph ‖0

≥ −4α(1− α)2ξ ‖ D(uh) ‖2
0 −αξΥ2

0 ‖ ph ‖2
0,

−2αξ(τh, D(wh)) ≥ −2αξ ‖ τh ‖0 Υo ‖ ph ‖0

≥ −2αξΥo ‖ τh ‖0‖ ph ‖0

≥ −αξ ‖ τh ‖2
0 −αξΥ2

0 ‖ ph ‖2
0,

2αξ(ph,∇ ·wh) ≥ 2αξ(C1 ‖ ph ‖2
0 −C2 ‖ (I −Π)ph ‖0‖ ph ‖0)
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≥ 2αξC1 ‖ ph ‖2
0 −2αξC2 ‖ (I −Π)ph ‖0‖ ph ‖0

≥ αξ(2C1 − C2) ‖ ph ‖2
0 −αξC2 ‖ (I −Π)ph ‖2

0

now Equation (37) gives,

−M̃ ((τh, uh, ph), (0, ξwh, 0)) ≥ −αξ ‖ τh ‖2
0 −4α(1− α)2ξ ‖ D(uh) ‖2

0

+ αξ(2C1 − C2 − Υ2
0) ‖ ph ‖2

0 −αξC2 ‖ (I −Π)ph ‖2
0 .

By summarize all the bounded values, we derive

M̃ ((τh, uh, ph),(τh, u− ξwh, ph))

≥ (1− 2λMd− ε1δ1λMd− αξ) ‖ τh ‖2
0

+ (4α(1− α)−
α2δ2

1
ε2
− 4α(1− α)2ξ) ‖ D(uh) ‖2

0

+ (1− λMd
ε1
− ε2)δ1λ2 ‖ b · ∇τh ‖2

0 +αξ(2C1 − C2 − Υ2
0) ‖ ph ‖2

0 (38)

+ α(2− ξC2) ‖ (I −Π)ph ‖2
0

≥ C3 ‖ τh ‖2
0 +C4 ‖ b · ∇τh ‖2

0 +C5 ‖ D(uh) ‖2
0 +C6 ‖ ph ‖2

0

≥ β |‖ (τh, uh, ph) |‖2
Sh×Xh×Qh .

By (32) and triangle inequality, we get

||| (τh, uh − ξwh, ph) ||| ≤‖ τh ‖0 + ‖ u− ξwh ‖1 + ‖ ph ‖0

≤‖ τh ‖0 + ‖ uh ‖1 +ξ ‖ wh ‖0 + ‖ ph ‖0

≤‖ τh ‖0 + ‖ uh ‖1 +ξΥ0 ‖ ph ‖0 + ‖ ph ‖0

≤ C |‖ (τh, uh, ph) |‖ . (39)

By combining (30), (38) and (39), we arrive at

sup
(σh ,vh ,qh)∈Sh×Xh×Qh

M̃ ((τh, uh, ph), (σh, vh, qh))

|‖ (σh, vh, qh) |‖
≥M̃ ((τh, uh, ph), (τh, u− ξwh, ph))

|‖ (τh, u− ξwh, ph) |‖

≥ β |‖ (τh, uh, ph) |‖2

C |‖ (τh, uh, ph) |‖
≥ β

C
|‖ (τh, uh, ph) |‖ .

By setting Υ = β
C , we can complete the proof of (30).

Together, (29) and (30) imply that (20) is a stable variational problem

Theorem 3. Let (τ, u, p) and (τh, uh, ph) be the solution of (15) and (20), then the following error
estimate holds:

‖ τ − τh ‖0 + ‖ b · ∇τh ‖0 + ‖ u− uh ‖0 + ‖ p− ph ‖0 ≤ Ch. (40)

Proof. Subtracting (20) from (15) it yields

M̃ ((τ − τh, u− uh, p− ph), (σh, vh, qh)) = 2αG(p, qh). (41)

By adding and subtracting (τ̃h, ũh, p̃h) and using the orthogonality gives



Mathematics 2019, 7, 128 10 of 19

M̃ ((τ̃h − τh, ũh − uh, p̃h − ph), (σh, vh, qh)) = M̃ ((τ̃h − τ, ũh − u, p̃h − p), (σh, vh, qh))

+ 2αG(p, qh). (42)

Using the weak coercivity bound (30), error orthogonality and (42)

Υ |‖(τ̃h − τh, ũh − uh, p̃h − ph) |‖

≤ sup
(σh ,vh ,qh)∈Sh×Xh×Qh

M̃ ((τ̃h − τh, ũh − uh, p̃h − ph), (σh, vh, qh))

|‖ (σh, vh, qh) |‖

= sup
(σh ,vh ,qh)∈Sh×Xh×Qh

M̃ ((τ̃h − τ, ũh − u, p̃h − p), (σh, vh, qh)) + 2αG(p, qh)

|‖ (σh, vh, qh) |‖
,

from (25), we can bound

2αG(p, qh) ≤ C2αG(p, p)1/2 ‖ qh ‖0 . (43)

From (30), we have

M̃ ((τ̃h−τ, ũh − u, p̃h − p), (τ̃h − τh, ũh − uh, p̃h − ph))

≤ C(‖ τ̃h − τ ‖0 + ‖ ũh − u ‖1 + ‖ p̃h − p ‖0 +2α ‖ (I −Π)p ‖0) (44)

||| (σh, vh, qh) |||

As a result

Υ |‖ (τ̃h − τh, ũh − uh, p̃h − ph) |‖
≤ sup

(σh ,vh ,qh)∈Sh×Xh×Qh
×

C(‖ τ̃h − τ ‖0 + ‖ ũh − u ‖1 + ‖ p̃h − p ‖0 +2α ‖ (I −Π)p ‖0) ||| (σh, vh, qh) |||
||| (σh, vh, qh) |||

≤ C
Υ
(‖ τ̃h − τ ‖0 + ‖ ũh − u ‖1 + ‖ p̃h − p ‖0 + ‖ (I −Π)p ‖0)

By the triangle inequality, we obtain Equation (40).

5. Numerical Tests

In this section, we implement three different numerical tests for the support of our theoretical
analysis. Numerical simulation for an analytic solution is studied in the first test which verifies
the convergence order. In the second numerical test, we derive a viscoelastic cavity flow to show
the pressure oscillation with the stabilization and without the stabilization term. In the third numerical
test, to show the streamlines and contours of the pressure, we perform the well-known “4-to-1
abrupt contraction channel" fluid flow simulation. The numerical tests verify the accuracy and
correctness of FE approximation for OVFF with lowest-equal order FE triples P1-P1-P1. In order to
show the distinguished features of the new stabilized model, we compare numerical tests among three
different FE schemes i.e., the standard P1b-P1-P1 FE (MINI elements), P1-P1-P1 without stabilization
FE and P1-P1-P1 with stabilization FE. All numerical tests are performed by a public domain free
software Freefem++ [39]. Furthermore, we have also drawn graphs and figures by MATLAB software
and Tecplot 360 package.
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5.1. Analytical Solution Test

In this example, the theoretical convergence rates are examined by applying fluid flow across
a domain Ω = [0, 1]× [0, 1] with parameters a = 0, λ = 5.0 and α = 0.5, respectively. Different authors
used this experimental pattern for Stokes and Navier–Stokes equations [23,36,40,41], where the function
b(x) was chosen to be the exact solution of velocity u. In this context, a right hand-side function is added
to the (8) and f in (9) is studied with the help of following true solution.

u =

(
−10(x4 − 2x3 + x2)(2y3 − 3y2 + y)
10(2x3 − 3x2 + x)(y4 − 2y3 + y2)

)
,

p = −10.0(2x− 1)(2y− 1),
τ = 2αD(u).

For convenience we introduce some denotations
Scheme 1: P1b-P1-P1 standard FE considered as-p1bp1p1 (MINI element spaces)
Scheme 2: P1-P1-P1 with-out stabilization FE considered as-p1p1p1unstb
Scheme 3: P1-P1-P1 with stabilization FE considered as-p1p1p1stb

The numerical results are presented in different tables; Tables 1–3 illustrates, the numerical
values for the standard FE p1bp1p1, p1p1p1unstb and p1p1p1stb, respectively. The L2-norm for
velocity u, H1-norm for velocity u, L2- norm for pressure p and L2-norm for stress τ, respectively are
computed for different values of h = 1/8, 1/16, 1/32, 1/64. We compare the formulated results given
in Table 3 with the standard result presented in Table 1. It is well-known that standard p1bp1p1 FE
have better approximation which is also true for our current problem, since we compare the result
of Tables 2 and 3. The better numerical results of our scheme can be observed as expected in Table 3.
Figures 1 and 2 demonstrate the convergence orders for p1bp1p1, p1p1p1unstb and p1p1p1stb in
||u− uh||0, ||u− uh||1, ||p− ph||0 and ||τ − τh||0, respectively. As to verify our desirable feature of the
method, we compare the convergence orders where the experimental result shows that the order of
convergence of velocity and stress are optimal order as h decreases for all three methods. However,
the pressure for p1p1p1unstb without stabilization can not obtain optimal error order.

Table 1. The error results with standard FE P1b-P1-P1.

h ||u− uh||0 ||u− uh||1 ||p− ph||0 ||τ− τh||0 CPU

1/4 0.017056200 0.22666200 0.22581000 0.1092200 0.078
1/8 0.005001480 0.10252500 0.06270120 0.0334345 0.312

1/16 0.001269810 0.04869610 0.01921590 0.0101251 1.235
1/32 0.000315101 0.02386040 0.00617860 0.0030970 5.156
1/64 0.000078142 0.01183820 0.00207000 0.0010032 19.454

Table 2. The error results before addition of stabilized term with FE P1-P1-P1 .

h ||u− uh||0 ||u− uh||1 ||p− ph||0 ||τ− τh||0 CPU

1/4 0.02691260 0.235550 1.802590 0.2065030 0.062
1/8 0.00801367 0.122772 0.970023 0.0660082 0.25
1/16 0.00204691 0.060951 0.540790 0.0212788 0.938
1/32 0.00051251 0.030274 0.332033 0.0066949 3.813
1/64 0.00012819 0.015081 0.247405 0.0022083 17.422
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Table 3. The error results after addition of a stabilized term with FE P1-P1-P1.

h ||u− uh||0 ||u− uh||1 ||p− ph||0 ||τ− τh||0 CPU

1/4 0.049930 0.452665 1.277330 0.310693 0.062
1/8 0.015867 0.182065 0.410506 0.119536 0.235

1/16 0.004361 0.071193 0.128865 0.041918 0.937
1/32 0.001129 0.029959 0.040235 0.014405 3.75
1/64 0.000286 0.013607 0.012769 0.004951 15.11
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Figure 1. A pictorial representation of convergence rate by using the lowest equal order FE triples for
the pressure L2 (left); for the velocity H1 (right).
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Figure 2. A pictorial representation of convergence rate by using the lowest equal order FE triples for
the pressure L2 (left); for stress L2 (right).

5.2. The Viscoelastic Driven Cavity Flow

In this example, we apply the scheme in the given traditional benchmark problem for testing a
numerical scheme known as “driven cavity flow”. Because, cavity flows have been used in many test
cases for the testing of incompressible fluid dynamics algorithm for Stokes flow [31,42], for this example
we set a domain Ω = [0, 1] × [0, 1] with the following boundary condition, i.e., on the top side
{(x, 1) : 0 < x < 1} the velocity equal to u = (1, 0), other boundaries are considered as zero Dirichlet
condition. We consider the viscoelastic cavity problem for our numerical data comparison using the
parameters a = 0, λ = 5.0, f = 0 and α = 0.5. The solution for the Oseen viscoelastic flow for the cavity
flow is shown by the velocity field and pressure level lines. In Figure 3, we display cavity flow for three
different schemes as: p1bp1p1 standard Galerkin FE approximation, p1p1p1unstb without stabilized
FE ( unstable) and p1p1p1stb (new scheme) stabilized FE approximation. To sum up, we can see that
the standard p1bp1p1 Galerkin method and p1p1p1stb stabilized method completely resembles the
physical rule for pressure. On the other hand, the result p1p1p1unstb displays the pressure oscillations.
As a result, the scheme is verified. Typically, through the finite element method, we have the following
information as:

total triangles or elements = 8192,
nb boundary edges = 256,

number of nodes P1 = 4225.



Mathematics 2019, 7, 128 13 of 19

(a) (b)

(c)

Figure 3. Comparison results are presented to the pressure contours for the viscoelastic cavity. From left
to right: (a) P1b-P1-P1, standard, (b) P1-P1-P1 without stabilization shows oscillation and (c) P1-P1-P1
for the lowest equal order stabilized method.

5.3. 4-to-1 Contraction Channel Flow

We consider a third example to test the proposed scheme, which is a well-known problem for
viscoelastic flow “4-to-1 contraction channel flow problem” which has a huge application in polymeric
liquid industries and studied by many authors [20,43]. Moreover, 4-to-1 has been widely used in
the literature to show the convergence, stability, and behavior of the streamlines of the contraction
channel and the behavior of pressure [36,41]. The geometry of the 4-to-1 contraction commonly
occurs in the forming of ‘die’ for the viscoelastic fluid. The domain is constructed in such a way
that the channel lengths are sufficiently long for a fully developed Poiseuille flow at both the inflow
and outflow boundaries. We presented a domain in Figure 4 for the shape of typical geometry for
physical representation. Primarily, due to the sudden reduction in width, in the corner region, a vortex
appears. In this example, we also study the behaviour of the fluid flow through the proposed scheme.
The OVFF problem is based on the linear form of viscoelastic fluids. To apply the known function
given in the theoretical part b(x) = (b1, b2) in numerical simulation, we perform following steps
in the computational code.

• We first execute out put data of the approximate solution from the non-linear velocity for true
solution u = (u1, u2).

• We use the executed solution of (u1) and (u2) as a known solution (u1 = b1 and u2 = b2). As a result,
now the solution for the approximation considers for the linear one and it will be known for
the velocity field b = (b1, b2) , respectively.
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Figure 4. The 4-to-1 contraction computational domain with a typical mesh.

As a matter of fact, the computations of the mesh are depicted in Figure 4 with
4xmin = 0.06250 and 4ymin = 0.0156250, with Γin = {(x, y) : x = 0, 0 6 y 6 1.0}
and Γout = {(x, y) : x = 8.0, 0 6 y 6 0.25}. The lower left corner of the domain corresponds to
x = y = 0. In this domain the boundary conditions for velocity are specifically designed as,

u1 =
1
32

(1− y)(1 + y), u2 = 0 on Γin,

u1 = 2(
1
16
− y2), u2 = 0 on Γout.

For stress τ, on Γin,

τ11 =
−αλ(a + 1)(−y/16)2

(a + 1)(a− 1)λ2(−y/16)2 − 1
,

τ12 = τ21 =
−α(−y/16)

(a + 1)(a− 1)λ2(−y/16)2 − 1
,

τ22 =
−αλ(a− 1)(−y/16)2

(a + 1)(a− 1)λ2(−y/16)2 − 1
.

Here, the symmetry conditions are supposed on the bottom of the computational domain.
In addition, the physical parameters α, λ, and a are chosen to 1, 8/9, 0.7 and 1, respectively.

In Figure 5, we illustrate the streamlines of p1bp1p1 for standard FE. The left second figure depicts
the streamlines of p1p1p1unstb without stabilization and the third figure demonstrates the streamlines
of p1p1p1stb with stabilization for the physical parameter α, λ, and a are chosen consequently as 1,
8/9, 0.7 and 1, respectively. It can be clearly seen that without the stabilization term for p1p1p1unstb,
FE streamline behaviours are different and show some irregular shape than standard FE p1bp1p1 and
with stabilization of p1p1p1stb FE. In this perspective, the behavior of the streamlines with p1bp1p1
and p1p1p1stb appear in a similar traditional 4 : 1 abrupt contraction channel which resembles the
physical rule completely. The behavior of the streamlines confirms the theoretical results for the
stabilization by lowest-equal order FE in approximation of the OVFF.
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(a) (b)

(c)

Figure 5. Streamlines and magnitude of the velocity u with different elements. From left to right:
(a) P1b-P1-P1, standard, (b) P1-P1-P1 without stabilization and (c) P1-P1-P1 for the lowest equal order
stabilized method.

In Figure 6, we have presented three figures; where pressure with p1bp1p1 for standard Galerkin
FE is shown in the first figure (from left), p1p1p1unstb FE without stabilization in the second figure,
and p1p1p1stb FE with stabilization in the third figure. A difference can be seen between the figure
of p1p1p1stb FE with stabilization being almost similar to the figure of p1bp1p1 for standard FE.
On the other hand, the figure of p1p1p1unstb FE without stabilization is completely different from
the rest of the figures. Furthermore, the oscillation of pressure in Figure 6 part b, is clearly seen.
These results also affirm that the theoretical analysis for the pressure stabilization under lowest-equal
order FE triples for approximation of the OVFF.
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(a) (b)

(c)

Figure 6. The pressure contours for pressure gradient p with different elements. From left to right:
(a) P1b-P1-P1, standard, (b) P1-P1-P1 without stabilization and (c) P1-P1-P1 with stabilized method.

6. Conclusions and Future Work

In this contribution, we studied an approximation of the Oseen viscoelastic fluid flow (OVFF)
problem with lowest-equal order FE P1-P1-P1 method. In the standard Galerkin FE method,
the in f -sup (or LBB) conditions are essential to finding the well-posedness of the model equations,
while the lowest-equal order FE triples violate the necessary condition in f -sup. This deficiency
of the important condition makes the system unstable. To deal with the instability, we added
symmetric and parameter-free extra pressure terms in the discrete variational form. We proved
the well-posedness of the model equation with the lowest-equal order triples. Moreover, the optimal
error estimates are derived, and three different numerical examples are performed which are consistent
with the theoretical prediction. Most importantly, this method is simple and computationally efficient
compared to other stabilized methods. In future studies, we can extend this method to approximate
the solution with P1-P0-P1 triples.

Author Contributions: S.H. has contributed conceptual and the writing of original draft. While A.B., M.A.A.M.,
N.J. Nasu helped to revise writing, review and software (freefem++ and Matlab) editing. This work is performed
under the supervision of J.Y.

Funding: S.H., A.B., M.A.A.M., N.J.N. are partially supported by NSF of China (Grant no. 11571115),
Science and Technology Commission of Shanghai Municipality Grant No. 18dz2271000, J.Y. is supported by
NSFC (Grant no. 11501097 and 11471071). The Fundamental Research Funds for the Central Universities and
Institute of Nonlinear Science, Donghua Univeristy.

Acknowledgments: We wish to express our gratitude to the reviewers for their helpful comments. We also would
like to thankful Haibiao Zheng for his support and motivation.

Conflicts of Interest: No conflict of interest exits in the submission of this manuscript, and manuscript is approved
by all authors for publication.



Mathematics 2019, 7, 128 17 of 19

Nomenclature

α Fraction of viscoelastic viscosity
σ Test function as Stress tensor
τtot Total stress tensor
τ Unknown function for stress tensor
Γ Boundary of the domain
λ Weissenberg number
b(x) Known velocity
f Body force
n Unit outward normal vector
u Velocity vector field
v Test function for velocity
Ω Domain
a Material derivative parameter
D(u) Deformation tensor
FE Finite Element
h Size of mesh
I Identity matrix
OVFF Oseen Viscoelastic fluid flow
p Scalar pressure field
P1 Continuous piecewise finite elements
q Test function for pressure
Th Triangulation of domain
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