
mathematics

Article

Global Asymptotical Stability Analysis for Fractional
Neural Networks with Time-Varying Delays

Zhixin Zhang 1, Yufeng Zhang 1, Jia-Bao Liu 2,3,* and Jiang Wei 1

1 School of Mathematics Sciences, Anhui University, Hefei 230601, China; zhang_zhi_x@sina.com (Z.Z.);
yufeng19921116@sina.com (Y.Z.); Jiangwei@ahu.edu.cn (J.W.)

2 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
3 School of Mathematics, Southeast University, Nanjing 210096, China
* Correspondence: liujiabaoad@163.com

Received: 1 December 2018; Accepted: 30 January 2019; Published: 1 February 2019
����������
�������

Abstract: In this paper, the global asymptotical stability of Riemann-Liouville fractional-order neural
networks with time-varying delays is studied. By combining the Lyapunov functional function
and LMI approach, some sufficient criteria that guarantee the global asymptotical stability of such
fractional-order neural networks with both discrete time-varying delay and distributed time-varying
delay are derived. The stability criteria is suitable for application and easy to be verified by software.
Lastly, some numerical examples are presented to check the validity of the obtained results.
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1. Introduction

Fractional-order calculus has gained much attention in recent three decades because of its
widespread application, such as engineering, diffusion equations, control science, biology, calorifics,
and so on [1–5]. As an important branch of fractional-order calculus, stability has been studied by
many scholars [6–15]. In [16,17], the Mittag-Leffler stability for fractional nonlinear equation has
been discussed. In [18], finite time stability of fractional system has been investigated by delayed
Mittag-Leffler type matrix function. Furthermore, in [19,20], the asymptotical stability of fractional
systems has been analyzed by using Lyapunov functional method. Some new results were derived for
the stability of fractional differential systems with distributed delays in [21,22].

In recent years, neural networks have been widely used in image processing, pattern recognition,
associative memory, signal processing, and secure communication, etc. Therefore, the study of neural
networks is a hot topic in the theory of fractional differential systems. Some researchers have focused
on the research of the fractional neural networks, including stability [21–29]. In [26], the author
discussed a delay-dependent condition of uniform stability for fractional neural networks. What is
more, the existence and uniqueness of equilibrium solution for the system was proposed. In [27],
some criteria for finite-time stability for fractional networks were proved. In [28], a Lyapunov function
was established to demonstrate the asymptotical stability for neural networks.

Because of the finite speeds of switching and transmission of signals, almost every neural network
has time-varying delays, and time-varying delays also affect the dynamic behavior of the neural
networks. Therefore, in the analysis of neural networks, time-varying delays is inevitable. The time
delays in neural networks has significant effect on the stability of the system. Some results have been
obtained for the stability of fractional-order neural networks with constant time delay, but there is little
research results on the stability of neural networks with time-varying delays. Motivated by the above,
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this thesis consider the global asymptotical stability of Riemann-Liouville fractional neural networks
with time-varying delays as follows:

t0 Dα
t ψ(t) = −Aψ(t) + B f̃ (ψ(t)) + Cg̃(ψ(t− δ(t))) + D

∫ t

t−δ(t)
h̃(ψ(s))ds + I, (1)

where 0 < α < 1, ψ(t) = [ψ1(t), ψ2(t), · · · , ψn(t)]T is the neuron state vector;
A = diag(a1, a2, · · · , an) is a positive diagonal matrix; B, C, D ∈ Rn×n stand for constant connection
weights matrices; I ∈ Rn denotes an input of neuron; f̃ (ψ) = [ f̃1(ψ1), f̃2(ψ2), · · · , f̃n(ψn)]T ,
g̃(ψ) = [g̃1(ψ1), g̃2(ψ2), · · · , g̃n(ψn)]T , h̃(ψ) = [h̃1(ψ1), h̃2(ψ2), · · · , h̃n(ψn)]T are activation functions
with f̃ (0) = h̃(0) = g̃(0) = 0 and δ(t) is smooth time-varying delay which follows
0 ≤ δ(t) ≤ δ, δ̇(t) ≤ k < 1. The functions f̃i(·), g̃i(·), h̃i(·), i = 1, 2, · · · , n, satisfy the
following assumptions

(H1)0 ≤ f̃i(φ1)− f̃i(φ2)
φ1−φ2

≤ li, 0 ≤ g̃i(φ1)−g̃i(φ2)
φ1−φ2

≤ σi, 0 ≤ h̃i(φ1)−h̃i(φ2)
φ1−φ2

≤ λi, ∀φ1, φ2 ∈ R, φ1 6= φ2,

where li > 0, σi > 0, λi > 0, i = 1, 2, · · ·, n.
Let ψ∗ = (ψ∗1 , ψ∗2 , · · · , ψ∗n) is one equilibrium point of system (1) and shift the equilibrium point

ψ∗ = (ψ∗1 , ψ∗2 , · · · , ψ∗n) of system (1) to the origin by the transformation ϕ(t) = ψ(t)− ψ∗, then system
(1) converts into

t0 Dα
t ϕ(t) = −Aϕ(t) + B f (ϕ(t)) + Cg(ϕ(t− δ(t))) + D

∫ t

t−δ(t)
h(ϕ(s))ds, (2)

where ϕ(t) = [ϕ1(t), ϕ2(t), · · · , ϕn(t)] is state vector, and f (ϕ(t)) = f̃ (ψ(t)) − f̃ (ψ∗), g(ϕ(t)) =

g̃(ψ(t))− g̃(ψ∗), h(ϕ(t)) = h̃(ψ(t))− h̃(ψ∗).

2. Preliminaries

In this section, the definitions of Riemann-Liouville fractional integral and fractional derivative
are described and some related lemmas are presented.

Definition 1. The definition of Riemann-Liouville fractional integral is defined by

t0 D−α
t f (t) =

1
Γ(α)

∫ t

t0

(t− s)α−1 f (s)ds, (α > 0). (3)

Definition 2. The definition of Riemann-Liouville fractional derivative can be written as

t0 Dα
t f (t) =

1
Γ(n− α)

(
d
dt
)n
∫ t

t0

(t− s)n−α−1 f (s)ds, (n− 1 ≤ α < n), (4)

where Γ(·) is the Gamma function.

Lemma 1 ([1]). For any α > β > 0, the following formulas holds if ϕ(t) ∈ C1[t0, b],

t0 Dα
t (t0 D−β

t ϕ(t)) = t0 Dα−β
t ϕ(t).

Lemma 2 ([20]). If ϕ(t) ∈ Rn is a vector of differential function, then such inequality holds

1
2 t0 Dα

t (ϕT(t)Pϕ(t)) ≤ ϕT(t)Pt0 Dα
t ϕ(t), (∀0 < α < 1, t ≥ t0),
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where P ∈ Rn×n is a positive semi-definite and constant matrix, and satisfies PT = P .

Lemma 3. For any x, y ∈ Rn, ε > 0, relationship 2xTy ≤ εxTx + 1
ε yTy holds.

Lemma 4 ([30]). For any square matrix K ∈ Rn×n, K = KT , scalar 0 < bm ≤ b1(t) < b2(t) ≤ bM,
vector function: µ : [bm, bM]→ Rn such that the integrations concerned are well defined, then

(b2(t)− b1(t))
∫ b2(t)

b1(t)
µT(ξ)Kµ(ξ)dξ ≥ (

∫ b2(t)

b1(t)
µ(ξ)dξ)TK(

∫ b2(t)

b1(t)
µ(ξ)dξ). (5)

Lemma 5 ([31]). For a given matrix

A =

(
A11 A12

AT
12 A22

)
,

where A11 = AT
11, A22 = AT

22, the following three conditions are equivalent:

(a) A > 0;
(b) A22 > 0, A11 − A12 A−1

22 AT
12 > 0;

(c) A11 > 0, A22 − A12 A−1
11 AT

12 > 0.

3. Main Results

In this subsection, we discuss the stability of fractional neural networks with time-varying delays,
and some criteria on asymptotical stability are presented.

Theorem 1. Let the following conditions hold:
1.1. The conditions H1 hold.
1.2. There exist positive definite diagonal matrices G, H, Q, and a positive definite matrix P, S =

2PA − Σ1QΣ1 − mΣ2GΣ2 − δn+1Σ3HΣ3, Σ1 = diag(l1, l2 · · · , ln), Σ2 = diag(σ1, σ2, · · · , σn), Σ3 =

diag(λ1, λ2, · · · , λn) and constants m > 0, n > 0 such that the inequality
S BT P η1CT P η2DT P

PB Q 0 0
η1PC 0 G 0
η2PD 0 0 H

 > 0, (6)

holds, where η1 =
√

m−1(1− k)−1, η2 =
√

δ1−n(1− k)−1.
Then the zero solution of system (2) is globally asymptotically stable.

Proof. Consider the following Lyapunov function

V(t) = t0 Dα−1
t ϕT(t)Pϕ(t) + m

∫ t
t−δ(t) gT(ϕ(s))Gg(ϕ(s))ds + δn ∫ t

t−δ(t)

∫ t
θ hT(ϕ(s))Hh(ϕ(s))dsdθ. (7)
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Based on Lemmas 1 and 2, calculations of the derivative of V(t) along the trajectories of system (2),
one gets

V̇(t) = t0 Dα
t ϕT(t)Pϕ(t) + mgT(ϕ(t))Gg(ϕ(t))−m(1− δ̇(t))gT(ϕ(t− δ(t)))Gg(ϕ(t− δ(t)))

+δn d
dt
[
∫ t

t−δ(t)
ρ(t, θ)dθ]

≤ 2ϕT(t)Pt0 Dα
t ϕ(t) + mgT(ϕ(t))Gg(ϕ(t))−m(1− k)gT(ϕ(t− δ(t)))Gg(ϕ(t− δ(t)))

+δn d
dt
[
∫ t

t−δ(t)
ρ(t, θ)dθ]

= 2ϕT(t)P[−Aϕ(t) + B f (ϕ(t)) + Cg(ϕ(t− δ(t))) + D
∫ t

t−δ(t)
h(ϕ(s))ds]

+mgT(ϕ(t))Gg(ϕ(t))−m(1− k)gT(ϕ(t− δ(t)))Gg(ϕ(t− δ(t)))

+δn d
dt
[
∫ t

t−δ(t)
ρ(t, θ)dθ]

≤ 2ϕT(t)(−PA)ϕ(t) + 2ϕT(t)PB f (ϕ(t)) + 2ϕT(t)PCg(ϕ(t− δ(t)))

+2ϕT(t)PD
∫ t

t−δ(t)
h(ϕ(s))ds + mgT(ϕ(t))Gg(ϕ(t))

−m(1− k)gT(ϕ(t− δ(t)))Gg(ϕ(t− δ(t)))

+δn[ρ(t, t)− (1− δ̇(t))ρ(t, t− δ(t)) +
∫ t

t−δ(t)
ρ̇t(t, θ)dθ], (8)

where ρ(t, θ) =
∫ t

θ hT(ϕ(s))Gh(ϕ(s))ds.
From Lemma 3, for any positive definite diagonal matrices Q, we have

2ϕT(t)PB f (ϕ(t)) = 2ϕT(t)PBQ−
1
2 Q

1
2 f (ϕ(t))

≤ ϕT(t)PBQ−1BT Pϕ(t) + f T(ϕ(t))Q f (ϕ(t)),
(9)

2ϕT(t)PCg(ϕ(t− δ(t))) = 2ϕT(t)PCG−
1
2 G

1
2 g(ϕ(t− δ(t)))

≤ 1
m(1−k) ϕT(t)PCG−1CT Pϕ(t)
+m(1− k)gT(ϕ(t− δ(t)))Gg(ϕ(t− δ(t))),

(10)

2ϕT(t)PD
∫ t

t−δ(t) h(ϕ(s))ds = 2ϕT(t)PDH−
1
2 H

1
2
∫ t

t−δ(t) h(ϕ(s))ds
≤ 1

δn−1(1−k) ϕT(t)PDH−1DT Pϕ(t)

+δn−1(1− k)(
∫ t

t−δ(t) h(ϕ(s))ds)T H(
∫ t

t−δ(t) h(ϕ(s))ds).

(11)

Hence,

V̇(t) ≤ ϕT(t)[−2PA + PBQ−1BT P +
1

m(1− k)
PCG−1CT P

+
1

δn−1(1− k)
PDH−1DT P]ϕ(t) + f T(ϕ(t))Q f (ϕ(t)) + mgT(ϕ(t))Gg(ϕ(t))

+δn−1(1− k)(
∫ t

t−δ(t)
h(ϕ(s))ds)T H(

∫ t

t−δ(t)
h(ϕ(s))ds)

+δn[0− (1− k)
∫ t

t−δ(t)
hT(ϕ(s))Hh(ϕ(s))ds + δ(t)hT(ϕ(t))Hh(ϕ(t))].
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Furthermore, from Lemma 4, we get the following inequality

δ(t)
∫ t

t−δ(t)
hT(ϕ(s))Hh(ϕ(s))ds ≥ (

∫ t

t−δ(t)
h(ϕ(s))ds)T H(

∫ t

t−δ(t)
h(ϕ(s))ds),

and then we have

−
∫ t

t−δ(t)
hT(ϕ(s))Hh(ϕ(s))ds ≤ −δ−1(

∫ t

t−δ(t)
h(ϕ(s))ds)T H(

∫ t

t−δ(t)
h(ϕ(s))ds). (12)

From the above provided analysis, we get

V̇(t) ≤ ϕT(t)[−2PA + PBQ−1BT P + 1
m(1−k)PCG−1CT P

+ 1
δn−1(1−k)PDH−1DT P]ϕ(t) + f T(ϕ(t))Q f (ϕ(t)) + mgT(ϕ(t))Gg(ϕ(t))

+δn−1(1− k)(
∫ t

t−δ(t) h(ϕ(s))ds)T H(
∫ t

t−δ(t) h(ϕ(s))ds)

−δn−1(1− k)(
∫ t

t−δ(t) h(ϕ(s))ds)T H(
∫ t

t−δ(t) h(ϕ(s))ds) + δn+1hT(ϕ(t))Hh(ϕ(t))
≤ ϕT(t)[−2PA + PBQ−1BT P + 1

m(1−k)PCG−1CT P + 1
δn−1(1−k)PDH−1DT P

+Σ1QΣ1 + mΣ2GΣ2 + δn+1Σ3HΣ3]ϕ(t)
= −ϕT(t)Λϕ(t),

(13)

where Λ = 2PA − PBQ−1BT P − 1
m(1−k)PCG−1CT P − 1

δn−1(1−k)PDH−1DT P − Σ1QΣ1 − mΣ2GΣ2 −
δn+1Σ3HΣ3. According to Lemma 5 and the inequality (6), one get Λ > 0. So V̇(t) < 0. The proof
is completed.

From the hypothesis of Theorem 1, we know that the matrices Q, G and H are assumed to be
positive diagonal matrices. In fact, we can decrease the conservatism of this assumption via some
inequality techniques. In the next statement, we also choose the same Lyapunov function that has been
constructed in Theorem 1.

Theorem 2. Let the following conditions hold:
2.1. The conditions H1 hold.
2.2. There exist positive definite matrixP, G, H and positive definite diagonal matrices Qi = diag(qi

1, qi
2,

· · · , qi
n), i = 1, 2, 3, Σ1 = diag(l1, l2, · · · , ln), Σ2 = diag(σ1, σ2, · · · , σn),Σ3 = diag(λ1, λ2, · · · , λn)

and constants m > 0, n > 0 such that the inequality

Ω =



2PA− 2Σ1Q1Σ1 −BT P −Q2Σ2 −Q3Σ3 −CT P −DT P
−PB 2Q1 0 0 0 0
−Q2Σ2 0 2Q2 −mG 0 0 0
−Q3Σ3 0 0 2Q3 − δn+1H 0 0
−PC 0 0 0 γ1G 0
−PD 0 0 0 0 γ2H


> 0, (14)

holds, whereγ1 = m(1− k), γ2 = δn−1(1− k).
Then the zero solution of system (2) is globally asymptotically stable.
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Proof. From Equations (7) and (8), we get the derivative of V(t) along the trajectories of system (2)
as follows:

V̇(t) ≤ 2ϕT(t)(−PA)ϕ(t) + 2ϕT(t)PB f (ϕ(t)) + 2ϕT(t)PCg(ϕ(t− δ(t))) + 2ϕT(t)PD
∫ t

t−δ(t) h(ϕ(s))ds

+mgT(ϕ(t))Gg(ϕ(t))−m(1− k)gT(ϕ(t− δ(t)))Gg(ϕ(t− δ(t)))
−δn(1− k)

∫ t
t−δ(t) hT(ϕ(s))Hh(ϕ(s))ds + δn+1hT(ϕ(s))Hh(ϕ(s))

≤ 2ϕT(t)(−PA)ϕ(t) + 2ϕT(t)PB f (ϕ(t)) + 2ϕT(t)PCg(ϕ(t− δ(t))) + 2ϕT(t)PD
∫ t

t−δ(t) h(ϕ(s))ds

+mgT(ϕ(t))Gg(ϕ(t))−m(1− k)gT(ϕ(t− δ(t)))Gg(ϕ(t− δ(t)))
−δn−1(1− k)(

∫ t
t−δ(t) h(ϕ(s))ds)T H(

∫ t
t−δ(t) h(ϕ(s))ds) + δn+1hT(ϕ(t))Hh(ϕ(t))

−2
n
∑

i=1
q1

i fi(ϕi)( fi(ϕi)− li ϕi)− 2
n
∑

i=1
q2

i gi(ϕi)(gi(ϕi)− σi ϕi)− 2
n
∑

i=1
q3

i hi(ϕi)(hi(ϕi)− λi ϕi)

≤ 2ϕT(t)(−PA + Σ1Q1Σ1)ϕ(t) + 2ϕT(t)PB f (ϕ(t)) + 2ϕT(t)PCg(ϕ(t− δ(t)))
+2ϕT(t)PD

∫ t
t−δ(t) h(ϕ(s))ds + mgT(ϕ(t))Gg(ϕ(t))−m(1− k)gT(ϕ(t− δ(t)))Gg(ϕ(t− δ(t)))

−δn−1(1− k)(
∫ t

t−δ(t) h(ϕ(s))ds)T H(
∫ t

t−δ(t) h(ϕ(s))ds) + δn+1hT(ϕ(t))Hh(ϕ(t))

−2 f T(ϕ(t))Q1 f (ϕ(t))− 2gT(ϕ(t))Q2g(ϕ(t)) + 2gT(ϕ(t))Q2Σ2 ϕ(t)
−2hT(ϕ(t))Q3h(ϕ(t)) + 2hT(ϕ(t))Q3Σ3 ϕ(t)

= 2ϕT(t)(−PA + Σ1Q1Σ1)ϕ(t) + 2ϕT(t)PB f (ϕ(t)) + 2ϕT(t)PCg(ϕ(t− δ(t)))
+2ϕT(t)PD

∫ t
t−δ(t) h(ϕ(s))ds + 2gT(ϕ(t))Q2Σ2 ϕ(t) + 2hT(ϕ(t))Q3Σ3 ϕ(t)− 2 f T(ϕ(t))Q1 f (ϕ(t))

+gT(ϕ(t))(mG− 2Q2)g(ϕ(t)) + hT(ϕ(t))(δn+1H − 2Q3)h(ϕ(t))
−m(1− k)gT(ϕ(t− δ(t)))Gg(ϕ(t− δ(t)))− δn−1(1− k)(

∫ t
t−δ(t) h(ϕ(s))ds)T H(

∫ t
t−δ(t) h(ϕ(s))ds)

= −ξT(t)Ωξ(t),

where ξT(t) = [ϕT(t), f T(ϕ(t)), gT(ϕ(t)), hT(ϕ(t)), gT(ϕ(t− δ(t))), (
∫ t

t−δ(t) h(ϕ(s))ds)T ]. So, V̇(t) < 0

for all ϕ(t) 6= 0 because Ω > 0 and V̇(t) = 0 if and only if all components of ξT(t) equal to zero.
But then, V(t) is radially unbounded when ‖ϕ(t)‖ → ∞. This implies that the zero solution of system
(2) is globally asymptotically stable. The proof is completed.

4. Illustrative Examples

In the following subsection, we present two simple examples to check the usefulness of the results
by LMI method.

Example 1. Considering the fractional neural networks as

t0 Dα
t ψ(t) = −Aψ(t) + B f̃ (ψ(t)) + Cg̃(ψ(t− δ(t))) + D

∫ t

t−δ(t)
h̃(ψ(s))ds + I, (15)

where

A =

(
1 0
0 1

)
, B =

(
0.2 0
0 0.3

)
, C =

(
0.5 −0.1
−0.1 0.3

)
, D =

(
0.2 −0.3
0 −0.3

)
, I =

(
−1
0

)
,

and activation functions f̃i(ψi) = g̃i(ψi) = h̃i(ψi) = tanh(ψi), i = 1, 2, δ(t) = 1
2 sint, m = n = 1,

0 < α < 1. Then the LMI (6) has the following feasible solution

P =

(
1.0793 −0.0878
−0.0878 1.2253

)
, Q =

(
0.5145 0

0 0.6298

)
,

G =

(
0.6639 0

0 0.6401

)
, H =

(
0.7764 0

0 0.8057

)
,

which implies that the zero solution of the system (15) is globally asymptotically stable.
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Example 2. Considering the fractional neural networks as

t0 Dα
t ψ(t) = −Aψ(t) + B f̃ (ψ(t)) + Cg̃(ψ(t− δ(t))) + D

∫ t

t−δ(t)
h̃(ψ(s))ds + I, (16)

where

A =

(
1 0
0 1

)
, B =

(
0.2 0
0 0.3

)
, C =

(
0.5 −0.1
−0.1 0.3

)
, D =

(
0.2 −0.3
0 −0.3

)
, I =

(
−1
0

)
,

and activation functions f̃i(ψi) = g̃i(ψi) = h̃i(ψi) = tanh(ψi), i = 1, 2, δ(t) = 1
2 sint, m = n = 1,

0 < α < 1. Then the LMI (14) has the following feasible solution

P =

(
0.8384 −0.0006
−0.0006 0.8386

)
, G =

(
0.4505 −0.0001
−0.0001 0.4501

)
, H =

(
0.7037 −0.0000
−0.0000 0.7012

)
,

Q1 =

(
0.3006 0

0 0.3072

)
, Q2 =

(
0.4577 0

0 0.4587

)
, Q3 =

(
0.3560 0

0 0.3564

)
,

which implies that the zero solution of the system (16) is globally asymptotically stable.

5. Conclusions

This paper has analyzed the global asymptotical stability for the fractional time-varying
delay neural networks with the Riemann-Liouville derivative. Two sufficient conditions on global
asymptotical stability are given by the Lyapunov functional functions method and linear matrix
inequality techniques. The conditions of the two theorems in this paper are different. In Theorem 1,
the conclusion requires that G and H are positive definite diagonal matrices, while in Theorem 2, the
conditions of the Theorem require G and H to be positive definite matrices, without requiring them
to be diagonal. The conditions of Theorem 2 are weakened. The criterion obtained in this paper can
be processed by computer program without any other calculation, which makes it easy to verify the
condition. Finally, we have shown two simple examples to illustrate the usefulness of this method.
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