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Abstract: Intuitionistic fuzzy multiple attribute decision making deals with the issue of ranking
alternatives based on the decision information quantified in terms of intuitionistic fuzzy values.
Lexicographic orders can serve as efficient and indispensable tools for comparing intuitionistic fuzzy
values. This paper introduces a number of lexicographic orders by means of several measures such as
the membership, non-membership, score, accuracy and expectation score functions. Some equivalent
characterizations and illustrative examples are provided, from which the relationships among these
lexicographic orders are ascertained. We also propose three different compatible properties of
preorders with respect to the algebraic sum and scalar product operations of intuitionistic fuzzy
values, and apply them to the investigation of compatible properties of various lexicographic orders.
In addition, a benchmark problem regarding risk investment is further explored to give a comparative
analysis of different lexicographic orders and highlight the practical value of the obtained results for
solving real-world decision-making problems.

Keywords: fuzzy set; intuitionistic fuzzy set; intuitionistic fuzzy value; lexicographic order;
decision making

1. Introduction

In 1965, Zadeh [1] initiated fuzzy set theory which provides a useful mathematical tool for
modelling and manipulating uncertainty based on the perspective of gradualness. The notion of
fuzzy sets is closely associated with soft computing which deals with imprecision, uncertainty, partial
truth and approximation to achieve tractability, robustness and low solution cost [2]. Atanassov [3,4]
proposed the concept of intuitionistic fuzzy sets in 1983, which is characterized by membership
and non-membership functions. Atanassov’s intuitionistic fuzzy sets extend Zadeh’s fuzzy sets in
a meaningful way, due to its convenience to capture uncertainty caused by indecisiveness and lack
of commitment in human cognition [5]. Bustince and Burillo [6] revealed that the concept of vague
sets, proposed by Gau and Buehrer [7], could be identified with intuitionistic fuzzy sets. Wang and
He [8] showed that intuitionistic fuzzy sets can be seen as L-fuzzy sets. Deschrijver and Kerre further
examined the relationships among fuzzy sets, L-fuzzy sets, intuitionistic fuzzy sets, interval-valued
fuzzy sets and interval-valued intuitionistic fuzzy sets in [9].
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In 1999, Molodtsov [10] proposed soft set theory as another formal method for handling
uncertainty. The rationale of soft sets relies on the idea of parameterization, which suggests that
complicated things should be perceived from various aspects, and each aspect only provides an
approximate description of the whole entity of high complexity [11]. Maji et al. [12] defined a number
of algebraic operations for soft sets and examined some related properties. Ali et al. [13,14] introduced
several new operations in soft set theory to further consolidate theoretical aspects of soft sets. It is
worth noting that soft sets are closely related to other soft computing models such as rough sets and
fuzzy sets [15,16]. Maji et al. [17] introduced fuzzy soft sets, extending both fuzzy sets and soft sets
in a natural way. They further combined soft sets with intuitionistic fuzzy sets, and brought forth
the notion of intuitionistic fuzzy soft sets in [18]. In addition, soft sets and their extensions have
been successfully applied to algebra [19–22], data analysis [11,23], decision making [24–30], graph
theory [31] and mathematical logic [32].

The membership degree and non-membership degree of each element in an intuitionistic fuzzy set
can be combined together to form an ordered pair, which was called an intuitionistic fuzzy value (IFV)
by Xu and Yager in [33]. This convenient representation has been widely used in the literature. From the
theoretical aspect, it provides a solid basis for constructing and investigating various measures [34,35],
operations [36], aggregation operators [37], ranking methods [38,39] and generalizations [40,41] of
intuitionistic fuzzy sets. From the practical aspect, the use of this representation greatly facilitates
the development of decision making [5,42–45] and group decision making [46–48] in an intuitionistic
fuzzy setting. The modelling and managing of uncertainty is of great importance for the acquisition
of desirable solutions to decision making problems. IFVs can be used to describe and quantify
subjective uncertainty in human cognition from the aspects of affirmation, objection and hesitation [45].
This makes them elementary components in multiple attribute decision making (MADM) based on
intuitionistic fuzzy sets. As a result, it becomes vital to develop efficient methods for the computation,
aggregation and comparison of IFVs. Xu and Yager [33,37] proposed some fundamental operations for
IFVs, which laid a firm foundation for the aggregation of intuitionistic fuzzy information. Based on the
algebraic sum and scalar product operations of IFVs, Xu [37] further developed the intuitionistic fuzzy
weighted averaging (IFWA) operator. To compare IFVs, Chen [42] proposed the score function, which
can synthesize both positive and negative evaluations. Later, Hong and Choi [49] indicated that the
score function is unable to distinguish some apparently different IFVs with the same score. To address
this issue, they proposed another useful measure called accuracy function in [49]. Using both the score
function and accuracy function, Xu [33] pioneered a novel approach to the ranking of IFVs. As pointed
out by Bustince et al. [50], the Xu-Yager order is a lexicographic order refining the usual partial order
on the lattice of IFVs. Furthermore, Bustince et al. initiated a general notion called admissible orders
and proposed a useful method to build admissible orders by virtue of aggregation functions in [50].

It is worth noting that lexicographic orders like Xu-Yager order play an indispensable role in
comparing IFVs since it is impossible to represent such orders using only one real-valued function.
In fact, this can trace back to a famous counter-example called the Debreu chain [51], which revealed
that contrary to the inveterate belief widely held by economists, there indeed exist a preference order
relation which is not representable by a utility function. Recently, we proposed two lexicographic
orders ≤(t,δ) and ≤(δ,t) based on the expectation score function in [40]. We also showed that the
order ≤(δ,t) coincides with the Xu-Yager order. This paper aims to construct some new lexicographic
orders by virtue of the membership, non-membership, score, accuracy and expectation score functions.
We present some equivalent characterizations and illustrative examples in order to ascertain abundant
relationships among various lexicographic orders. Motivated by the fact that the IFWA operator is
often used together with the Xu-Yager order for solving intuitionistic fuzzy MADM problems, we
endeavor to explore compatible properties of these lexicographic orders with respect to the algebraic
sum and scalar product operations of IFVs. In addition, we revisit a benchmark problem, which was
originally raised by Herrera and Herrera-Viedma [52], and further investigated by Wei [53], so as to
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give comparative analysis of different lexicographic orders and highlight the practical value of the
obtained results for solving intuitionistic fuzzy MADM problems in real-world scenarios.

The rest of this paper is organized as follows. Section 2 briefly recalls some basic concepts
including fuzzy sets, intuitionistic fuzzy sets and intuitionistic fuzzy soft sets. Section 3 mainly
introduces binary relations and order relations. In Section 4, we define a variety of new lexicographic
orders for comparing IFVs. We also give some equivalent characterizations and illustrative examples
so as to ascertain the relationships among various lexicographic orders. Section 5 is devoted to the
investigation of compatible properties of lexicographic orders. In Section 6, we revisit a benchmark
problem regarding risk investment to compare different lexicographic orders and emphasize the
pragmatic value of the obtained results for solving real-world intuitionistic fuzzy MADM problems.
Finally, we summarize this study and point out possible future works in the last section.

2. Preliminaries

In this section, we recall some basic concepts regarding fuzzy sets, intuitionistic fuzzy sets and
intuitionistic fuzzy soft sets. These notions will be useful for subsequent discussion.

Let U be a fixed nonempty set, known as the universe of discourse. A fuzzy set µ in U is defined
by its membership function µ : U → [0, 1]. For each x ∈ U, the membership degree µ(x) specifies the
grade to which the element x belongs to the fuzzy set µ. By µ ⊆ ν, we mean that µ(x) ≤ ν(x) for all
x ∈ U. Clearly µ = ν if µ ⊆ ν and ν ⊆ µ. In what follows, the collection of all fuzzy sets in U will be
denoted by F (U).

Definition 1. [4] An intuitionistic fuzzy set in a universe U is given by

A = {(x, tA(x), fA(x)) | x ∈ U},

where the functions tA : U → [0, 1] and fA : U → [0, 1] assign membership grade tA(x) and non-membership
grade fA(x) of the element x to the intuitionistic fuzzy set A, respectively. In addition, it should be satisfied that
0 ≤ tA(x) + fA(x) ≤ 1 for all x ∈ U.

Notice that πA(x) = 1− (tA(x) + fA(x)) is called the degree of hesitancy (or indeterminacy) of x
to A. In the following, IFS(U) denotes the collection of all intuitionistic fuzzy sets in U.

Let A, B ∈ IFS(U). Then we have the following notions:

• A t B = {(x, max{tA(x), tB(x)}, min{ fA(x), fB(x)}) | x ∈ U};
• A u B = {(x, min{tA(x), tB(x)}, max{ fA(x), fB(x)}) | x ∈ U};
• A v B if and only if tA(x) ≤ tB(x) and fA(x) ≥ fB(x) for all x ∈ U.

By A = B, we mean that A v B and B v A. Clearly, every fuzzy set can be viewed as an
intuitionistic fuzzy set. It was shown in [8,9] that intuitionistic fuzzy sets can be viewed as L-fuzzy
sets with respect to the complete lattice (L∗,≤L∗), where L∗ = {(a1, a2) ∈ [0, 1]2 | a1 + a2 ≤ 1}, and
the corresponding lattice order ≤L∗ is defined as

(t1, f1) ≤L∗ (t2, f2)⇔ (t1 ≤ t2) ∧ ( f1 ≥ f2) (1)

for all (t1, f1), (t2, f2) ∈ L∗. Each ordered pair (a1, a2) ∈ L∗ is called an intuitionistic fuzzy value.
According to this point of view, the intuitionistic fuzzy set

A = {(x, tA(x), fA(x)) | x ∈ U}

can be identified with the L-fuzzy set A : U → L∗ such that A(x) = (tA(x), fA(x)) for all x ∈ U.
Let P(U) denote the power set of U and let EU (called the parameter space and simply denoted

by E) be the set of all parameters associated with objects in U. There is no further restriction on



Mathematics 2019, 7, 166 4 of 26

parameters. The parameter space E might be an infinite set even if U is a finite set. To serve pragmatic
purpose, attributes, criteria, or characteristics of objects in U are often chosen as parameters. Following
Molodtsov [10], a soft set over U is defined as a pair S = (F, A), where A ⊆ E and F : A→P(U) is a
set-valued mapping, called the approximate function of the soft set S.

By combining soft sets with intuitionistic fuzzy sets, Maji et al. [18] initiated the following notion.

Definition 2. [18] A pair I = (F̃, A) is called an intuitionistic fuzzy soft set over U, where A ⊆ E and
F̃ : A→ IFS(U) is a mapping.

3. Binary Relations and Order Relations

In this section, let us recall some basic notions regarding binary relations and order relations.

Definition 3. A binary relation R between two sets A and B is a subset of the direct product A × B. In
particular, R ⊆ A× A is called a (homogeneous) binary relation on A.

Let R be a binary relation between A and B. If (a, b) ∈ R, we say that a is R-related to b (or a, b
are R-related), which is denoted by aRb. The domain of R is the set of all x ∈ A such that xRy for some
y ∈ B. The range of R is the set of all y ∈ B such that xRy for some x ∈ A.

Definition 4. A binary relation R on a set A is said to be:

• reflexive if (x, x) ∈ R for all x ∈ A.
• irreflexive (or strict) if (x, x) /∈ R for all x ∈ A.
• symmetric if (x, y) ∈ R, then (y, x) ∈ R for all x, y ∈ A.
• antisymmetric if (x, y) ∈ R and (y, x) ∈ R, then x = y for all x, y ∈ A.
• asymmetric if (x, y) ∈ R, then (y, x) /∈ R for all x, y ∈ A.
• transitive if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R for all x, y, z ∈ A.
• complete if x 6= y, then (x, y) ∈ R or (y, x) ∈ R for all x, y ∈ A.
• total (or strong complete) if (x, y) or (y, x) for all x, y ∈ A.

Definition 5. A binary relation � on a set A is called a preorder if it is reflexive and transitive.

Definition 6. An antisymmetric preorder � on A is called a partial order.

Definition 7. A complete preorder � on A is called a weak order.

Definition 8. A weak order � on A is called a linear order (or total order) if it is antisymmetric.

A set A together with a partial order � on A is called a poset and is denoted by (A,�). If � is a
total order, the poset (A,�) is called a chain.

Definition 9. [50] A partial order � on L∗ is said to be admissible if

(1) � is a linear order on L∗;
(2) For all A, B ∈ L∗, A ≤L∗ B implies A � B.

Definition 10. Let (P1,�1) and (P2,�2) be two posets. The lexicographic order � on P1 × P2 is defined by

(a1, b1) ≤ (a2, b2)⇔ (a1 ≺1 a2) ∨ (a1 = a2 ∧ b1 �1 b2)

for all (a1, b1), (a2, b2) ∈ P1 × P2.
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In the above definition, a1 ≺1 a2 means a1 �1 a2 and a1 6= a2. It is easy to show that the
lexicographic order ≤ is reflexive, antisymmetric and transitive. Thus it is a partial order on the
Cartesian product P1 × P2.

Let L([0, 1]) denote the set of all closed subintervals of the unit interval. That is,

L([0, 1]) = {[a, b] | 0 ≤ a ≤ b ≤ 1}.

With respect to the relation ≤2 given by

[a, b] ≤2 [c, d]⇔ a ≤ c ∧ b ≤ d, (2)

the set L([0, 1]) becomes a poset with the minimum 0L = [0, 0] and the maximum 1L = [1, 1]. In
order to extend the partial order ≤2 to a linear order, Bustince et al. [50] introduced the following
lexicographic orders of intervals.

Definition 11. [50] The binary relation �Lex1 on L([0, 1]) is defined as

[a, b] �Lex1 [c, d]⇔ (a < c) ∨ (a = c ∧ b ≤ d), (3)

where [a, b] and [c, d] are intervals in L([0, 1]).

Definition 12. [50] The binary relation �Lex2 on L([0, 1]) is defined as

[a, b] �Lex2 [c, d]⇔ (b < d) ∨ (b = d ∧ a ≤ c), (4)

where [a, b] and [c, d] are intervals in L([0, 1]).

As shown below, Bustince et al. [50] pointed out that lexicographic orders like �Lex1 and �Lex2

are indispensable since it is impossible to represent them using only one real-valued function.

Theorem 1. [50] Let � be an admissible order on L([0, 1]). Then it cannot be induced by means of a single
continuous function f : [0, 1]2 → [0, 1].

4. Lexicographic Orders of IFVs

The following concept was pioneered by Chen and Tan [42] to solve MADM problems in an
intuitionistic fuzzy setting.

Definition 13. [42] The score function is a mapping s : L∗ → [−1, 1] given by s(A) = sA = tA − fA for all
A = (tA, fA) ∈ L∗.

The score function aims to calculate the net effect of positive and negative evaluations. Later, Hong
and Choi [49] pointed out that the score function might fail to differentiate some obviously distinct
IFVs with the same score. To overcome this difficulty, they developed another function as follows.

Definition 14. [49] The accuracy function is a mapping h : L∗ → [0, 1] given by h(A) = hA = tA + fA for
all A = (tA, fA) ∈ L∗.

Using the score function and the accuracy function, Xu and Yager [33] developed a method for
comparing IFVs in the following way.

Definition 15. [33] Let A = (tA, fA) and B = (tB, fB) be two IFVs. Then A, B ∈ L∗ can be compared as
follows:
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• if sA < sB, A is smaller than B and denoted by A < B;
• if sA = sB, then we have:

(1) if hA = hB, A is equivalent to B and denoted by A = B;
(2) if hA < hB, A is smaller than B and denoted by A < B;
(3) if hA > hB, A is greater than B and denoted by A > B.

It is worth noting that Definition 15 can be simplified as a binary relation ≤(s,h) on the lattice
of IFVs:

A ≤(s,h) B⇔ (sA < sB) ∨ (sA = sB ∧ hA ≤ hB) (5)

for all A, B ∈ L∗. The relation ≤(s,h) is a linear order on L∗, which will be called the Xu-Yager
lexicographic order of IFVs in the following.

Xu [37] showed that for all (tA, fA), (tB, fB) ∈ L∗,

(tA ≤ tB) ∧ ( fB ≤ fA)⇒ (tA, fA) ≤(s,h) (tB, fB).

Thus the Xu-Yager lexicographic order ≤(s,h) is an admissible order on L∗.

Definition 16. [40] A partial order � on L∗ is said to be bounded if

(1) (0, 1) � A for all A ∈ L∗;
(2) A � (1, 0) for all A ∈ L∗.

Definition 17. [40] A partial order � on L∗ is said to be normal if

(1) tA = tB and fA ≥ fB implies A � B for all A, B ∈ L∗;
(2) tA ≤ tB and fA = fB implies A � B for all A, B ∈ L∗.

It is easy to see that every admissible order on L∗ is bounded and normal.

Definition 18. [40] The expectation score function is a mapping δ : L∗ → [0, 1] such that

δ(A) = δA =
tA − fA + 1

2
(6)

for all A = (tA, fA) ∈ L∗.

Based on the expectation score function, Feng et al. [40] proposed the following lexicographic
order of IFVs.

Definition 19. [40] Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation ≤(t,δ) on L∗ is
defined as

A ≤(t,δ) B⇔ (tA < tB) ∨ (tA = tB ∧ δA ≤ δB). (7)

Theorem 2. [40] The relation ≤(t,δ) is an admissible order on L∗.

By interchanging the membership grade with the expectation score, Feng et al. [40] introduced
another lexicographic order of IFVs as follows.

Definition 20. [40] Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation ≤(δ,t) on L∗ is
defined as

A ≤(δ,t) B⇔ (δA < δB) ∨ (δA = δB ∧ tA ≤ tB). (8)
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Theorem 3. [40] Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. Then

A ≤(s,h) B⇔ A ≤(δ,t) B.

The above assertion indicates that ≤(δ,t) coincides with the Xu-Yager lexicographic order ≤(s,h).
Moreover, Feng et al. [40] established the following equivalent characterizations for the Xu-Yager
lexicographic order.

Theorem 4. [40] Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. Then the following are equivalent:

(1) sA = sB ∧ hA ≤ hB;
(2) δA = δB ∧ tA ≤ tB;
(3) sA = sB ∧ tA ≤ tB;
(4) sA = sB ∧ fA ≤ fB;
(5) δA = δB ∧ fA ≤ fB.

Definition 21. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation ≤(δ,h) on L∗ is given by

A ≤(δ,h) B⇔ (δA < δB) ∨ (δA = δB ∧ hA ≤ hB). (9)

Definition 22. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation ≤(s,t) on L∗ is given by

A ≤(s,t) B⇔ (sA < sB) ∨ (sA = sB ∧ tA ≤ tB). (10)

Corollary 1. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. Then

A ≤(s,h) B⇔ A ≤(δ,t) B⇔ A ≤(δ,h) B⇔ A ≤(s,t) B.

Proof. This follows directly from Theorem 4.
The results established in Theorem 4 and Corollary 1 indicate that the lexicographic orders ≤(s,t),

≤(s,h), ≤(δ,t) and ≤(δ,h), in spite of being defined in terms of different measures, will always produce
the same results when we use them to compare or rank IFVs. This equivalence is illustrated by Figure 1.

Figure 1. The equivalence of the orders ≤(s,t), ≤(s,h), ≤(δ,t) and ≤(δ,h).

Definition 23. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation ≤(δ, f ) on L∗ is given by

A ≤(δ, f ) B⇔ (δA < δB) ∨ (δA = δB ∧ fA ≥ fB). (11)
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Definition 24. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation ≤(s, f ) on L∗ is given by

A ≤(s, f ) B⇔ (sA < sB) ∨ (sA = sB ∧ fA ≥ fB). (12)

Corollary 2. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. Then

A ≤(δ, f ) B⇔ A ≤(s, f ) B.

Proof. This follows directly from Theorem 4.
As shown in the example below, ≤(s,h) and ≤(δ, f ) are different lexicographic orders of IFVs.

Example 1. Consider two IFVs
A = (tA, fA) = (0.2, 0.3)

and
B = (tB, fB) = (0.3, 0.4).

It is easy to see that sA = −0.1, hA = 0.5 and δA = 0.45. Also we have sB = −0.1, hB = 0.7 and δB = 0.45.
Since sA = sB and hA < hB, we deduce that A ≤(s,h) B. On the other hand, A ≤(δ, f ) B is not true since
δA = δB and fA < fB. Similarly, we can show that B ≤(δ, f ) A holds while B ≤(s,h) A is not true. This shows
that ≤(s,h) and ≤(δ, f ) are different.

From Theorem 3, it follows that ≤(δ,t) and ≤(δ, f ) are distinct. Using Corollary 1 and Corollary 2,
many similar results can easily be deduced, which are no longer stated here.

Motivated by Bustince’s ordering �Lex1 of intervals, we introduce the following order relations
for IFVs.

Definition 25. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation ≤(t, f ) on L∗ is given by

A ≤(t, f ) B⇔ (tA < tB) ∨ (tA = tB ∧ fA ≥ fB). (13)

It is interesting to see that ≤(t, f ) coincides with the order relation ≤(t,δ).

Theorem 5. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. Then A ≤(t,δ) B if and only if A ≤(t, f ) B.

Proof. First, suppose that A ≤(t,δ) B. Then the following two cases should considered.
(1) If tA < tB, then A ≤(t, f ) B.
(2) If tA = tB and δA ≤ δB, we have

δB − δA =
tB − fB + 1

2
− tA − fA + 1

2

=
(tB − tA) + ( fA − fB)

2

=
fA − fB

2
≥ 0.

Thus tA = tB and fA ≥ fB. That is, A ≤(t, f ) B.
Conversely, assume that A ≤(t, f ) B. Then we consider the following two cases.
(1) If tA < tB, then A ≤(t,δ) B.
(2) If tA = tB and fA ≥ fB, we have

δA =
tA − fA + 1

2
≤ tB − fB + 1

2
= δB.

Thus tA = tB and δA ≤ δB. That is, A ≤(t, f ) B.
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Theorem 6. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. Then the following are equivalent:

(1) tA = tB ∧ fA ≥ fB;
(2) tA = tB ∧ δA ≤ δB;
(3) tA = tB ∧ sA ≤ sB;
(4) tA = tB ∧ hA ≥ hB.

Proof. Note first that (1) and (2) are equivalent as shown in the proof of Theorem 5.
Next, we can also show that (1) and (3) are equivalent. In fact, suppose that A = (tA, fA) and

B = (tB, fB) are two IFVs such that tA = tB and fA ≥ fB. Then we have

sA = tA − fA ≤ tB − fB = sB.

Conversely, assume that tA = tB and sA ≤ sB. Then we can deduce that

fA − fB = tB − fB − tA + fA

= sB − sA ≥ 0.

Thus (1) and (3) are equivalent.
Finally, it remains to prove that (1) and (4) are equivalent. To show this, assume first that tA = tB

and fA ≥ fB. Then we have
hA = tA + fA ≥ tB + fB = hB.

Conversely, assume that tA = tB and hA ≥ hB. Then we can deduce that

fA − fB = tA + fA − tB − fB

= hA − hB ≥ 0.

Thus (1) and (4) are equivalent as well. This completes the entire proof.

Definition 26. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation ≤(t,s) on L∗ is given by

A ≤(t,s) B⇔ (tA < tB) ∨ (tA = tB ∧ sA ≤ sB). (14)

Corollary 3. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. Then

A ≤(t,δ) B⇔ A ≤(t, f ) B⇔ A ≤(t,s) B.

Proof. This follows directly from Theorem 6.
The results established in Theorem 6 and Corollary 3 indicate that the lexicographic orders ≤(t,s),

≤(t, f ) and ≤(t,δ), in spite of being defined in terms of different measures, will always produce the same
results when we use them to compare or rank IFVs. This equivalence is illustrated by Figure 2.

It is worth noting that ≤(s,h) and ≤(t,δ) are distinct lexicographic orders of IFVs as illustrated by
the following example.

Example 2. Let A = (tA, fA) = (0.3, 0.4) and B = (tB, fB) = (0.2, 0.1) be two IFVs in L∗. Then we have
sA = −0.1 and sB = 0.1. Thus it is clear that A ≤(s,h) B holds while A ≤(t,δ) B is not true since sA < sB and
tB < tA. In a similar fashion, we can prove that B ≤(t,δ) A holds while B ≤(s,h) A is not true. Hence ≤(s,h)
and ≤(t,δ) are distinct.

According to Theorem 3, it follows that ≤(δ,t) and ≤(t,δ) are different. Using Corollary 1 and
Corollary 3, a number of similar results can easily be deduced, which are no longer stated here. In
addition, it should be noted that ≤(t,δ) and ≤(δ, f ) are different lexicographic orders of IFVs as shown
below.
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Figure 2. The equivalence of the orders ≤(t,s), ≤(t, f ) and ≤(t,δ).

Example 3. Let us consider two IFVs

A = (tA, fA) = (0.3, 0.2)

and
B = (tB, fB) = (0.4, 0.5).

It is easy to see that δA = 0.55 and δB = 0.45. Note first that A ≤(t,δ) B since tA < tB. On the other hand,
A ≤(δ, f ) B is not true since δA > δB. Similarly, we can prove that B ≤(δ, f ) A holds while B ≤(t,δ) A is not
true. This shows that ≤(t,δ) and ≤(δ, f ) are distinct.

From Corollary 2, it follows that ≤(t,δ) and ≤(s, f ) are different. Using Corollary 2 and Corollary 3,
other similar results can easily be deduced, which are no longer stated here.

Motivated by Bustince’s ordering �Lex2 of intervals, we introduce the following order relations
for IFVs.

Definition 27. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation ≤( f ,t) on L∗ is given by

A ≤( f ,t) B⇔ ( fA > fB) ∨ ( fA = fB ∧ tA ≤ tB). (15)

Definition 28. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation ≤( f ,δ) on L∗ is given by

A ≤( f ,δ) B⇔ ( fA > fB) ∨ ( fA = fB ∧ δA ≤ δB). (16)

Theorem 7. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. Then A ≤( f ,t) B if and only if A ≤( f ,δ) B.

Proof. First, assume that A ≤( f ,t) B. The following two cases should be considered.
(1) If fA > fB, then A ≤( f ,δ) B.
(2) If fA = fB and tA ≤ tB, we have

δA =
tA − fA + 1

2
≤ tB − fB + 1

2
= δB.

Thus fA = fB and δA ≤ δB. That is, A ≤( f ,δ) B.
Conversely, suppose that A ≤( f ,δ) B. Then we consider the following two cases.
(1) If fA > fB, then A ≤( f ,t) B.
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(2) If fA = fB and δA ≤ δB, we have

δB − δA =
tB − fB + 1

2
− tA − fA + 1

2

=
(tB − tA) + ( fA − fB)

2

=
tB − tA

2
≥ 0.

Thus fA = fB and tA ≤ tB. That is, A ≤( f ,t) B.

Theorem 8. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. Then the following are equivalent:

(1) fA = fB ∧ tA ≤ tB;
(2) fA = fB ∧ hA ≤ hB;
(3) fA = fB ∧ sA ≤ sB;
(4) fA = fB ∧ δA ≤ δB.

Proof. Note first that (1) and (4) are equivalent as shown in the proof of Theorem 7.
Next, we can also show that (1) and (2) are equivalent. In fact, suppose that A = (tA, fA) and

B = (tB, fB) are two IFVs such that fA = fB and tA ≤ tB. Then we have

hA = tA + fA ≤ tB + fB = hB.

Conversely, assume that fA = fB and hA ≤ hB. Then we can deduce that

tB − tA = tB + fB − tA − fA

= hB − hA ≥ 0

Thus (1) and (2) are equivalent.
Finally, it remains to prove that (1) and (3) are equivalent. To show this, assume first that fA = fB

and tA ≤ tB. Then we have
sA = tA − fA ≤ tB − fB = sB.

Conversely, assume that fA = fB and sA ≤ sB. Then we can deduce that

tB − tA = tB − fB − tA + fA

= sB − sA ≥ 0.

Thus (1) and (3) are equivalent as well. This completes the entire proof of this theorem.

Definition 29. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation ≤( f ,s) on L∗ is given by

A ≤( f ,s) B⇔ ( fA > fB) ∨ ( fA = fB ∧ sA ≤ sB). (17)

Definition 30. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. The binary relation≤( f ,h) on L∗ is given by

A ≤( f ,h) B⇔ ( fA > fB) ∨ ( fA = fB ∧ hA ≤ hB). (18)

Corollary 4. Let A = (tA, fA) and B = (tB, fB) be IFVs in L∗. Then

A ≤( f ,t) B⇔ A ≤( f ,h) B⇔ A ≤( f ,δ) B⇔ A ≤( f ,s) B.

Proof. This follows directly from Theorem 8.
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The results established in Theorem 8 and Corollary 4 indicate that the lexicographic orders ≤( f ,t),
≤( f ,s), ≤( f ,h) and ≤( f ,δ), in spite of being defined in terms of different measures, will always produce
the same results when we use them to compare or rank IFVs. This equivalence is illustrated by Figure 3.

Figure 3. The equivalence of the orders ≤( f ,t), ≤( f ,s), ≤( f ,h) and ≤( f ,δ).

To complete our discussion, it suffices to show the differences among the rest of lexicographic
orders of IFVs by several illustrative examples as follows.

Example 4. Consider two IFVs
A = (tA, fA) = (0.3, 0.3)

and
B = (tB, fB) = (0.5, 0.4).

It is clear that sA = 0 and sB = 0.1. Thus it follows that A ≤(s,h) B holds while A ≤( f ,t) B is not true since
sA < sB and fA < fB. Similarly, we can deduce that B ≤( f ,t) A holds while B ≤(s,h) A is false. Therefore,
≤(s,h) and ≤( f ,t) are distinct.

From Theorem 3, it follows that ≤(δ,t) and ≤( f ,t) are different. Using Corollary 1 and Corollary 4,
other similar results can easily be deduced, which are no longer stated here.

Example 5. Let A = (tA, fA) = (0.3, 0.2) and B = (tB, fB) = (0.4, 0.5) be two IFVs in L∗. Thus it is clear
that A ≤(t,δ) B holds while A ≤( f ,t) B is not true since tA < tB and fA < fB. Similarly, we can show that
B ≤( f ,t) A holds while B ≤(t,δ) A is false. This shows that ≤(t,δ) and ≤( f ,t) are distinct.

According to Theorem 5, we can see that ≤(t, f ) and ≤( f ,t) are different as well. Using Corollary 3
and Corollary 4, other similar results can easily be deduced, which are no longer stated here.

Example 6. Consider two IFVs
A = (tA, fA) = (0.1, 0.2)

and
B = (tB, fB) = (0.5, 0.4).

Since δA = 0.45 and δB = 0.55, it is clear that A ≤(δ, f ) B holds while A ≤( f ,t) B is not true since δA < δB
and fA < fB. In a similar fashion, it can be verified that B ≤( f ,t) A is true while B ≤(δ, f ) A does not hold.
Hence ≤(δ, f ) and ≤( f ,t) are different.
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From Corollary 2, it follows that ≤(s, f ) and ≤( f ,t) are different. By virtue of Corollary 2 and
Corollary 4, other similar results can easily be deduced, which are no longer stated here.

Theorem 9. The relation ≤(s, f ) is an admissible order on L∗.

Proof. First, we prove that ≤(s, f ) is a linear order on L∗. Let A = (tA, fA), B = (tB, fB) be two IFVs in
L∗. Then the following four cases should be considered.

(1) If sA < sB, then A ≤(s, f ) B.
(2) If sA > sB, then B ≤(s, f ) A.
(3) If sA = sB and fA ≥ fB, then A ≤(s, f ) B.
(4) If sA = sB and fA < fB, then B ≤(s, f ) A.
Thus we have either A ≤(s, f ) B or B ≤(s, f ) A for all A, B ∈ L∗. This means that ≤(s, f ) is a linear

order on L∗.
Next, assume that A ≤L∗ B. Then we have tA ≤ tB and fA ≥ fB. Therefore, we can deduce that

sA = tA − fA ≤ tB − fB = sB.

If sA < sB, then A ≤(s, f ) B; otherwise, we have sA = sB and fA ≥ fB, which also implies A ≤(s, f ) B.
Therefore, ≤(s, f ) is an admissible order on L∗.

Theorem 10. The relation ≤( f ,s) is an admissible order on L∗.

Proof. The proof is similar to that of Theorem 9 and thus omitted.
To summarize the discussion in this section, we demonstrate the relationships among thirteen

lexicographic orders of IFVs with Figure 4. Note that the meaning of the symbols or graphic elements
used in Figure 4 is as follows:

• The symbol→ represents the logical implication;
• Each dotted box represents a category consisting of those lexicographic orders which are logically

equivalent.

As shown in Figure 4, all the lexicographic orders investigated in this section are admissible
orders, which can be divided into four categories. The lexicographic orders from different categories
are distinct in essence, while lexicographic orders in the same category are logically equivalent, in
spite of being defined in terms of different measures.

Figure 4. Relationships among lexicographic orders of IFVs.
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5. Compatible Lexicographic Orders

Xu and Yager [33,37] initiated some fundamental operations for IFVs, which laid a solid
foundation for aggregating intuitionistic fuzzy information.

Definition 31. [37] Let A = (tA, fA) and B = (tB, fB) be two IFVs in L∗. Let λ be any positive real number.
Then we have the following operations:

• A⊕ B = (tA + tB − tA · tB, fA · fB);
• λA = (1− (1− tA)

λ, f λ
A).

In what follows, we refer to A⊕ B as the algebraic sum of the IFVs A and B. In addition, λA is
called the scalar product of the positive real number λ and the IFV A.

Theorem 11. [37] Let A = (tA, fA) and B = (tB, fB) be two IFVs in L∗. Let λ, λ1 and λ2 be positive real
numbers. Then we have the following:

(1) A⊕ B = B⊕ A;
(2) λ(A⊕ B) = λA⊕ λB;
(3) (λ1 + λ2)A = λ1 A⊕ λ2 A.

Definition 32. [37] Let αi (i = 1, 2, · · · , n) be IFVs in L∗. The intuitionistic fuzzy weighted averaging (IFWA)
operator of dimension n is a mapping Ξw : (L∗)n → L∗ given by

Ξw(α1, α2, · · · , αn) = w1α1 ⊕ w2α2 ⊕ · · · ⊕ wnαn,

where w = (w1, w2, · · · , wn)T is the weight vector such that wi ∈ [0, 1] (i = 1, 2, · · · , n) and ∑n
i=1 wi = 1.

Especially, if w = ŵ = (1/n, 1/n, · · · , 1/n)T , then Ξŵ is simply written as Ξ and called the
intuitionistic fuzzy averaging (IFA) operator. That is,

Ξ(α1, α2, · · · , αn) =
1
n
(α1 ⊕ α2 ⊕ · · · ⊕ αn). (19)

The following result is helpful for simplifying the calculation regarding IFWA operators.

Theorem 12. [37] Let αi = (tαi , fαi ) ∈ L∗ (i = 1, 2, · · · , n). Then we have

Ξw(α1, α2, · · · , αn) =

(
1−

n

∏
i=1

(1− tαi )
wi ,

n

∏
i=1

f wi
αi

)
. (20)

where w = (w1, w2, · · · , wn)T is the weight vector.

Proposition 1. Let A = (tA, fA) ∈ L∗ and λ be any positive real number. Then we have the following:

(1) A⊕ (1, 0) = (1, 0);
(2) A⊕ (0, 1) = A;
(3) λ(0, 1) = (0, 1).
(4) λ(1, 0) = (1, 0).

Proof. Straightforward.

Definition 33. Let � be a preorder on L∗. Then we say that � is left compatible with the algebraic sum
operation if

B � C ⇒ A⊕ B � A⊕ C,
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where A = (tA, fA), B = (tB, fB) and C = (tC, fC) are IFVs in L∗.

Definition 34. Let � be a preorder on L∗. Then we say that � is right compatible with the algebraic sum
operation if

B � C ⇒ B⊕ A � C⊕ A,

where A = (tA, fA), B = (tB, fB) and C = (tC, fC) are IFVs in L∗.

A lexicographic order � is said to be compatible with the algebraic sum operation if it is both left
and right compatible. Since the algebraic sum operation is commutative, we can immediately obtain
the following result.

Proposition 2. Let � be a preorder on L∗. Then the following statements are equivalent:

(1) � is left compatible with the algebraic sum operation;
(2) � is right compatible with the algebraic sum operation;
(3) � is compatible with the algebraic sum operation.

Proof. Straightforward.

Definition 35. Let � be a preorder on L∗. Then we say that � is pseudo-compatible with the scalar product
operation if

λ1 ≤ λ2 ⇒ λ1 A � λ2 A,

where A ∈ L∗ and λ1, λ2 are positive real numbers.

Definition 36. Let � be a preorder on L∗. Then we say that � is compatible with the scalar product operation
if it satisfies:

(1) A � B⇒ λ1 A � λ1B;
(2) λ1 ≤ λ2 ⇒ λ1 A � λ2 A,

where A, B ∈ L∗ and λ1, λ2 are positive real numbers.

Now, let us investigate whether the aforementioned lexicographic orders of IFVs are compatible
with the algebraic sum operation.

Theorem 13. Let A = (tA, fA), B = (tB, fB) and C = (tC, fC) be IFVs in L∗ such that B ≤(t, f ) C. Then we
have the following:

(1) A⊕ B ≤(t, f ) A⊕ C;
(2) B⊕ A ≤(t, f ) C⊕ A;
(3) A⊕ B ≤(t,δ) A⊕ C;
(4) B⊕ A ≤(t,δ) C⊕ A;
(5) A⊕ B ≤(t,s) A⊕ C;
(6) B⊕ A ≤(t,s) C⊕ A.

Proof. Note that we only need to prove the first assertion. The others can be deduced from it using
Corollary 3 and Theorem 11.

To show the first assertion, let us suppose that B ≤(t, f ) C holds. Then according to Definition 31,
we have

A⊕ B = (tA + tB − tA · tB, fA · fB)

and
A⊕ C = (tA + tC − tA · tC, fA · fC).



Mathematics 2019, 7, 166 16 of 26

Hence, we consider the following two cases:
(1) If tB < tC, we have

tA⊕B − tA⊕C = (tB − tC)(1− tA) < 0,

and so tA⊕B ≤ tA⊕C.
(2) If tB = tC and fB ≥ fC, then tA⊕B = tA⊕C and also we have

fA⊕B − fA⊕C = fA( fB − fC) ≥ 0,

which means that fA⊕B ≥ fA⊕C.
In both cases, we can deduce that A⊕ B ≤(t, f ) A⊕ C.

Proposition 3. Let A = (tA, fA), B = (tB, fB) and C = (tC, fC) be IFVs in L∗ with fA > 0. Then

B ≤( f ,t) C ⇒ A⊕ B ≤( f ,t) A⊕ C

Proof. By Definition 31, we have

A⊕ B = (tA + tB − tA · tB, fA · fB)

and
A⊕ C = (tA + tC − tA · tC, fA · fC).

Assume that B ≤( f ,t) C and fA > 0. Then the following two cases should be taken into account.
(1) If fB > fC, we have

fA⊕B − fA⊕C = fA( fB − fC) > 0,

and so fA⊕B > fA⊕C.
(2) If fB = fC and tB ≤ tC, then fA⊕B = fA⊕C and we deduce that

tA⊕B − tA⊕C = (1− tA)(tB − tC) ≤ 0.

That is, tA⊕B ≤ tA⊕C.
In both cases, we can deduce that A⊕ B ≤( f ,t) A⊕ C.
It is worth noting that the condition fA > 0 cannot be removed in the above statement as

demonstrated by the following example.

Example 7. Consider two IFVs
B = (tB, fB) = (0.5, 0.5)

and
C = (tC, fC) = (0.4, 0.4).

Note first that B ≤( f ,t) C holds since fB > fC. Let A = (tA, fA) = (0.5, 0). By calculation, we have
A⊕ B = (0.75, 0) and A⊕ C = (0.7, 0). Thus it is clear that

A⊕ C ≤( f ,t) A⊕ B,

since fA⊕C = fA⊕B = 0 and tA⊕C < tA⊕B. This shows that ≤( f ,t) is incompatible with the algebraic sum
operation.

Using Corollary 4, other similar results can be obtained for lexicographic orders ≤( f ,h), ≤( f ,δ) and
≤( f ,s), which are no longer stated here.
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The following example shows that ≤(s, f ) (or equivalently ≤(δ, f )) is not compatible with the
algebraic sum operation.

Example 8. Consider two IFVs
B = (tB, fB) = (0.3, 0.4)

and
C = (tC, fC) = (0.2, 0.2).

Note first that sB = −0.1 and sC = 0. Thus B ≤(s, f ) C holds since sB < sC. Let A = (tA, fA) = (0.1, 0.2).
By calculation, we have

A⊕ B = (0.37, 0.08)

and
A⊕ C = (0.28, 0.04).

Since sA⊕C = 0.24 < sA⊕B = 0.29, it follows that

A⊕ C ≤(s, f ) A⊕ B.

This shows that ≤(s, f ) is incompatible with the algebraic sum operation.

As shown below, ≤(s,t) is incompatible with the algebraic sum operation.

Example 9. Let us revisit the IFVs in Example 8. It is ease to see that B ≤(s,t) C holds since sB < sC. Note also
that A⊕ C ≤(s,t) A⊕ B holds since sA⊕C < sA⊕B. This counterexample indicates that ≤(s,t) is not compatible
with the algebraic sum operation of IFVs.

From Corollary 1, it follows that the lexicographic orders ≤(δ,t), ≤(s,h) and ≤(δ,h) are incompatible
with the algebraic sum operation of IFVs.

Theorem 14. Let A, B ∈ L∗. Then we have

(1) A ≤(t, f ) B⇒ λ1 A ≤(t, f ) λ1B;
(2) λ1 ≤ λ2 ⇒ λ1 A ≤(t, f ) λ2 A,

where λ1, λ2 are positive real numbers.

Proof. Let A = (tA, fA) and B = (tB, fB) be two IFVs in L∗. Let λ1 and λ2 be two positive real
numbers. First, assume that A ≤(t, f ) B. The following two cases should be considered.

(1) If tA < tB, then (1− tA)
λ1 > (1− tB)

λ1 , which implies that

tλ1 A = 1− (1− tA)
λ1 < 1− (1− tB)

λ1 = tλ1B.

(2) If tA = tB and fA ≥ fB, then we have

tλ1 A = 1− (1− tA)
λ1 = 1− (1− tB)

λ1 = tλ1B,

and
fλ1 A = f λ1

A ≥ f λ1
B = fλ1B.

In both cases, we can deduce that λ1 A ≤(t, f ) λ1B. This completes the proof of the first assertion.
Next, suppose that λ1 ≤ λ2. If λ1 = λ2, it is clear that λ1 A ≤(t, f ) λ2 A since ≤(t, f ) is reflexive.

Otherwise, let λ1 < λ2, and we consider the following three cases.
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(1) If 0 < tA < 1, then (1− tA)
λ1 > (1− tA)

λ2 . It follows that

tλ1 A = 1− (1− tA)
λ1 < 1− (1− tA)

λ2 = tλ2 A.

(2) If tA = 1, then fA = 0 and so λ1 A = (1, 0) = λ2 A.
(3) If tA = 0, then tλ1 A = tλ2 A = 0 and we have

fλ1 A = f λ1
A ≥ f λ2

A = fλ2 A.

In all these cases, we can deduce that λ1 A ≤(t, f ) λ2 A. This completes the proof of the
second assertion.

The above result shows that the lexicographic order ≤(t, f ) is compatible with the scalar product
operation. From Corollary 3, it follows that lexicographic orders ≤(t,s) and ≤(t,δ) are compatible with
the scalar product operation. In addition, we can prove the following result regarding the lexicographic
order ≤( f ,t) in a similar way.

Theorem 15. The lexicographic order ≤( f ,t) is compatible with the algebraic sum operation of IFVs.

Proof. Let A = (tA, fA) and B = (tB, fB) be two IFVs in L∗. Let λ1 and λ2 be two positive real
numbers. First, assume that A ≤( f ,t) B. The following two cases should be considered.

(1) If fA > fB, then we have
fλ1 A = f λ1

A > f λ1
B = fλ1B.

(2) If fA = fB and tA ≤ tB, then we have

fλ1 A = f λ1
A = f λ1

B = fλ1B.

and
tλ1 A = 1− (1− tA)

λ1 ≤ 1− (1− tB)
λ1 = tλ1B,

since (1− tA)
λ1 ≤ (1− tB)

λ1 .
In both cases, we can deduce that λ1 A ≤( f ,t) λ1B. This completes the proof of the first assertion.
Next, suppose that λ1 ≤ λ2. If λ1 = λ2, it is clear that λ1 A ≤( f ,t) λ2 A since ≤( f ,t) is reflexive.

Otherwise, let λ1 < λ2, and the following three cases should be considered.
(1) If 0 < fA < 1, then we have

fλ1 A = f λ1
A > f λ2

A = fλ2 A.

(2) If fA = 1, then tA = 0 and so λ1 A = (0, 1) = λ2 A.
(3) If fA = 0, then fλ1 A = fλ2 A = 0 and we have

tλ1 A = 1− (1− tA)
λ1 ≤ 1− (1− tA)

λ2 = tλ2 A,

since (1− tA)
λ2 ≤ (1− tA)

λ1 .
In all these cases, we can deduce that λ1 A ≤( f ,t) λ2 A. This completes the proof of the second

assertion.
From Corollary 4 and the above result, it follows that ≤( f ,h), ≤( f ,s) and ≤( f ,δ) are compatible with

the scalar product operation.

Example 10. Consider two IFVs
A = (tA, fA) = (0.2, 0.2)

and
B = (tB, fB) = (0.4, 0.4).



Mathematics 2019, 7, 166 19 of 26

Note that A ≤(s,t) B since sA = sB and tA < tB. On the other hand, we have

0.5A = (0.1056, 0.4472)

and
0.5B = (0.2254, 0.6325).

Since s0.5B = −0.4071 < s0.5A = −0.3416, it is clear that 0.5B ≤(s,t) 0.5A. This counterexample shows that
the lexicographic order ≤(s,t) is incompatible with the scalar product operation.

Nevertheless, the following result shows that ≤(s,t) is pseudo-compatible with the scalar product
operation.

Theorem 16. Let A = (tA, fA) ∈ L∗. Then we have

λ1 ≤ λ2 ⇒ λ1 A ≤(s,t) λ2 A,

where λ1, λ2 are positive real numbers.

Proof. Let A = (tA, fA) be an IFV in L∗. Let λ1 and λ2 be two positive real numbers such that λ1 ≤ λ2.
If λ1 = λ2, then λ1 A ≤(s,t) λ2 A since ≤(s,t) is reflexive. Otherwise, let λ1 < λ2, and we consider the
following three cases.

(1) If 0 < tA < 1, then (1− tA)
λ1 > (1− tA)

λ2 . Note also that

fλ1 A = f λ1
A ≥ f λ2

A = fλ2 A.

Thus we can deduce that

sλ2 A − sλ1 A = (tλ2 A − fλ2 A)− (tλ1 A − fλ1 A)

= (tλ2 A − tλ1 A) + ( fλ1 A − fλ2 A)

= ((1− tA)
λ1 − (1− tA)

λ2) + ( f λ1
A − f λ2

A ) > 0,

which implies that sλ1 A < sλ2 A.
(2) If tA = 1, then fA = 0 and so λ1 A = (1, 0) = λ2 A.
(3) If tA = 0, then tλ1 A = tλ2 A = 0. It follows that

sλ1 A = − fλ1 A ≤ − fλ2 A = sλ2 A.

If sλ1 A < sλ2 A, the result follows directly. Otherwise, we have sλ1 A = sλ2 A, which implies that
fλ1 A = fλ2 A, and so λ1 A = λ2 A.

In all these cases, we can deduce that λ1 A ≤(s,t) λ2 A. This completes the proof.
Using Corollary 1, other similar results can be obtained for lexicographic orders ≤(δ,t), ≤(s,h) and

≤(δ,h), which are no longer stated here.

Example 11. Consider two IFVs
A = (tA, fA) = (0.3, 0.3)

and
B = (tB, fB) = (0.2, 0.2).

Since sA = 0 = sB and fA > fB, we have A ≤(s, f ) B. Taking λ = 2, we have λA = (0.51, 0.09) and
λB = (0.36, 0.04). It follows that λB ≤(s, f ) λA since sλB = 0.32 < sλA = 0.42. This shows that ≤(s, f ) (or
equivalently ≤(δ, f )) is incompatible with the scalar product operation.
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It is worth noting that ≤(s, f ) (or equivalently ≤(δ, f )) is pseudo-compatible with the scalar product
operation as shown below.

Theorem 17. Let A = (tA, fA) ∈ L∗. Then we have

λ1 ≤ λ2 ⇒ λ1 A ≤(s, f ) λ2 A,

where λ1, λ2 are positive real numbers.

Proof. The proof is similar to that of Theorem 16 and thus omitted.
At the end of this section, we summarize various compatible properties of different lexicographic

orders in Table 1. For the sake of convenience, we choose only one particular order as the representative
in each distinct category of lexicographic orders (see Figure 4). Note also that the full terms
corresponding to the acronyms in Table 1 are given below:

• CAS stands for compatibility with the algebraic sum operation;
• CSP stands for compatibility with the scalar product operation;
• PCSP stands for pseudo-compatibility with the scalar product operation.

From Table 1, we can see that all the lexicographic orders discussed in the previous section are
pseudo-compatible with the scalar product operation. The orders ≤( f ,t) and ≤(t, f ) are compatible with
the scalar product. It is worth noting that the order≤(t, f ) is the only lexicographic order which satisfies
all the compatible properties. In this sense, the order ≤(t, f ) can perfectly serve the purpose of ranking
IFVs in cooperation with the IFWA operator.

Table 1. Compatible properties of lexicographic orders.

≤(s, f ) ≤(s,t) ≤( f ,t) ≤(t, f )

CAS × × × X
PCSP X X X X
CSP × × X X

6. Numerical Illustration

To demonstrate the practical value of the theoretical results obtained in previous sections, we
revisit a benchmark problem regarding risk investment, which was originally raised by Herrera and
Herrera-Viedma [52]. Later on, Wei [53] considered the same problem in an intuitionistic fuzzy setting.
This problem was further investigated by Chen and Tu in [34]. Note that a similar problem was
discussed by Wu and Chen [54] as well.

Assume that there is an investment bank B which intends to invest a sum of money to the most
appropriate company. Let us denote by U the collection of five companies under the consideration of
the bank B. Specifically, the alternatives in U for potential investment include:

• A1 is a car company;
• A2 is a food company;
• A3 is a computer company;
• A4 is an arms company;
• A5 is a television company.

In order to choose the most suitable company, a committee consisting of ten experts is organized
by the bank B to give the evaluation of all companies according to four criteria in C = {C1, C2, C3, C4}.
The meaning of the criterion Cj (1 ≤ j ≤ 4) is as follows:

• C1 stands for low investment risk;
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• C2 stands for high growth rate;
• C3 stands for positive social-political impact;
• C4 stands for low environmental pollution.

All these criteria are beneficial ones. To facilitate the comparison, the evaluation results are
inherited verbatim from [53]. These results can be described by an intuitionistic fuzzy soft set I = (F̃, C)
over U, as shown in Table 2. For instance, the assessment result of the company A2 with respect to
the criterion C4 is given by the IFV F̃(C4)(A2) = (0.4, 0.5). This can be interpreted as “four experts in
the committee think that the food company causes low environmental pollution, while five experts
disagree with this opinion, and also there is one expert who declines to give his/her opinion on
this issue”.

Table 2. Intuitionistic fuzzy soft set I = (F̃, C).

U C1 C2 C3 C4

A1 (0.5, 0.4) (0.6, 0.3) (0.3, 0.6) (0.2, 0.7)
A2 (0.7, 0.3) (0.7, 0.2) (0.7, 0.2) (0.4, 0.5)
A3 (0.6, 0.4) (0.5, 0.4) (0.5, 0.3) (0.6, 0.3)
A4 (0.8, 0.1) (0.6, 0.3) (0.3, 0.4) (0.2, 0.6)
A5 (0.6, 0.2) (0.4, 0.3) (0.7, 0.1) (0.5, 0.3)

Following the way of discussion in [53], we consider the following two different cases. In both
cases, the IFWA operator will be used to aggregate the concerned intuitionistic fuzzy information.

Case 1: In this case, the information about the attribute weights is partly known and the weights can
be determined by solving the following single-objective programming model, as established in [53].

Max D(W) = 1.7w1 + 1.4w2 + 2.7w3 + 3.1w4

s.t. 0.15 ≤ w1 ≤ 0.20

0.16 ≤ w2 ≤ 0.18

0.30 ≤ w3 ≤ 0.35

0.30 ≤ w4 ≤ 0.45

w1 + w2 + w3 + w4 = 1

wj ≥ 0 (j = 1, 2, 3, 4).

The obtained weight vector is

W1 = (w1, w2, w3, w4)
T = (0.20, 0.18, 0.32, 0.30)T .

Using this weight vector, we can calculate the aggregated intuitionistic fuzzy preference value (AIFPV)
ZI(Ai) (1 ≤ i ≤ 5) as follows:

ZI(Ai) = ΞW1

(
F̃(C1)(Ai), F̃(C2)(Ai), F̃(C3)(Ai), F̃(C4)(Ai)

)
= w1 F̃(C1)(Ai)⊕ w2 F̃(C2)(Ai)⊕ w3 F̃(C3)(Ai)⊕ w4 F̃(C4)(Ai)

= 0.2F̃(C1)(Ai)⊕ 0.18F̃(C2)(Ai)⊕ 0.32F̃(C3)(Ai)⊕ 0.3F̃(C4)(Ai).

For instance, the AIFPV ZI(A1) can be obtained by

ZI(A1) =
4⊕

j=1

wj F̃(Cj)(A1) = (0.3841, 0.5115).
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Moreover, we calculate the score of the AIFPVs. For instance, we have s(ZI(A1)) = −0.1274.
Other results regarding the AIFPVs and related measures can be found in Table 3. In addition, the
ranking results of five companies respectively based on the lexicographic orders ≤(s,t), ≤(s, f ), ≤( f ,t)
and ≤(t, f ) are shown in Table 4.

Table 3. AIFPVs and related measures in Case 1.

U AIFPVs s(ZI(Ai)) h(ZI(Ai))

A1 (0.3841, 0.5115) −0.1274 0.8956
A2 (0.6307, 0.2855) 0.3451 0.9162
A3 (0.5528, 0.3347) 0.2181 0.8874
A4 (0.4872, 0.3251) 0.1621 0.8123
A5 (0.5804, 0.1946) 0.3858 0.7750

Table 4. Ranking results given by different lexicographic orders in Case 1.

Lexicographic Orders Ranking Results

≤(s,t) A5 � A2 � A3 � A4 � A1
≤(s, f ) A5 � A2 � A3 � A4 � A1
≤( f ,t) A5 � A2 � A4 � A3 � A1
≤(t, f ) A2 � A5 � A3 � A4 � A1

There are several important points need to be mentioned in view of the results obtained in Case 1:
Firstly, note that the ranking results given by the orders ≤(s,t) and ≤(s, f ) are identical, since the

scores s(ZI(Ai)) (1 ≤ i ≤ 5) are all different. In such a particular situation, the orders ≤(s,t) and ≤(s, f )
will definitely produce the same ranking result as only the score function is used indeed. Nevertheless,
it should be noted that ≤(s,t) and ≤(s, f ) are not logically equivalent in general as shown in Section 4.

Secondly, recall that Wei [53] ranked the companies Ai (1 ≤ i ≤ 5) by means of the order ≤(s,h).
The result is as follows:

A5 � A2 � A3 � A4 � A1,

which is the same as the result given by the order ≤(s,t) in Table 4. In fact, we assert that the orders
≤(s,t) and ≤(s,h) will always produce the same ranking, because they are logically equivalent according
to Corollary 1. It is worth noting that the IFWA operator and the order ≤(s,h) was jointly utilized
to aggregate the IFVs and rank the alternatives in [53]. Nevertheless, as mentioned in Section 5,
the order ≤(s,t) (or equivalently ≤(s,h)) is only pseudo-compatible with the scalar product operation.
As illustrated by Example 10, it might happen that A ≤(s,t) B and meanwhile λA �(s,t) λB for λ > 0
in some cases. Consequently, the order ≤(s,t) might give rise to unreasonable ranking results since it is
difficult to act perfectly in cooperation with the IFWA operator.

Last but not least, as pointed out in Section 5, the order ≤(t, f ) is an admissible order on L∗ which
is compatible with both the algebraic sum and scalar product operations. Thus the order ≤(t, f ) is able
to rank IFVs jointly with the IFWA operator in a perfect manner. As a result, the ranking result given
by the order ≤(t, f ) is more reasonable indeed, even though it looks quite different from the results
given by other orders in Case 1.

In fact, the orders ≤(t, f ) and ≤(s,t) might occasionally produce the same ranking result in some
other cases. This will be further illustrated in the discussion below.

Case 2: In this case, the information about the attribute weights is completely unknown. For the sake
of convenience, we assume that each attribute has the equal weight. That is, the weight vector is

W2 = (w1, w2, w3, w4)
T = (0.25, 0.25, 0.25, 0.25)T .
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Note that some minor changes are made to the evaluation regarding the company A4. The new
evaluation information can be expressed by another intuitionistic fuzzy soft set K = (G̃, C) over U,
as shown in Table 5.

Table 5. Intuitionistic fuzzy soft set K = (G̃, C).

U C1 C2 C3 C4

A1 (0.5, 0.4) (0.6, 0.3) (0.3, 0.6) (0.2, 0.7)
A2 (0.7, 0.3) (0.7, 0.2) (0.7, 0.2) (0.4, 0.5)
A3 (0.6, 0.4) (0.5, 0.4) (0.5, 0.3) (0.6, 0.3)
A4 (0.72, 0.1) (0.6, 0.3) (0.29, 0.4) (0.2, 0.601)
A5 (0.6, 0.2) (0.4, 0.3) (0.7, 0.1) (0.5, 0.3)

Based on the intuitionistic fuzzy soft set K = (G̃, C) and new weight vector W2, we can calculate
the corresponding AIFPVs and related measures as done in Case 1. The results are shown in Table 6.
Moreover, the ranking results of five companies respectively based on the lexicographic orders ≤(s,t),
≤(s, f ), ≤( f ,t) and ≤(t, f ) are shown in Table 7.

Table 6. AIFPVs and related measures in Case 2.

U AIFPVs s(ZK(Ai)) h(ZK(Ai))

A1 (0.4215, 0.4738) −0.0523 0.8953
A2 (0.6432, 0.2783) 0.3649 0.9216
A3 (0.5528, 0.3464) 0.2064 0.8992
A4 (0.4978, 0.2914) 0.2064 0.7892
A5 (0.5644, 0.2060) 0.3584 0.7704

Table 7. Ranking results given by different lexicographic orders in Case 2.

Lexicographic Orders Ranking Results

≤(s,t) A2 � A5 � A3 � A4 � A1
≤(s, f ) A2 � A5 � A4 � A3 � A1
≤( f ,t) A5 � A2 � A4 � A3 � A1
≤(t, f ) A2 � A5 � A3 � A4 � A1

We would like to point out the following two issues regarding the results obtained in Case 2.
Firstly, unlike in Case 1, the ranking results given by the orders ≤(s,t) and ≤(s, f ) become different

in this case. Specifically, the result given by ≤(s,t) is

A2 � A5 � A3 � A4 � A1,

while the result given by ≤(s, f ) is

A2 � A5 � A4 � A3 � A1,

since s(ZK(A3)) = s(ZK(A4)), t3 > t4 and f3 > f4.
Secondly, recall that the ranking result given by the order ≤(t, f ) is different from the results given

by other orders in Case 1. However, in this case, it is interesting to observe that the orders ≤(s,t) and
≤(t, f ) can by chance bring forth the same ranking results:

A2 � A5 � A3 � A4 � A1,

even though they are distinct in essence as revealed in Section 4.
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Remark 1. To summarize the discussion in above two cases, we conclude that the lexicographic order ≤(t, f ) (or
equivalently ≤(t,s) and ≤(t,δ)) is most suitable for ranking IFVs in those intuitionistic fuzzy multiple attribute
decision making procedures, where IFWA operator are utilized to aggregate the original decision information
quantified in terms of IFVs. This is mainly due to the fact that ≤(t, f ) is compatible with both the algebraic sum
and scalar product operations. Thus it can cooperate with the IFWA operator and serve the purpose of ranking
IFVs in a coordinated way. On the other hand, if other lexicographic orders such as ≤(s,h), ≤(s, f ) or ≤( f ,t)
will be used in intuitionistic fuzzy multiple attribute decision making, we should consider replacing the IFWA
operator with other aggregation operators, which are consistent with the selected lexicographic order.

7. Conclusions

In this study, we introduced a number of new lexicographic orders with the aid of the membership
function, non-membership function, score function, accuracy function and expectation score function.
We gave some equivalent characterizations and illustrative examples to clarify the relationships among
various lexicographic orders. It has been found that all these lexicographic orders are admissible and
can be divided into four categories (see Figure 4). The lexicographic orders from different categories
are distinct in essence, while lexicographic orders in the same category are logically equivalent. Three
different compatible properties of preorders with respect to the algebraic sum and scalar product
operations of IFVs were introduced as well. We have shown that all the lexicographic orders are
pseudo-compatible with the scalar product operation, and ≤(t, f ) (or equivalently ≤(t,s) and ≤(t,δ))
satisfies all three compatible properties (see Table 1). Moreover, we revisited a benchmark problem to
give comparative analysis of different lexicographic orders and highlighted the practical value of the
obtained results for solving intuitionistic fuzzy multiple attribute decision making problems in real-life
scenarios. In the future, it would be interesting to consider how to define new operations and related
aggregation operators which are compatible with lexicographic orders such as ≤(s,h), ≤(s, f ) or ≤( f ,t),
to further promote pragmatic applications of multiple attribute decision making in an intuitionistic
fuzzy setting.
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