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Abstract

:

By using a certain general conic domain as well as the quantum (or q-) calculus, here we define and investigate a new subclass of normalized analytic and starlike functions in the open unit disk U. In particular, we find the Hankel determinant and the Toeplitz matrices for this newly-defined class of analytic q-starlike functions. We also highlight some known consequences of our main results.
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1. Introduction and Definitions


Let the class of functions, which are analytic in the open unit disk


U=z:z∈Candz<1,








be denoted by LU. Also let A denote the class of all functions f, which are analytic in the open unit disk U and normalized by


f0=0andf′0=1.











Then, clearly, each f∈A has a Taylor–Maclaurin series representation as follows:


fz=z+∑n=2∞anznz∈U.



(1)







Suppose that S is the subclass of the analytic function class A, which consists of all functions which are also univalent in U.



A function f∈A is said to be starlike in U if it satisfies the following inequality:


ℜzf′zfz>0z∈U.











We denote by S∗ the class of all such starlike functions in U.



For two functions f and g, analytic in U, we say that the function f is subordinate to the function g and write this subordination as follows:


f≺gorfz≺gz,








if there exists a Schwarz function w which is analytic in U, with


w0=0andwz<1,








such that


fz=gwz.











In the case when the function g is univalent in U, then we have the following equivalence (see, for example, [1]; see also [2]):


f(z)≺g(z)(z∈U)⟺f(0)=g(0)andf(U)⊂g(U).











Next, for a function f∈A given by (1) and another function g∈A given by


g(z)=z+∑n=2∞bnznz∈U,








the convolution (or the Hadamard product) of f and g is defined here by


f∗gz:=z+∑n=2∞anbnzn=:g∗fz.



(2)







Let P denote the well-known Carathéodory class of functions p, analytic in the open unit disk U, which are normalized by


pz=1+∑n=1∞cnzn,



(3)




such that


ℜpz>0z∈U.











Following the works of Kanas et al. (see [3,4]; see also [5]), we introduce the conic domain Ωk(k≧0) as follows:


Ωk=u+iv:u>ku−12+v2.



(4)







In fact, subjected to the conic domain Ωk(k≧0), Kanas and Wiśniowska (see [3,4]; see also [6]) studied the corresponding class k-ST of k-starlike functions in U (see Definition 1 below). For fixed k,Ωk represents the conic region bounded successively by the imaginary axis (k=0), by a parabola (k=1), by the right branch of a hyperbola (0<k<1), and by an ellipse (k>1).



For these conic regions, the following functions play the role of extremal functions.


pk(z)=1+z1−z=1+2z+2z2+⋯k=01+2π2log1+z1−z2k=11+21−k2sinh22πarccoskarctanhz0≦k<11+1k2−11+sinπ2K(κ)∫0u(z)κdt(1−t2)(1−κ2t2)k>1,



(5)




where


u(z)=z−κ1−κzz∈U,








and κ∈(0,1) is so chosen that


k=coshπK′(κ)4K(κ).











Here K(κ) is Legendre’s complete elliptic integral of first kind and


K′(κ)=K1−κ2,








that is, K′κ is the complementary integral of Kκ (see, for example, ([7], p. 326, Equation 9.4 (209))). Indeed, from (5), we have


pk(z)=1+p1z+p2z2+p3z3+⋯.



(6)







The class k-ST is defined as follows.



Definition 1.

A function f∈A is said to be in the class k-ST if and only if


zf′zfz≺pkz∀z∈U;k≧0.













We now recall some basic definitions and concept details of the q-calculus which will be used in this paper (see, for example, ([7], p. 346 et seq.)). Throughout the paper, unless otherwise mentioned, we suppose that 0<q<1 and


N=1,2,3⋯=N0\0N0:=0,1,2,⋯.











Definition 2.

Let q∈0,1 and define the q-number λq by


λq=1−qλ1−qλ∈C∑k=0n−1qk=1+q+q2+⋯+qn−1λ=n∈N.













Definition 3.

Let q∈0,1 and define the q-factorial nq! by


nq!=1n=0∏k=1nkqn∈N.













Definition 4

(see [8,9]). The q-derivative (or q-difference) operator Dq of a function f defined, in a given subset of C, by


Dqfz=fz−fqz1−qzz≠0f′0z=0,



(7)




provided that f′0 exists.





From Definition 4, we can observe that


limq→1−Dqfz=limq→1−fz−fqz1−qz=f′z








for a differentiable function f in a given subset of C. It is also known from (1) and (7) that


Dqfz=1+∑n=2∞nqanzn−1.



(8)







Definition 5.

The q-Pochhammer symbol ξn,qξ∈C;n∈N0 is defined as follows:


ξn,q=qξ;qn1−qn=1n=0ξqξ+1qξ+2q⋯ξ+n−1qn∈N.











Moreover, the q-gamma function is defined by the following recurrence relation:


Γqz+1=zqΓqzandΓq1=1.













Definition 6

(see [10]). For f∈A, let the q-Ruscheweyh derivative operator Rqλ be defined, in terms of the Hadamard product (or convolution) given by (2), as follows:


Rqλfz=fz∗Fq,λ+1zz∈U;λ>−1,








where


Fq,λ+1z=z+∑n=2∞Γqλ+nn−1q!Γqλ+1zn=z+∑n=2∞λ+1q,n−1n−1q!zn.













We next define a certain q-integral operator by using the same technique as that used by Noor [11].



Definition 7.

For f∈A, let the q-integral operator Fq,λ be defined by


Fq,λ+1−1z∗Fq,λ+1z=zDqfz.











Then


Iqλfz=fz∗Fq,λ+1−1z=z+∑n=2∞ψn−1anznz∈U;λ>−1,



(9)




where


Fq,λ+1−1z=z+∑n=2∞ψn−1zn








and


ψn−1=nq!Γqλ+1Γqλ+n=nq!λ+1q,n−1.













Clearly, we have


Iq0fz=zDqfzandIq1fz=fz.











We note also that, in the limit case when q→1−, the q-integral operator Fq,λ given by Definition 7 would reduce to the integral operator which was studied by Noor [11].



The following identity can be easily verified:


zDqIqλ+1fz=1+λqqλIqλfz−λqqλIqλ+1fz.



(10)







When q→1−, this last identity in (10) implies that


zIλ+1fz′=1+λIλfz−λIλ+1fz,








which is the well-known recurrence relation for the above-mentioned integral operator which was studied by Noor [11].



In geometric function theory, several subclasses belonging to the class of normalized analytic functions class A have already been investigated in different aspects. The above-defined q-calculus gives valuable tools that have been extensively used in order to investigate several subclasses of A. Ismail et al. [12] were the first who used the q-derivative operator Dq to study the q-calculus analogous of the class S∗ of starlike functions in U (see Definition 8 below). However, a firm footing of the q-calculus in the context of geometric function theory was presented mainly and basic (or q-) hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava (see, for details, ([13], p. 347 et seq.); see also [14]).



Definition 8

(see [12]). A function f∈A is said to belong to the class Sq∗ if


f0=f′0−1=0



(11)




and


zfzDqfz−11−q≦11−q.



(12)









It is readily observed that, as q→1−, the closed disk:


w−11−q≦11−q








becomes the right-half plane and the class Sq∗ of q-starlike functions reduces to the familiar class S∗ of normalized starlike functions in U with respect to the origin (z=0). Equivalently, by using the principle of subordination between analytic functions, we can rewrite the conditions in (11) and (12) as follows (see [15]):


zfzDqfz≺p^zp^z=1+z1−qz.



(13)







The notation Sq∗ was used by Sahoo and Sharma [16].



Now, making use of the principle of subordination between analytic functions and the above-mentioned q-calculus, we present the following definition.



Definition 9.

A function p is said to be in the class k-Pq if and only if


pz≺2pkz1+q+1−qpkz,








where pkz is defined by (5).





Geometrically, the function pz∈k-Pq takes on all values from the domain Ωk,q(k≧0) which is defined as follows:


Ωk,q=w:ℜ1+qwq−1w+2>k1+qwq−1w+2−1.











The domain Ωk,q represents a generalized conic region.



It can be seen that


limq→1−Ωk,q=Ωk,








where Ωk is the conic domain considered by Kanas and Wiśniowska [3]. Below, we give some basic facts about the class k-Pq.



Remark 1.

First of all, we see that


k-Pq⊆P2k2k+1+q,








where P2k2k+1+q is the well-known class of functions with real part greater than 2k2k+1+q. Secondly, we have


limq→1−k-Pq=Ppk,








where Ppk is the well-known function class introduced by Kanas and Wiśniowska [3]. Thirdly, we have


limq→1−0-Pq=P,








where P is the well-known class of analytic functions with positive real part.





Definition 10.

A function f is said to be in the class STk,λ,q if and only if


zDqIqλfzfz∈k-Pqk≧0;λ≧0,








or, equivalently,


ℜ1+qzDqIqλfzfzq−1zDqIqλfzfz+2>k1+qzDqIqλfzfzq−1zDqIqλfzfz+2−1.













Remark 2.

First of all, it is easily seen that


ST0,1,q=Sq∗,








where Sq∗ is the function class introduced and studied by Ismail et al. [12]. Secondly, we have


limq→1−STk,1,q=k-ST,








where k-ST is a function class introduced and studied by Kanas and Wiśniowska [4]. Finally, we have


limq→1−ST0,1,q=S∗,








where S∗ is the well-known class of starlike functions in U with respect to the origin (z=0).





Remark 3.

Further studies of the new q-starlike function class STk,λ,q, as well as of its more consequences, can next be determined and investigated in future papers.





Let n∈N0 and j∈N. The following jth Hankel determinant was considered by Noonan and Thomas [17]:


Hjn=anan+1...an+j−1an+1...........an+j−1....an+2j−1,








where a1=1. In fact, this determinant has been studied by several authors, and sharp upper bounds on H22 were obtained by several authors (see [18,19,20]) for various classes of functions. It is well-known that the Fekete–Szegö functional a3−a22 can be represented in terms of the Hankel determinant as H21. This functional has been further generalized as a3−μa22 for some real or complex μ. Fekete and Szegö gave sharp estimates of a3−μa22 for μ real and f∈S, the class of normalized univalent functions in U. It is also known that the functional a2a4−a32 is equivalent to H22 (see [18]). Babalola [21] studied the Hankel determinant H31 for some subclasses of normalized analytic functions in U. The symmetric Toeplitz determinant Tjn is defined by


Tjn=anan+1...an+j−1an+1...........an+j−1....an,








so that


T22=a2a3a3a2,T23=a3a4a4a3,T32=a2a3a4a3a2a3a4a3a2,








and so on.



For f∈S, the problem of finding the best possible bounds for an+1−an has a long history (see, for details, [22]). It is a known fact from [22] that


|an+1−an|<c








for a constant c. However, the problem of finding exact values of the constant c for S and its various subclasses has proved to be difficult. In a very recent investigation, Thomas and Abdul-Halim [23] succeeded in obtaining some sharp estimates for Tjn for the first few values of n and j involving symmetric Toeplitz determinants whose entries are the coefficients an of starlike and close-to- convex functions.



In the present investigation, our focus is on the Hankel determinant and the Toeplitz matrices for the function class STk,λ,q given by Definition 10.




2. A Set of Lemmas


In order to prove our main results in this paper, we need each of the following lemmas.



Lemma 1

(see [20]). If the function pz given by (3) is in the Carathéodory class P of analytic functions with positive real part in U, then


2c2=c12+x4−c12








and


4c3=c13+24−c12c1x−c14−c12x2+24−c121−x2z








for some x,z∈C with x≦1 and z≦1.





Lemma 2

(see [24]). Let the function p(z) given by (3) be in the Carathéodory class P of analytic functions with positive real part in U. Also let μ∈C. Then


cn−μckcn−k≦2max1,2μ−11≦k≦n−1.













Lemma 3

(see [22]). Let the function p(z) given by (3) be in the Carathéodory class P of analytic functions with positive real part in U. Then


cn≦2n∈N.











This last inequality is sharp.






3. Main Results


Throughout this section, unless otherwise mentioned, we suppose that


q∈0,1,λ>−1andk∈0,1.











Theorem 1.

If the function fz given by (1) belongs to the class STk,λ,q, where k∈0,1, then


a2≦1+qp12qψ1,










a3≦12qψ2p1+p2−p1+q2+1p122q








and


a4≦1+q4q+q2+q3ψ32p1+4p2−p1+2+q2p124q+2p3+2p1−4p2−21+q2−qp12q+4q2−3q+2qp1p2+q2+2q−12q2p13,



(14)




where pj(j=1,2,3) are positive and are the coefficients of the functions pkz defined by (6). Each of the above results is sharp for the function gz given by


gz=2pkz1+q+1−qpkz.













Proof. 

Let fz∈STk,λ,q. Then, we have


zDqfzfz=qz≺Skz,



(15)




where


Skz=2pkz1+q+1−qpkz,








and the functions pkz are defined by (6).



We now define the function pz with p0=1 and with a positive real part in U as follows:


pz=1+Sk−1qz1−Sk−1qz=1+c1z+c2z2+⋯.



(16)







After some simple computation involving (16), we get


qz=Skpz+1pz−1.











We thus find that


Skpz+1pz−1=1+q+12p1c12z+p1c22+p24−p14+q−1p128c12z2+p1c32+p22−p12+q−1p124c1c2+p18−p24−q−1p128+p38−q−1p1p28+q−12p1332c13z3+⋯.



(17)







Now, upon expanding the left-hand side of (15), we have


zDqIqλf(z)fz=1+qψ1a2z+q+q2ψ2a3−qψ12a22z2+q+q2+q3ψ3a4−2q+q2ψ1ψ2a2a3+qψ13a23z3+⋯.



(18)







Finally, by comparing the corresponding coefficients in (17) and (18) along with Lemma 3, we obtain the result asserted by Theorem 1.  □





Theorem 2.

If the function fz given by (1) belongs to the class STk,λ,q, then


T32≦1+q2qψ1p12+1+q4q+q2+q3ψ3Ω1+Ω2·41+q216q2ψ12p12+16Ω3+p124q2ψ22+2Ω5p122−Ω4Ω5p12,








where


Ω1=2p1+4p2−p1+2+q24qp12,Ω2=|2p3+2p1−4p2−21+q2−qp12+4q2−3q+2qp1p2+q2+q+12q2p13|,Ω3=12q2ψ22p24−p14+q2+1p128q2−Ω5·[p34+p14−p22−21+q2−qp128q+4q2−3q+28qp1p2+q2+2q−116q2p13],Ω4=p12q2ψ22p24−p14+q2+1p128q−Ω5p1p2−p1+2+q2p124q,Ω5=1+q216q21+q+q2ψ1ψ3








and pj(j=1,2) are positive and are the coefficients of the functions pkz defined by (6).





Proof. 

Upon comparing the corresponding coefficients in (17) and (18), we find that


a2=1+qp1c14qψ1,



(19)






a3=12qψ2p1c22+p24−p14+q2+1p128qc12,



(20)






a4=1+q4q+q2+q3ψ3p1c3+p2−p1+2+q2p124qc1c2+p34+p14−p22−21+q2−qp128q+4q2−3q+28qp1p2+q2+2q−116q2p13c13.



(21)







By a simple computation, T32 can be written as follows:


T32=a2−a4a22−2a32+a2a4.











Now, if f∈STk,λ,q, then it is clearly seen that


a2−a4≦a2+a4≦1+q2qψ1p12+1+q4q+q2+q3ψ3Ω1+Ω2.











We need to maximize a22−2a32+a2a4 for a function f∈STk,λ,q. So, by writing a2,a3, and a4 in terms of c1,c2, and c3, with the help of (19)–(21), we get


a22−2a32+a2a4=1+q216q2ψ12p12c12−Ω3c14−Ω4c12c2−p128q2ψ22c22+Ω5p12c1c3.



(22)







Finally, by applying the trigonometric inequalities, Lemmas 2 and 3 along with (22), we obtain the result asserted by Theorem 2.  □





As an application of Theorem 2, we first set ψn−1=1 and k=0 and then let q→1−. We thus arrive at the following known result.



Corollary 1

(see [25]). If the function fz given by (1) belongs to the class S∗, then


T32≦84.













Theorem 3.

If the function fz given by (1) belongs to the class STk,λ,q, then


a2a4−a32≦14q2ψ22p12,



(23)




where k∈0,1 and pj(j=1,2,3) are positive and are the coefficients of the functions pkz defined by (6).





Proof. 

Making use of (19)–(21), we find that


a2a4−a32=Aq16q2ψ1ψ3p12c1c3+Aqψ22−ψ1ψ316q2ψ1ψ22ψ3p1p2−Aqψ22−ψ1ψ316q2ψ1ψ22ψ3p12+Aq2+q2ψ22−21+q2ψ1ψ364q2ψ1ψ3p13c12c2+116q2ψ22p12c22+Aq64q2ψ1ψ3p1p3+Aqψ22−ψ1ψ364q2ψ1ψ22ψ3p12+ψ1ψ3−Aqψ2232q2ψ1ψ22ψ3p1p2+21+q2ψ1ψ3−21+q2−qAqψ22128q3ψ1ψ22ψ3p13+Aq4q2−3q+2ψ22−21+q2ψ1ψ3128q3ψ1ψ22ψ3p12p2+Aqq2+2q−1ψ22−1+q22ψ1ψ3256q4ψ1ψ22ψ3p14−164q2ψ22p22c14,



(24)




where


Aq=1+q21+q+q2.











We substitute the values of c2 and c3 from the above Lemma and, for simplicity, take Y=4−c12 and Z=(1−|x|2)z. Without loss of generality, we assume that c=c1(0≦c≦2), so that


a2a4−a32=q1−qAqψ22128q2ψ1ψ3p13+Aq64q2ψ1ψ3p1p3+Aq4q2−3q+2ψ22−21+q2ψ1ψ3128q3ψ1ψ22ψ3p12p2+Aqq2+2q−1ψ22−1+q22ψ1ψ3256q4ψ1ψ22ψ3p14−164q2ψ22p22c4+Aqψ22−ψ1ψ332q2ψ1ψ22ψ3p1p2+Aq2+q2ψ22−21+q2ψ1ψ3128q2ψ1ψ3p13c2xY·−Aq64q2ψ1ψ3p12c2Yx2−164q2ψ22p12x2Y2+Aq32q2ψ1ψ3p12cYZ.



(25)







Upon setting Z=(1−|x|2)z and taking the moduli in (25) and using trigonometric inequality, we find that


a2a4−a32≦λ1c4+λ2xYc2+Aq64q2ψ1ψ3p12Yx2c2+164q2ψ22p12x2Y2+Aq32q2ψ1ψ3p12c2Y1−x2=Λc,x,



(26)




where


λ1=q1−qAqψ22128q2ψ1ψ3p13+Aq64q2ψ1ψ3p1p3+Aq4q2−3q+2ψ22−21+q2ψ1ψ3128q3ψ1ψ22ψ3p12p2+Aqq2+2q−1ψ22−1+q22ψ1ψ3256q4ψ1ψ22ψ3p14−164q2ψ22p22λ2=Aqψ22−ψ1ψ332q2ψ1ψ22ψ3;p1p2+Aq2+q2ψ22−21+q2ψ1ψ3128q2ψ1ψ3p13.











Now, trivially, we have


Λ′x>0








on 0,1, and so


Λx≦Λ1.











Hence, by puting Y=4−c12 and after some simplification, we have


a2a4−a32=λ1−λ2+ψ1ψ3−Aqψ2264q2ψ1ψ3p12c4+4λ2+Aqψ22−ψ1ψ316q2ψ1ψ3p12c2+14q2ψ22p12=Gc.



(27)







For optimum value of Gc, we consider G′c=0, which implies that c=0. So Gc has a maximum value at c=0. We therefore conclude that the maximum value of Gc is given by


14q2ψ22p12,








which occurs at c=0 or


c2=−128λ2q2ψ1ψ3+4Aqψ22−2ψ1ψ3p1264q2λ1−λ2ψ1ψ3+ψ1ψ3−Aqψ22p12.











This completes the proof of Theorem 3.  □





If we put ψn−1=1 and let q→1− in Theorem 3, we have the following known result.



Corollary 2

(see [26]). If the function fz given by (1) belongs to the class k-ST, where k∈0,1, then


a2a4−a32≦p124.













If we put


p1=2andψn−1=1,








by letting q→1− in Theorem 3, we have the following known result.



Corollary 3

(see [18]). If f∈S∗, then


a2a4−a32≦1.













By letting k=1,ψn−1=1,q→1− and


p1=8π2,p2=163π2andp3=18445π2








in Theorem 3, we have the following known result.



Corollary 4

(see [27]). If the function fz given by (1) belong to the class SP, then


a2a4−a32≦16π4.














4. Concluding Remarks and Observations


Motivated significantly by a number of recent works, we have made use of a certain general conic domain and the quantum (or q-) calculus in order to define and investigate a new subclass of normalized analytic functions in the open unit disk U, which we have referred to as q-starlike functions. For this q-starlike function class, we have successfully derived several properties and characteristics. In particular, we have found the Hankel determinant and the Toeplitz matrices for this newly-defined class of q-starlike functions. We also highlight some known consequences of our main results which are stated and proved as theorems and corollaries.
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