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Abstract: In this article, by using the monotone iterative technique coupled with the method of upper
and lower solution, we obtain the existence of extremal iteration solutions to conformable fractional
differential equations involving Riemann-Stieltjes integral boundary conditions. At the same time,
the comparison principle of solving such problems is investigated. Finally, an example is given to
illustrate our main results. It should be noted that the conformal fractional derivative is essentially
a modified version of the first-order derivative. Our results show that such known results can be
translated and stated in the setting of the so-called conformal fractional derivative.

Keywords: fractional differential equations; Riemann-stieltjes integral; monotone iterative method;
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1. Introduction

Fractional calculus is an excellent tool for the description of the process of mathematical analysis
in various areas of finance, physical systems, control systems and mechanics, and so forth [1–5]. Many
methods are used to study various fractional differential equations, such as fixed point index theory [6],
iterative method [7–9], theory of linear operator [10,11] sequential techniques, and regularization [12],
fixed point theorems [13–17], the Mawhin continuation theorem for resonance [18–22], the variational
method [23]. The definition of the fractional order derivative used in the aforementioned results is
either the Caputo or the Riemann-Liouville fractional order derivative. Recently, Khalil et al. [24] gave
a new simple fractional derivative called “the conformable fractional derivative” depending on the
familiar limit definition of the derivative of a function and that break with other definitions. This new
fractional derivative is called “the conformable fractional derivative” and this new theory is improved
by Abdeljawad [25]. However, a conformal fractional derivative is not a fractional derivative, it is
simply a first derivative multiplied by an additional simple factor. Therefore, this new definition
seems to be a natural extension of the classical derivative. However, it has the advantage of being
different from other fractional differentials. Firstly, it can integrate the standard properties of fractional
derivatives. It is suitable for many extensions to the classical theorem of calculus, such as the derivative
of the product and compound of two functions, the Rolle’s and the mean value theorem, conformable
integration by parts, fractional power series expansion and many more. Secondly, the conformal
fractional derivative of the real function is zero, and the Riemann-Liouville fractional derivative
does not satisfy this property. For the two iterative conformal differentials, the semigroup property
is not satisfied, and the Caputo differential satisfies this. In particular, for functions that are not
differentiable, in conformal sense; however, the function is differentiable. Some functions are not
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infinitely differentiable at some points; where there is no Taylor power series expansion, in conformal
calculus theory, they do exist. This led many people wanting to explore it. Please see [26–34] for recent
developments on conformable differentiation. For example, a mean value theorem of the conformable
fractional calculus on arbitrary time scales is proved in [33], and whose results reconciled with familiar
classical results when the operator Tα is of order α = 1 and the time scale coincides with the set of
real numbers. In [34], Asawasamrit and Ntoutas introduced a new definition of exponential notations
and by employing the method of lower and upper solution combined with the monotone iterative
technique, some new conditions for the existence of solutions are presented.

Motivated by the above works, we consider the existence of solutions for the following nonlinear
conformable fractional differential equation involving integral boundary condition, using the method
of upper and lower solutions and its associated monotone iterative technique Dαx(t) = f (t, x(t)), t ∈ [0, 1],

x(0) =
∫ 1

0
x(t)dµ(t),

(1)

where f ∈ C([0, 1]×R,R),
∫ 1

0 x(t)dµ(t) denotes the Riemann-Stieltjes integral with positive Stieltjes
measure of µ, and Dα f (t) stands for the conformable fractional derivative. Based on a comparison
result, two monotone iterative sequences are obtained using the upper and lower solutions, and these
two sequences approximate the extremal solutions of the given problem. For applications of the
method of upper and lower solutions and monotone iterative technique to differential equations and
differential systems such as ordinary differential equations [35–37], ordinary differential systems [38],
fractional differential equations [39–42], fractional differential systems [43].

2. Preliminaries

In this section, we briefly show some necessary definitions and results which will be used in our
main results.

Definition 1. [24] Let f : [0,+∞)→ R and t > 0. The conformable fractional derivative of order 0 < α ≤ 1
is defined by

Dα f (t) = lim
ρ→0

f (t + ρt1−α)− f (t)
ρ

for t > 0 and the conformable fractional derivative at 0 is defined as Dα f (0) = lim
t→0+

(Dα f )(t). If f is

differentiable then Dα f (t) = t1−α f ′(t).

Definition 2. [24] Let α ∈ (0, 1]. The conformable fractional integral of a function f : [0,+∞)→ R of order
α is denoted by Iα f (t) and is defined as

Iα f (t) =
∫ t

0
sα−1 f (s)ds.

Lemma 1. [25] Let f : (0,+∞)→ R be differentiable and 0 < α ≤ 1. Then, for all t > 0 we have

IαDα f (t) = f (t)− f (0).

Lemma 2. [24] Let α ∈ (0, 1], l1, l2, q, k ∈ R, and the functions f , h be α-differentiable on [0,+∞). Then

(i) Dαk = 0 for all constant functions f (t) = k;
(ii) Dα(l1 f + l2 f ) = l1Dα f (t) + l2Dαh(t);
(iii) Dαtq = qtq−α;
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(iv) Dα( f h) = f (t)Dαh(t) + h(t)Dα f (t);

(v) Dα(
f
h ) =

hDα f− f Dαh
h2 when h(t) 6= 0.

Theorem 1. [24] (Mean value theorem) Let [a, b] ⊂ [0,+∞), and let f : [0,+∞)→ R. Suppose that

(1) f is continuous on [a, b];
(2) f is α-differentiable for some α ∈ (0, 1] on [a, b].

Then there exists a constant ξ ∈ (a, b), such that Dα f (ξ) = f (b)− f (a)
1
α bα− 1

α aα
.

Definition 3. A function u ∈ C([0, 1],R) is known as a lower solution of (1), if it satisfies

Dαu(t) ≤ f (t, u(t)), t ∈ [0, 1], (2)

u(0) ≤
∫ 1

0
u(t)dµ(t). (3)

If inequalities (2), (3) are reversed, then u is an upper solution of problem (1).

Next, we present the following existence and uniqueness results for linear equations.

Lemma 3. Let 0 < α ≤ 1, a ∈ R and M, N ∈ C([0, 1],R). Then linear fractional differential equation
involving integral boundary problem: Dαu(t) = −M(t)u(t) + N(t), t ∈ [0, 1],

u(0) =
∫ 1

0
u(t)dµ(t) + a

(4)

has a unique solution provided4α = 1−
∫ 1

0 e−
∫ t

0 sα−1 M(s)dsdµ(t) 6= 0.

Proof. Multiplying both sides of the first equation of the problem (4) by e
∫ t

0 sα−1 M(s)ds and using
Lemma 2, we can get

e
∫ t

0 sα−1 M(s)dsDαu(t) + M(t)u(t)e
∫ t

0 sα−1 M(s)ds = N(t)e
∫ t

0 sα−1 M(s)ds.

In other words, by means of the product rule (item (iv) of Lemma 2), the above equality turns to

Dα[e
∫ t

0 sα−1 M(s)dsu(t)] = N(t)e
∫ t

0 sα−1 M(s)ds. (5)

Applying the conformable fractional integral of order α to both side of (5), we have

e
∫ t

0 sα−1 M(s)dsu(t)− u(0) = Iα[N(t)e
∫ t

0 sα−1 M(s)ds]

=
∫ t

0
sα−1N(s)e

∫ s
0 τα−1 M(τ)dτds.

Then

u(t) = e−
∫ t

0 sα−1 M(s)ds[u(0) +
∫ t

0
sα−1N(s)e

∫ s
0 τα−1 M(τ)dτds]. (6)

From the boundary condition of (4), we have(
1−

∫ 1

0
e−
∫ t

0 sα−1 M(s)dsdµ(t)
)

u(0)

=
∫ 1

0
e−
∫ t

0 sα−1 M(s)ds
∫ t

0
sα−1N(s)e

∫ s
0 τα−1 M(τ)dτdsdµ(t) + a.
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On account of condition4α 6= 0, then

u(0) =

∫ 1
0 e−

∫ t
0 sα−1 M(s)ds ∫ t

0 sα−1N(s)e
∫ s

0 τα−1 M(τ)dτdsdµ(t) + a

1−
∫ 1

0 e−
∫ t

0 sα−1 M(s)dsdµ(t)
,

thus problem (4) has a unique solution. The proof is finished.

In the next Lemma, we discuss comparison results for the linear problem which play a key role in
the proof of the main result.

Lemma 4. Let 0 < α ≤ 1. Suppose that M, u ∈ C([0, 1],R) satisfies Dαu(t) ≤ −M(t)u(t), t ∈ [0, 1],

u(0) ≤
∫ 1

0
u(t)dµ(t).

Then u(t) ≤ 0 on [0, 1] provided4α > 0.

Proof. Let N(t) = Dαu(t) + M(t)u(t) and a = u(0)−
∫ 1

0 u(t)dµ(t), we know that N(t) ≤ 0, a ≤ 0 and Dαu(t) = −M(t)u(t) + N(t), t ∈ [0, 1],

u(0) =
∫ 1

0
u(t)dµ(t) + a

Using4α > 0, we have

u(0) =

∫ 1
0 e−

∫ t
0 sα−1 M(s)ds ∫ t

0 sα−1N(s)e
∫ s

0 τα−1 M(τ)dτdsdµ(t) + a

1−
∫ 1

0 e−
∫ t

0 sα−1 M(s)dsdµ(t)
≤ 0.

Then by (6), we can conclude that

u(t) ≤ e−
∫ t

0 sα−1 M(s)dsu(0) ≤ 0.

The proof is complete.

3. Main Results

In this section, we prove the existence of extremal solutions for conformable fractional differential
equations involving integral boundary condition. For convenience, we list some assumptions.

(H1): f : [0, 1]×R→ R is continuous.
(H2): Assume that v0, w0 ∈ E = C[0, 1] is lower and upper solution of problem (1), and

v0(t) ≤ w0(t).
(H3): There exists a function M ∈ E with4α > 0 which satisfies

f (t, x)− f (t, x) ≤ M(t)(x− x),

for v0(t) ≤ x ≤ x ≤ w0(t).

Theorem 2. Assume that (H1), (H2), (H3) hold. Then there exist monotone iterative sequences
{vn}∞

n=0, {wn}∞
n=0 ⊂ E such that

lim
n→∞

vn = v, lim
n→∞

wn = w

uniformly on [0, 1], and v, w are the extremal solutions of problem (1) in the sector [v0, w0] = {g ∈ E : v0(t) ≤
g(t) ≤ w0(t), 0 ≤ t ≤ 1}.
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Proof. For all vn, wn ∈ E, let
Dαvn+1(t) = f (t, vn(t))−M(t)(vn+1(t)− vn(t)), t ∈ [0, 1],
Dαwn+1(t) = f (t, wn(t))−M(t)(wn+1(t)− wn(t)), t ∈ [0, 1],

vn+1(0) =
∫ 1

0
vn+1(t)dµ(t), wn+1(0) =

∫ 1

0
wn+1(t)dµ(t).

(7)

Thus, the iterative sequences {vn} and {wn} can be constructed by Lemma 3.
Firstly, we shall prove that

vn ≤ vn+1 ≤ wn+1 ≤ wn, n = 0, 1, 2, . . . .

Let p = v0 − v1. According to (7) and Definition 3, we have Dα p(t) = Dαv0(t)− Dαv1(t) ≤ f (t, v0(t))− f (t, v0(t)) + M(t)(v1(t)− v0(t)), t ∈ [0, 1],

p(0) ≤
∫ 1

0
v0(t)dµ(t)−

∫ 1

0
v1(t)dµ(t),

i.e.,  Dα p(t) ≤ −M(t)p(t), t ∈ [0, 1],

p(0) ≤
∫ 1

0
p(t)dµ(t).

Therefore, by Lemma 4, we have v0(t) ≤ v1(t). Similarly, we can prove that w1(t) ≤ w0(t), t ∈ [0, 1].
Now, let r = v1 − w1, according to (7) and (H3), we have

Dαr(t) = f (t, v0(t))− f (t, w0(t))−M(t)(v1(t)− v0(t)− w1(t) + w0(t))
≤ M(t)(w0(t)− v0(t))−M(t)(v1(t)− v0(t)− w1(t) + w0(t))
= −M(t)r(t),

r(0) =
∫ 1

0 r(t)dµ(t).

By Lemma 4, we have v1(t) ≤ w1(t), t ∈ [0, 1].
Secondly, we show that v1, w1 are lower and upper solutions of (1), respectively.

Dαv1(t) = f (t, v0(t))−M(t)(v1(t)− v0(t))− f (t, v1(t)) + f (t, v1(t))
≤ M(t)(v1(t)− v0(t))−M(t)(v1(t)− v0(t)) + f (t, v1(t))
= f (t, v1(t)),

v1(0) =
∫ 1

0 v1(t)dµ(t).

According to (H3) and Definition 3, we deduce that v1 is a lower solution of (1). Similarly, w1 is a
upper solutions of (1). By the above arguments and mathematical induction, it is clear that

v0 ≤ · · · ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ · · · ≤ w0, n = 0, 1, 2, . . . . (8)

Thirdly, we show that lim
n→∞

vn = v, lim
n→∞

wn = w. Hence, we need to conclude that vn, wn are uniformly

bounded and equicontinuous on [0, 1]. Obviously, the uniform boundedness of sequences vn, wn

follows from (8). Thus, there exists L > 0 such that

| f (t, vn(t))−M(t)(vn+1(t)− vn(t))| ≤ L

and
| f (t, wn(t))−M(t)(wn+1(t)− wn(t))| ≤ L.
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Using Theorem 1, we get

|vn(t1)− vn(t2)| =
1
α
|Dαvn(ξ)||tα

1 − tα
2 |

=
1
α
| f (ξ, vn−1(ξ))−M(ξ)(vn(ξ)− vn−1(ξ))||tα

1 − tα
2 |.

Therefore, {vn} are equicontinuous. Similarly, we obtain that {wn} are equicontinuous too.
By Arzela-Ascoli Theorems, we conclude that {vn}, {wn} have subsequences {vnk}, {wnk} such
that {vnk} → v, and {wnk} → w when k→ ∞. This together with the monotonicity of sequences {vn}
and {wn} implies

lim
n→∞

vn(t) = v(t), lim
n→∞

wn(t) = w(t)

uniformly on [0, 1]. Please note that the sequence {vn} satisfies vn(t) = e−
∫ t

0 sα−1 M(s)ds[vn−1(0) + Rvn−1(t)], t ∈ [0, 1],

vn(0) =
∫ 1

0
vn(t)dµ(t), n = 1, 2, . . . ,

(9)

where

Rvn−1(t) =
∫ t

0
sα−1[ f (t, vn−1(s)) + M(s)vn−1(s)]e

∫ s
0 τα−1 M(τ)dτds.

Let n→ ∞ in (9) . We have v(t) = e−
∫ t

0 sα−1 M(s)ds[v(0) + Rv(t)], t ∈ [0, 1],

v(0) =
∫ 1

0
v(t)dµ(t).

This shows that v is a solution of the nonlinear problem (1). Similarly, we obtain w is a solution of the
nonlinear problem (1) too. And

v0(t) ≤ v(t) ≤ w(t) ≤ w0(t), t ∈ [0, 1].

Finally, we are going to prove that v, w are minimal and maximal solutions of (1) in the sector
[v0, w0]. In the following, we show this using induction arguments. Suppose that g(t) is any solution
of (1) in the [v0, w0] that is

v0(t) ≤ g(t) ≤ w0(t), t ∈ [0, 1].

Assume that vn(t) ≤ g(t) ≤ wn(t) hold. Let p(t) = vn+1(t)− g(t), we have

Dα p(t) = Dαvn+1(t)− Dαg(t)
= f (t, vn(t))−M(t)(vn+1(t)− vn(t))− f (t, g(t))
≤ M(t)(g(t)− vn(t))−M(t)(vn+1(t)− vn(t))
= −M(t)p(t),

p(0) =
∫ 1

0 p(t)dµ(t).

Then, by Lemma 4, we have vn+1(t) ≤ g(t), t ∈ [0, 1]. By similar method, we can show that g(t) ≤
wn+1(t), t ∈ [0, 1]. Therefore,

vn ≤ g ≤ wn, n = 1, 2, . . . .

By taking n→ ∞ in the above inequalities, we get that v ≤ g ≤ w. That is v, w are extremal solutions
of problem (1) in [v0, w0]. Thus, the proof is finished.
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Example 1. Consider the following nonlinear problem:
D 1

2
x(t) = −2

9
(1 + x(t))3 + 9 sin

x2(t)
4

, t ∈ [0, 1],

x(0) =
1
3

x(
1
4
) +

1
6

x(
1
2
).

(10)

Let

µ(t) =



0, t ∈ [0,
1
4
),

1
3

, t ∈ [
1
4

,
1
2
),

1
2

, t ∈ [
1
2

, 1].

Obviously, α = 1
2 , f (t, x) = − 2

9 (1 + x)3 + 9 sin x2

4 and

∫ 1

0
x(t)dµ(t) =

1
3

x(
1
4
) +

1
6

x(
1
2
).

We can get ∫ 1

0
dµ(t) =

1
2

.

Take
v0(t) = −2, w0(t) = 0,

then, 
D 1

2
v0(t) = 0 <

2
9
+ 9 sin 1 = f (t, v0(t)),

v0(0) = −2 < −1 =
∫ 1

0
v0(t)dµ(t),

and 
D 1

2
w0(t) = 0 > −2

9
= f (t, w0(t)),

w0(0) = 0 =
∫ 1

0
w0(t)dµ(t).

Then v0, w0 are lower and upper solutions of (10). When M(t) = 1, it is easy to verify that assumption (H3)

holds. In addition, ∫ 1

0
e−
∫ t

0 sα−1 M(s)dsdµ(t) =
∫ 1

0
e−t

1
2 dµ(t) <

∫ 1

0
dµ(t) =

1
2
< 1.

By Theorem 2, problem (10) has an extremal iterative solution in [v0, w0].

4. Conclusions

In this article, on the integral boundary value problem for conformable fractional differential
equations, we use the monotone iterative technique to investigate the existence results for extremal
solutions for Equation (1). At the same time, two sequences are obtained using the upper and lower
solutions, and these two sequences approximate the extremal solutions of nonlinear differential
equations. It is clear that the method of using the upper and lower solutions is a very effective method
for studying the solvability of conformable fractional differential equations. However, almost all the
results derived in the paper are more-or-less straightforward extensions of well-known results from the
theory of the first-order differential equations, since the conformal fractional derivative is essentially a
modified version of the first-order derivative.
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