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Abstract: In this work, we study an impulsive sub-diffusion equation as a fractional diffusion
equation of order α ∈ (0, 1). Existence, uniqueness and regularity of solution of the problem is
established via eigenfunction expansion. Moreover, we establish the approximate controllability of the
problem by applying a unique continuation property via internal control which acts on a sub-domain.
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1. Introduction

1.1. Fractional Diffusion Equations

A fractional diffusion equation of order α ∈ (0, 1) is obtained by rewriting a normal diffusion
equation in integral form as

u(x, t) +
∫ t

0
Au(x, t)dt = u0 +

∫ t

0
f (x, t)dt, (x, t) ∈ Ω× (0, T). (1)

Then, replacing the first of right-hand side (RHS) integral of Equation (1) by a Riemann-Liouville
fractional integral, Iα of order 0 < α < 1, we get

u(x, t) +
∫ t

0

(t− s)α−1

Γ(α)
Au(x, t)dt = u0 +

∫ t

0
f (x, t)dt, (x, t) ∈ Ω× (0, T).

Now, differentiating the above equation on both sides with respect to t, we get the following
fractional diffusion equation:

∂tu + ∂1−α
t Au = f (x, t) in Ω× (0, T),

u = 0 on (Γ = ∂Ω)× (0, T),

u(·, 0) = u0 in Ω. (2)
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If α = 1, then Equation (2) is a classical diffusion equation. Equation (2) with 0 < α < 1 is called
the fractional diffusion equation. These equations appear in the model of anomalous diffusion in
heterogeneous media. Anomalous diffusion is one of the most ubiquitous phenomena in nature; it
has been observed in various fields of physical sciences, for example, surface growth, transport of
fluid in porous media, two-dimensional rotating flow and diffusion of plasma. Because of such
anomalies, the classical diffusion models can not be used to study the dynamics of such systems.
In this situation, fractional derivatives extend the help and play a crucial role in characterizing such
diffusion. The model corresponding to such derivative is called a fractional partial differential equation.
From the continuous time random walk (CTRW) model, Metzler and Klafter [1] derived Equation (3)
with 0 < α < 1 as a macroscopic model.

1.2. Impulsive Partial Differential Equations

Impulsive partial differential equations are a very important class of differential equations.
These equations arise from the modelling of various real world processes having memory and are
subject to short time fluctuations. The theory of impulsive differential equation is very rich and
wide. It is mainly due to the fact that the it inherit intrinsic difficulties of the problems. These
kinds of equations have lots of applications in different branches of Science and Engineering. These
kinds of equations arise naturally from several physical and natural processes like earthquakes and
pulse vaccination strategy. For more information, we refer to [2–4] and references therein. For more
theoretical work, one can see the interesting book by Bainov and Simeonov [5]. The authors Shun et al.
in [6] consider second-order impulsive Hamiltonian systems and established the existence of infinitely
many solutions.

1.3. Controllability

In mathematical control theory, controllability and optimal control are two important concepts.
In controllability, one studies the steering of a dynamical system from a given initial state to any other
state or in the neighborhood of the state under some admissible control input. The cases where target
states are defined in a given subregion are particularly very important; this situation arises in many real
world applications. The last few decades have seen tremendous work in the controllability problems
for integer order systems. Several techniques have been developed for solving such problems [7,8].
It has been seen that mostly authors worked on the problems with hard constraints on the state or
control. This is mainly due to its applicability and importance in various applications in optimal
control. Moreover, many authors have studied controllability of the semilinear, partial evolution
equations, we refer to [9–17] and references therein. In a very interesting paper [14], Kenichi Fujishiro
and Masahiro Yamamoto consider a partial differential equations with fractional order time derivatives
and established approximate controllability by interior control.

1.4. The Problem under Consideration

Let Ω be a bounded domain of Rd with C2 boundary Γ = ∂Ω. We consider the following initial
value/boundary value problem of an impulsive sub-diffusion equation of order α ∈ (0, 1):

∂tu + ∂1−α
t Au = f (x, t) in Ω× (0, T),

∆u(·, ti) = Ii(u(·, ti)), i = 1, 2, 3, · · · , P,

u = 0 on Γ× (0, T),

u(·, 0) = u0 in Ω.

(3)
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In Equation (3), u = u(x, t) is the state to be controlled and f = f (x, t) is the control which is
localized in a subdomain ω of Ω. We will act by f to drive the initial state u0 = u0(x) to some target
function u1 = u1(x). The operator A is a symmetric and uniformly elliptic operator. The details will
be specified later; T > 0 is also a constant. Several problems in applications can be modeled by the
above equation. Some of them are: thermal diffusion in media with fractional geometry, underground
environmental problems, highly heterogeneous aquifer, etc. [18]. In this paper, we study approximate
controllability for fractional partial differential equations with impulses. We say that Equation (3) is
approximately controllable if, for any u1 ∈ L2(Ω) and ε > 0, there exists a control f such that the
solution u of (3) satisfies

‖u(·, T)− u1‖L2(Ω) ≤ ε. (4)

This paper is divided into four sections. In Section 2, we study requisite function spaces and
some important basic results. In Section 3, we analyse the mild solutions of the Equation (3) by
eigenfunction expansion. Section 4 is devoted to the study of a dual system of (3) and to establish a
unique continuation property. In the last section, we establish the proof of approximate controllability.

2. Preliminaries

In this section, we state a few function spaces, notations and results in order to establish our
main results. For the smooth reading of the manuscript, we first define the following class of spaces
(for more details, we refer to Adams [19], Mahto [12]):

Lp[a, b] =
{

f : [a, b]→ R| f is Lebesgue measurable and
∫ b

a
| f (t)|pdt < ∞

}
,

AC[a, b] =
{

f : [0, T]→ R| f is absolutely continuous on [a, b]
}

,

C[a, b] =
{

f : [0, T]→ R| f is continuous on [a, b]
}

,

Lp(Ω) =
{

f : Ω→ R| f is Lebesgue measurable and
∫

Ω
| f (x)|pdx < ∞

}
,

H1(Ω) =
{

f : f ,
∂ f
∂x1

, · · · ,
∂ f
∂xd
∈ L2(Ω)

}
,

H1
0(Ω) =

{
f : f ∈ H1(Ω) and f = 0 on Γ

}
,

AC(0, T; L2(Ω)) =
{

f : [0, T]→ L2(Ω)| f ∈ AC([t0, t1]; L2(Ω)) ∪ AC((ti, ti+1], L2(Ω), i = 1,

2, · · · , P, x(t+i ), x(t−i ) exist and x(ti) = x(t−i )
}

,

PC(0, T; L2(Ω)) =
{

f : [0, T]→ L2(Ω)| f ∈ C([t0, t1]; L2(Ω)) ∪ C((ti, ti+1], L2(Ω), i = 1, 2,

· · · , P, x(t+i ), x(t−i ) exist andx(ti) = x(t−i )
}

.

The functions and operators defined below are very standard in the fractional calculus. For more
details, we refer to [20]:

1. Mittag-Leffler function by

Eα,β(z) :=
∞

∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where α > 0 and β ∈ R are arbitrary constants. We can directly verify that Eα,β(z) is an entire
function of z ∈ C. As for the Mittag–Leffler functions, we have the following lemma.
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Lemma 1. Let 0 < α < 2 and β ∈ R be arbitrary and µ satisfy πα/2 < µ < min{π, πα}. Then,
there exists a constant C = C(α, β, µ) > 0 such that

|Eα,β(z)| ≤
C

1 + |z| , µ ≤ | arg(z)| ≤ π. (5)

2. Reimann-Liouville integrals: For α > 0 and f ∈ L1(0, T), we define α-th order forward and
backward integrals of f by

Iα
0+ f (t) :=

1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ,

Iα
T− f (t) :=

1
Γ(α)

∫ T

t
(τ − t)α−1 f (τ)dτ.

In other words, the forward integral operators of α-th order is the convolution with tα−1/Γ(α)
and consequently Iα

0+ f also belongs to L1(0, T). The same argument is also valid for the
backward integrals.

3. The Riemann-Liouvill fractional derivatives: For α ∈ (0, 1), we define the forward and backward
fractional derivatives of f ∈ AC[0, T] by

∂α
t f (t) : =

d
dt

I1−αh(t) =
1

Γ(1− α)

d
dt

∫ t

0
(t− τ)−αh(τ)dτ, (6)

Dα
t f (t) : =

1
Γ(1− α)

(
− d

dt

) ∫ T

t
(τ − t)−αh(τ)dτ. (7)

We also have the following lemmas for fractional integration by parts.

Lemma 2. Let α > 0. If f , g ∈ PC([0, T], L2(Ω)), then

∫ T

0
Iα
0+ f (t)g(t)dt =

∫ T

0
f (t)Iα

T−g(t)dt.

Proof. ∫ T

0
g(t)Iα

0+ f (t)dt =
∫ T

0
g(t)

∫ t

0

(t− s)α−1

Γ(α)
f (s)dsdt

=
∫ T

0
f (t)

∫ T

t

(s− t)α−1

Γ(α)
g(s)dsdt

(using Fubini theorem for change of order of integration.)

=
∫ T

0
f (t)Iα

T−g(t)dt.

Lemma 3. Let f ∈ PC(0, T), g ∈ C∞
0 (0, T). Then, we have the following identity:

∫ T

0
g(t)∂α

t f (t)dt =
∫ T

0
f (t)Dα

t g(t)dt. (8)
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Proof. By substituing the value of R-L fractional derivative, we obtain

∫ T

0
g(t)∂α

t f (t)dt

=
∫ T

0
g(t)

d
dt

∫ t

0

(t− s)−α

Γ(1− α)
f (s)dsdt

=

(
g(t)

Γ(1− α)

∫ t

0
(t− s)−α f (s)ds

)t=T

t=0
−
∫ T

0
g′(t)

∫ t

0

(t− s)−α

Γ(1− α)
f (s)dsdt

(using integration by parts.)

=
g(T)

Γ(1− α)

∫ T

0
(t− s)−α f (s)ds−

∫ T

0
g′(t)

∫ t

0

(t− s)−α

Γ(1− α)
f (s)dsdt

= −
∫ T

0
g′(t)

∫ t

0

(t− s)−α

Γ(1− α)
f (s)dsdt (∵ g(T) = 0.)

= −
∫ T

0
f (t)

∫ T

t

(s− t)−α

Γ(1− α)
g′(s)dsdt

(using Fubini theorem for change of order of integration.)

= −
∫ T

0
f (t)

d
dt

∫ T

t

(s− t)1−α

Γ(2− α)
g′(s)dsdt

(using Leibnitz theorem for differentiation under integration.)

=
∫ T

0
f (t)

(
g(T)(T − t)−α

Γ(1− α)
− d

dt

∫ T

t

(s− t)1−α

Γ(2− α)
g′(s)ds

)
dt

(∵ g(T) = 0.)

=
∫ T

0
f (t)

(
d
dt

(
g(T)(T − t)1−α

Γ(2− α)

)
− d

dt

∫ T

t

(s− t)1−α

Γ(2− α)
g′(s)ds

)
dt

=
∫ T

0
f (t)

(
d
dt

(
g(s)(s− t)1−α

Γ(2− α)

)s=T

s=t
− d

dt

∫ T

t

(s− t)1−α

Γ(2− α)
g′(s)ds

)
dt

= −
∫ T

0
f (t)

d
dt

∫ T

t

(t− s)−α

Γ(1− α)
g(s)dsdt

(using integration by parts.)

=
∫ T

0
f (t)Dα

t g(t)dt.

3. Solution of Primal System

3.1. Representation of the Solution

To derive the representation, we first focus on t ∈ [0, t1]. We can rewrite (3) as

∂tu + (β ∗ Au)t = f (·, t), u(0) = u0, (9)

where β(t) = tα−1

Γ(α) and Au = −∇2u is a symmetric, self-adjoint, uniformly elliptic operator with

domain D(A) = H2(Ω) ∩ H1
0(Ω), the spectrum of A is entirely composed of a countable number of

eigenvalues and we can set with finite multiplicities:

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · .
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By ϕn ∈ H2(Ω) ∩ H1
0(Ω), we denote the orthonormal eigenfunction corresponding to λn:

Aϕn = λn ϕn, n = 1, 2, · · · .

Then, the sequence {ϕn}n∈N is an orthonormal basis in L2(Ω). Since u(t) ∈ L2(Ω), we have

u(t) =
∞

∑
j=1

uj(t)ϕj,

where uj(t) = (u(t), ϕj) is the jth Fourier coefficient. Taking an inner product between (9) and ϕj,
we have an infinite number of linear integro-differential equations:

∂tuj(t) + λj(β ∗ uj)t = f j(·, t), (10)

where f j(·, t) = ( f (·, t), ϕj) and uj0 = (u0, ϕj).
Taking Laplace Transform both sides of (10), we get

zûj(z)− uj0 + λjz1−αûj(z) = f̂ j,

where ĥj(z) =
∫ ∞

0 e−ztuj(t)dt is the Laplace Transform of uj. Simplifying, we get

ûj =
(uj0 + f̂ j(z)

z + λjz1−α

)
.

By taking the inverse Laplace Transform, we get

L−1
( 1

z + λjz1−α

)
= Eα(−λjtα). (11)

Now, the representation for uj of (10) is given by

uj = Eα(−λjtα)uj0 +
∫ ∞

0
Eα(−λj(t− s)α) f j(·, s)ds. (12)

Thus, a formal solution of (9) is given by

u(t) = E(t)u0 +
∫ t

0
E(t− s) f (·, s)ds, (13)

where

E(t)u0 =
∞

∑
j=1

Eα(−λjtα)(u0, ϕj)ϕj, (14)

u(·, t) =


E(t)u0 +

∫ t

0
E(t− s) f (·, s)ds, t ∈ [0, t1],

E(t)u0 + ∑
ti<t
E(t− ti)Ii(u(·, ti)) +

∫ t

0
E(t− s) f (·, s)ds, t ∈ (ti, ti+1], i = 1, · · · , P.

(15)
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3.2. Weak Formulation

Rewriting the (3) in unified form, we get
∂tu + ∂1−α

t Au = f (x, t) + ∑1≤i≤P Ii(u(·, ti))δ(t− ti) in Ω× (0, T),

u = 0 on Γ× (0, T),

u(·, 0) = u0 in Ω.

(16)

A weak formulation of (16) is to find a u ∈ PC(0, T; H1
0(Ω)) such that

(∂tu, v) + (∂1−α
t Au, v) = ( f , v) + ∑

i
(Ii(u(·, ti))δ(t− ti), v), v ∈ H1

0(Ω). (17)

Thus, we have a variational form of (16) as follows:

(∂tu, v)dt + a(u, v) = l(v), (18)

where,

a(u, v) = (∂1−α
t Au, v) =

∫
Ω

∂1−α
t ∇u · ∇vdx,

l(v) = ( f , v)dt +
P

∑
i=1

(Ii(u(ti))δ(t− ti), v),

with the following conditions:

1. a(·, ·) is bounded or continuous i.e.|a(u, v)|H1
0 (Ω) ≤ C1‖u‖H1

0 (Ω)‖v‖H1
0 (Ω),

2. a(·, ·) is coercive i.e.A(u, u) ≥ C2‖u‖H1
0 (Ω),

3. l is continuous.

Definition 1. A function u : [0, T]→ H1
0(Ω) is called a weak solution of (3) if :

(1) u ∈ L2(0, T; H1
0(Ω)) ∩ PC(0, T; H1

0(Ω)) and ∂tu ∈ L2(0, T; H−1(Ω)) ∩ PC(0, T; H−1(Ω)),
(2) For every v ∈ H1

0(Ω), u satisfies (18),
(3) u(0) = u0.

Based on the above analysis, we can now formulate the following two theorems.

Theorem 1. For every f ∈ L2(0, T; H−1(Ω)) and u0 ∈ H1
0(Ω), there exists a unique weak solution

u ∈ L2(0, T; H1
0(Ω)) ∩ PC(0, T; H1

0(Ω)) of (3).

Proof. Existence and uniqueness of weak solution is followed by the Lax-Milgram theorem.

Theorem 2. For every f ∈ L2(0, T; H−1(Ω)) and u0 ∈ H1
0(Ω), there exists a unique mild solution

u ∈ L2(0, T; H1
0(Ω)) ∩ PC(0, T; H1

0(Ω)) of (3) and given by (15).

4. Dual System

In order to establish approximate controllability, we also need to consider the dual system for (3),
a similar strategy for partial differential equations of integer order (see Section 8 in [21] or Chapters 2
and 3 in [22] for example). The dual system for (3), which runs backward in time, is given by;
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−∂tv + D1−α

t Av = 0 in Ω× (0, T),

∆v(·, ti) = I∗i (v(·, ti)), i = 1, 2, 3, · · · , P,

v = 0 on Γ× (0, T),

v(·, T) = v0 in Ω.

(19)

4.1. Solution of Dual System

Proposition 1. Let v0 ∈ L2(Ω). Then, there exists a unique solution of (19) and the solution is given by

v(x, t) =
∞

∑
n=1

(T − t)α−1Eα,α(−λn(T − t)α)(v0, ϕn)ϕn(x)

+ ∑
t<T−ti

∞

∑
n=1

(T − t− ti)
α−1Eα,α(−λn(T − t− ti)

α)(I∗i (v(·, ti)), ϕn)ϕn(x) (20)

and has the following estimate:

‖v(·, t)‖L2(Ω) ≤ C

(T − t)α−1‖v0‖L2(Ω) + P‖I∗im‖L2(Ω)

(
∑

t<T−ti

(T − t− ti)
2α−2

) 1
2
 , (21)

where ‖Iim‖L2(Ω) = sup1≤i≤P{‖Ii‖L2(Ω)}.
Moreover, the mapping v : [0, T]→ L2(Ω) is analytically extended to ST := {z ∈ C; Re z < T}.

Proof. Here, we establish existence and uniqueness of solution of (19) for v0 = 0.
Multiplying (19) with ϕn and setting vn(t) = (v(·, t), ϕn), we get

∂tvn(t) + λn∂1−α
t vn(t) + ∑

t<T−ti

(I∗i (v(ti), ϕn) = 0. (22)

Since
|vn(t)|2 ≤∑ |vn(t)|2 = ‖v(·, t)‖2

L2(Ω) → 0 as t→ T,

we have
vn(T) = 0. (23)

From existence and uniqueness of the solution of the fractional differential equation (see [12]),
we get

vn(t) = 0, n = 1, 2, 3, · · · .

As {ϕn} is a complete orthonormal system, we have

v = 0 in Ω× (0, T).

Thus, Equation (19) has a unique solution.
Now, we show the estimate (21).
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By (20), we have

‖v(·, t)‖2
L2(Ω)

≤
∥∥∥∥∥ ∞

∑
n=1

(v0, ϕn)(T − t)α−1Eα,α(−λn(T − t)α)ϕn

∥∥∥∥∥
2

L2(Ω)

+

∥∥∥∥∥∑ ∑
t<T−ti

(
mk

∑
j=1

(I∗i (v(·, ti)), ϕn)ϕn(x)

)
(T − t− ti)

α−1Eα,α(−λn(T − t− ti)
α)

∥∥∥∥∥
2

L2(Γ)

=
∞

∑
n=1

∣∣∣(v0, ϕn)(T − t)α−1Eα,α(−µk(T − t)α)
∣∣∣2

+
∞

∑
n=1

∣∣∣∣∣ ∑
t<T−ti

(I∗i (v(·, ti)), ϕn)(T − t− ti)
α−1Eα,α(−µk(T − t− ti)

α)

∣∣∣∣∣
2

= C2

(
∞

∑
n=1
|(v0, ϕn)|2

)
(T − t)2α−2 + C2 ∑

t<T−ti

(T − t− ti)
2α−2

(
∞

∑
n=1
|(I∗i (v(·, ti)), ϕn)|2

)
.

Therefore,

‖v(·, t)‖L2(Ω) ≤ C

(T − t)α−1‖v0‖L2(Ω) + P‖I∗im‖L2(Ω)

(
∑

t<T−ti

(T − t− ti)
2α−2

) 1
2
 .

Next, we show the analyticity of v(·, t) in t ∈ ST .
We note that Eα,α(−λnz) is an entire function (see [20] for example) and consequently each

(T − z)α−1Eα,α(−λn(T − z)α) is analytic in z ∈ ST . Therefore, ∑N
n=1(v0, ϕn)(T − z)α−1Eα,α(−λn(T − z)α)ϕn

in ST .
If we fix δ > 0 arbitrarily, then, for z ∈ C with Re z ≤ T − δ, we have∥∥∥∥∥ N

∑
n=M

(v0, ϕn)(T − z)α−1Eα,α(−λn(T − z)α)ϕn

∥∥∥∥∥
2

L2(Ω)

=
N

∑
n=M

∣∣∣(v0, ϕn)(T − z)α−1Eα,α(−λn(T − z)α)
∣∣∣2

≤ C
N

∑
n=M
|(v0, ϕn)|2|T − z|2α−2

≤ Cδ2α−2
N

∑
n=M
|(v0, ϕn)|2 → 0 as M, N → ∞.

That is, (20) is uniformly convergent in {z ∈ C; Re z ≤ T − δ}. Hence, v(·, t) is also analytic in
t ∈ ST .

4.2. Unique Continuation Property

Proposition 2. Let ω be open in Ω and v0 ∈ L2(Ω). If a solution v ∈ PC(0, T; H2(Ω) ∩ H1
0(Ω)) be the

solution of (19) vanishing in ω× (0, T), then v = 0 in Ω× (0, T).



Mathematics 2019, 7, 190 10 of 16

Proof. Since v(x, t) = 0 in ω × (0, T) and v : [0, T) → L2(Γ) can be analytically extended to
ST := {z ∈ C; Re z < T}, we have

v(x, t) = ∑∞
n=1(v0, ϕn)(T − t)α−1Eα,α(−λn(T − t)α)ϕn(x)

+∑t<T−ti ∑∞
n=1(I∗i (v(·, ti)), ϕn)(T − t− ti)

α−1Eα,α(−λn(T − t− ti)
α)ϕn(x)

= 0, x ∈ ω, t ∈ (−∞, T).

(24)

Let {µk}k∈N be all spectra of L without multiplicities and we denote by {ϕkj}1≤j≤mk an
orthonormal basis of Ker(µk − L). By using these notations, we can rewrite (24) by

v(x, t) = ∑∞
k=1

(
∑mk

j=1(v0, ϕkj)ϕkj(x)
)
(T − t)α−1Eα,α(−µk(T − t)α)

+∑t<T−ti ∑∞
k=1

(
∑mk

j=1(I∗i (v(·, ti)), ϕkj)ϕkj(x)
)
(T − t− ti)

α−1Eα,α(−µk(T − t− ti)
α)

= 0, x ∈ ω, t ∈ (−∞, T).

(25)

Then, for any z ∈ C with Re z = ξ > 0 and N ∈ N, we have∥∥∥∥∥ N

∑
k=1

(
mk

∑
j=1

(v0, ϕkj)ϕkj(x)

)
ez(t−T)(T − t)α−1Eα,α(−µk(T − t)α)

∥∥∥∥∥
2

L2(Γ)

=
N

∑
k=1

(
mk

∑
j=1
|(v0, ϕkj)|2

)
e2ξ(t−T)

∣∣∣(T − t)α−1Eα,α(−µk(T − t)α)
∣∣∣2

≤ C2e2ξ(t−T)(T − t)2α−2‖v0‖L2(Ω)

and ∥∥∥∥∥ N

∑
k=1

∑
t<T−ti

(
mk

∑
j=1

(I∗i (v(·, ti)), ϕkj)ϕkj(x)

)
(T − t− ti)

α−1Eα,α(−µk(T − t− ti)
α)

∥∥∥∥∥
2

L2(Γ)

=
N

∑
k=1

∑
t<ti

(
mk

∑
j=1
|(I∗i (v(·, ti)), ϕkj)|2

)
e2ξ(t−T)

∣∣∣(T − t− ti)
α−1Eα,α(−µk(T − t− ti)

α)
∣∣∣2

≤
N

∑
k=1

∑
t<T−ti

(
mk

∑
j=1
|(I∗i (v(·, ti)), ϕkj)|2

)
e2ξ(t−T)

∣∣∣(T − t− t)α−1Eα,α(−µk(T − t− ti)
α)
∣∣∣2

≤ PC2e2ξ(t−T)‖I∗im‖
2
L2(Ω) ∑

t<T−ti

(T − t− ti)
2α−2,

where ‖Iim‖L2(Ω) = sup1≤i≤P{‖Ii‖L2(Ω)}.
Therefore, ∥∥∥∥∥ N

∑
k=1

(
mk

∑
j=1

(v0, ϕkj)ϕkj(x)

)
ez(t−T)(T − t)α−1Eα,α(−µk(T − t)α)

∥∥∥∥∥
L2(Γ)

≤ Ceξ(t−T)(T − t)α−1‖v0‖L2(Ω)
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and ∥∥∥∥∥ N

∑
k=1

∑
t<T−ti

(
mk

∑
j=1

(I∗i (v(·, ti)), ϕkj)ϕkj(x)

)
(T − t− ti)

α−1Eα,α(−µk(T − t− ti)
α)

∥∥∥∥∥
L2(Γ)

≤ PCeξ(t−T)‖I∗im‖L2(Ω)

(
∑

t<T−ti

(T − t− ti)
2α−2

) 1
2

.

The right-hand sides of the two inequalities above are integrable on (−∞, T):

∫ T

−∞
eξ(t−T)(T − t)α−1dt =

Γ(α)
ξα

and ∫ T−ti

−∞
eξ(ti+t−T)(T − t− ti)

α−1dt =
∫ ∞

0
e−ξttα−1dt =

Γ(α)
ξα

.

Hence, the Lebesgue theorem yields that∫ T
−∞ ez(t−T)

(
∑∞

n=1

(
∑mk

j=1(v0, ϕkj)ϕkj(x)
)
(T − t)α−1Eα,α(−µk(T − t)α)

)
dt +

∫ T−ti
−∞ ez(ti+t−T)

×
(

∑t<T−ti ∑∞
n=1

(
∑mk

j=1(I∗i (v(·, ti)), ϕkj)ϕkj(x)
)
(T − t− ti)

α−1Eα,α(−µk(T − t− ti)
α)
)

dt

= ∑∞
k=1 ∑mk

j=1
(v0+∑t<T−ti

I∗i (v(·,ti)),ϕkj)

zα+µk
ϕkj(x), a. e. x ∈ Ω, Re z > 0,

(26)

where we have used the Laplace transform formula;∫ ∞

0
e−zttα−1Eα,α(−µktα)dt =

1
zα + µk

, Re z > 0

(see (1.80) in p. 21 of [20]). By (25) and (26), we have

∞

∑
k=1

mk

∑
j=1

(v0 + ∑t<T−ti
I∗i (v(·, ti)), ϕkj)

zα + µk
ϕkj(x) = 0, a. e. x ∈ ω, Re z > 0,

that is,
∞

∑
k=1

mk

∑
j=1

(v0 + ∑t<T−ti
I∗i (v(·, ti)), ϕkj)

η + µk
ϕkj(x) = 0, a. e. x ∈ ω, Re η > 0.

By using analytic continuation in η, we have

∞

∑
k=1

mk

∑
j=1

(v0 + ∑t<T−ti
I∗i (v(·, ti)), ϕkj)

η + µk
ϕkj(x) = 0, a. e. x ∈ ω, η ∈ C \ {−µk}k∈N. (27)

Then, we can take a suitable disk which includes −µ` and does not include {−µk}k 6=`.
By integrating (27) in the disk, we have

m`

∑
j=1

(v0 + ∑
t<T−ti

I∗i (v(·, ti)), ϕ`j)ϕ`j(x) = 0, a. e. x ∈ ω.

By setting ṽ` := ∑m`
j=1(v0 + ∑t<T−ti

I∗i (v(·, ti)), ϕ`j)ϕ`j(x), we have

(A− µ`)ṽ` = 0 in Ω and ṽ` = 0 on ω.
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Therefore, the unique continuation result for eigenvalue problem of elliptic operator
(see [23,24]) implies

ṽ`(x) =
m`

∑
j=1

(v0 + ∑
t<T−ti

I∗i (v(·, ti)), ϕ`j)ϕ`j(x) = 0, x ∈ Ω

for each ` ∈ N. Since {ϕ`j}1≤j≤m`
is linearly independent in Ω, we see that

(v0 + ∑
t<T−ti

I∗i (v(·, ti)), ϕ`j) = 0, 1 ≤ j ≤ m`, ` ∈ N.

This implies v = 0 in Ω× (0, T).

5. Approximate Controllability

In this section, we complete the proof of our main theorems.

Theorem 3. Let 0 < α < 1 and ω be an open set in Ω. Then, Equation (3) is approximately controllable for
arbitrarily given T > 0. That is,

{u(·, T); f ∈ C∞
0 (ω× (0, T))} = L2(Ω), (28)

where u is the solution to (3) and the closure on the left-hand side is taken in L2(Ω).

We start the proof with a lemma.

Lemma 4. If the conclusion of Theorem (3) is true for u0 ≡ 0, then it is true for any u0 ∈ H1
0 (Ω).

Proof. Let u0 ∈ H1
0(Ω) and uT ∈ L2(Ω). Let ε > 0. Let us introduce ū the (mild) solution of

ūt + ∂1−α
t Aū = 0 (x, t) ∈ Ω× (0, T),

∆u(·, ti) = Ii(u(·, ti)), i = 1, 2, 3, · · · , P,
ū (x, t) = 0, t ∈ Γ× (0, T),
ū (x, 0) = u0(x), x ∈ Ω.

Then, ū(T) ∈ L2(Ω). Therefore, using the assumption of Lemma 4, there exists f ∈ C∞
0 (ω× (0, T))

such that the solution w of
∂tw + ∂1−α

t Aw = f (x, t) (x, t) ∈ Ω× (0, T),
∆u(·, ti) = Ii(u(·, ti)), i = 1, 2, 3, · · · , P,
w (1, t) = 0, t ∈ Γ× (0, T),
w (x, 0) = 0, x ∈ Ω,

satisfies
‖w(T)− (uT − ū(T))‖L2(Ω) ≤ ε.

One can easily see that u(T) = w(T) + ū(T), so that the proof of Lemma 4 is achieved.

We now assume that u0 ≡ 0.
In order to complete the proof of Theorem 3, we will see that the unique continuation property

for (19) is equivalent to the approximate controllability for (3) stated in Theorem 3.
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Proof. Let u be a solution of (3) for f ∈ C∞
0 (ω× (0, T)) and let v be a solution of (19) for v0 ∈ L2(Ω).

Then, we see that

0 =
∫ T

0

∫
Ω

(
∂tu + ∂1−α

t Au− f
)
vdxdt

=
∫ T

0

∫
Ω
(∂tu)vdxdt +

∫ T

0

∫
Ω
(∂1−α

t Au)vdxdt

−
∫ T

0

∫
Ω

f vdxdt−
∫ T

0

∫
Ω

∑
1≤i≤P

Ii(u(ti))δ(t− ti)vdxdt.

In the above equation, the first term is calculated as follows:

∫ T−δ

0

∫
Ω
(∂tu)vdxdt =

∫ T−δ

0

∫
Ω
(∂tu)vdxdt

=
∫

Ω
uv
∣∣∣∣t=T−δ

t=0
dx−

∫ T−δ

0

∫
Ω

u(∂tv)dxdt

=
∫

Ω
u(·, T − δ)v0dx +

∫ T−δ

0

∫
Ω

u(∂tv)dxdt.

Here, we have used the integration in t by parts and the initial conditions in (3) and (19).
In terms of u ∈ PC(0, T; H2(Ω)) and v ∈ PC(0, T; H2(Ω) ∩ H1

0(Ω)), we apply the
Green formula to the second term, we have∫ T−δ

0

∫
Ω
(∂1−α

t Au)vdxdt =
∫ T−δ

0

∫
Ω
(∂1−α

t u)(Av)dxdt +
∫ T−δ

0

∫
Γ

(
u

∂v
∂νA
− ∂u

∂νA
v
)

dσxdt

= −
∫ T−δ

0

∫
Ω

u(D1−α
t Av)dxdt.

In the above calculation, we have used boundary conditions in (3) and (19).
Therefore, we have

0 =
∫ T−δ

0

∫
Ω
(∂tu)vdxdt +

∫ T−δ

0

∫
Ω
(∂1−α

t Au)vdxdt−
∫ T−δ

0

∫
Ω

f vdxdt

=
∫

Ω
u(·, T − δ)v0dx +

∫ T−δ

0

∫
Ω

u(Dtv)dxdt−
∫ T−δ

0

∫
Ω

u(D1−α
t Av)dxdt

−
∫ T−δ

0

∫
Ω

f vdxdt−
∫ T

0

∫
Ω

∑
1≤i≤P

Ii(u(ti))δ(t− ti)vdxdt

=
∫

Ω
u(·, T − δ)v0dx +

∫ T−δ

0

∫
Ω

u
(
∂tv− D1−α

t Av
)
dxdt

−
∫ T−δ

0

∫
Ω

f vdxdt−
∫

Ω
∑

1≤i≤P
Ii(u(ti))vdx

=
∫

Ω
u(·, T − δ)v0dx−

∫ T−δ

0

∫
Ω

f vdxdt− ∑
1≤i≤P

∫
O

Ii(u(ti))vdx.

Since u ∈ PC([0, T], L2(Ω)) and v(·, T) = v0 and taking δ→ 0, we get

∫
Ω

u(·, T)v0dx− ∑
1≤i≤P

∫
O

Ii(u(ti))vdx =
∫ T

0

∫
Ω

f vdxdt. (29)
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In order to prove density of {u(·, T); f ∈ C∞
0 (ω× (0, T))} in L2(Ω), we have to show that,

if v0 ∈ L2(Ω) satisfies

(u(·, T), v0) =
∫

Ω
u(·, T)v0dx = 0 (30)

for any f ∈ C∞
0 (ω× (0, T)), then v0 ≡ 0. This can be shown as follows: we have

∫ T

0

∫
Ω

f vdxdt = 0

for any f ∈ C∞
0 (ω× (0, T)). Then, by the fundamental theorem of the calculus of variations. we have

v(x, t) = 0, (x, t) ∈ ω× (0, T).

By proposition (2), we have

v(x, t) = 0, (x, t) ∈ Ω× (0, T).

By uniqueness of the solution of (1),

v0(x) = 0, x ∈ Ω,

which gives {u(·, T); f ∈ C∞
0 (ω× (0, T))}⊥ = {0}. Hence, {u(·, T); f ∈ C∞

0 (ω × (0, T))} is dense
in L2(Ω).

Thus, the proof of Theorem (3) is completed.

6. Example

Example 1. Consider the following relaxations’ oscillation equation with fractional order given by

∂

∂t
u(x, t) =

∂1−α

∂t1−α

∂2

∂x2 u(x, t) + f (x, t), t ∈ I = (0, T), x ∈ Ω = (0, π),

u(0, t) = u(π, t) = 0 t ∈ (0, T),

u(x, 0) = u0, x ∈ (0, π),

∆u(x, tk) = −u(x, tk) k = 1, 2, · · · , N. (31)

Now, consider the corresponding system Let u(t)x = u(x, t) and assume f (x(t), t) to be a
continuous function with respect to t that satisfies the Lipschitz condition in x. Define the operator
Au = ∂2u

∂x2 with domain

D(A) = {x ∈ L2(0, π) : x, x
′

are absolutely continuous and x, x
′
, x
′′ ∈ L2(0, π)}.

It is well known that for α = 1, sectorial operator, A = ∂2

∂x2 generates an analytic semigroup and

for α = 2, sectorial operator, A = ∂2

∂x2 generates a cosine family of operators.
Using the above notation, now consider the following system

∂u
∂t

=
∂1−α

∂t1−α
Au, t ∈ I = (0, T), x ∈ Ω = (0, π),

u(0, t) = u(π, t) = 0 t ∈ (0, T),

u(x, 0) = 0, x ∈ (0, π),

∆u(x, tk) = −u(x, tk) k = 1, 2, · · · , N. (32)
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The above problem can be posed as an abstract problem on X = L2(0, π) = U, and hence it has a
unique solution. Hence under the assumption of Theorem, the problem is approximately controllable.

Example 2. By choosing the function cos(t2)exp(−t), we get the following relaxations oscillation equation
with fractional order given by

∂1.8
t u(t) + Au(t) = cos(t2)exp(−t), u(0) = 1, u′(0) = 1, (33)

where A is the operator mentioned above.

The graphical illustration of Example 2 is depicted in the Figure 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

-1

-0.5

0

0.5

1

1.5

2

u(
t)

t
1.8u+Au=cos(t 2)exp(-t),u(0)=1,u' (0)=1, A=1,2,3.

A=1
A=2
A=3

Figure 1. Comparison of solution of (33) with varied relaxation coefficients, A = 1, 2 and 3.

7. Discussion

This paper presents a fractional sub-diffusion equation of an impulsive system (3) and its dual (19).
The unique continuation Property 2 of the dual system plays a crucial role in the proof of our main
result, approximate controllability Theorem 3 of the primal system with an interior control acts on
a sub-domain. As an example, the approximate controllability of a fractional relaxation-oscillation
equation is discussed and simulated for different relaxation coefficients.
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