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Abstract: The minimum total dominating set (MTDS) problem is a variant of the classical dominating
set problem. In this paper, we propose a hybrid evolutionary algorithm, which combines local
search and genetic algorithm to solve MTDS. Firstly, a novel scoring heuristic is implemented to
increase the searching effectiveness and thus get better solutions. Specially, a population including
several initial solutions is created first to make the algorithm search more regions and then the local
search phase further improves the initial solutions by swapping vertices effectively. Secondly, the
repair-based crossover operation creates new solutions to make the algorithm search more feasible
regions. Experiments on the classical benchmark DIMACS are carried out to test the performance of
the proposed algorithm, and the experimental results show that our algorithm performs much better
than its competitor on all instances.

Keywords: minimum total dominating set; evolutionary algorithm; genetic algorithm; local search

1. Introduction

Given an undirected graph G = (V, E), a dominating set (DS) is a subset of vertices S ∈ V that
each vertex in V\S is adjacent to at least one vertex in S. For each vertex v ∈ V, vertex v must have a
neigbor in S, and this dominating set is called a total dominating set (TDS). We can easily conclude that
TDS is a typical variant of DS. The minimum total dominating set (MTDS) problem aims to identify
the minimum size of TDS in a given graph. MTDS has many applications in various fields, such as
sensor and ad hoc communications and networks as well as gateway placement problems [1–3].

MTDS is proven to be NP-hard (non-deterministic polynomial) [4], which means unless P = NP,
there is no polynomial time to solve this problem. At present, Zhu proposed a novel one-stage analysis
for greedy algorithms [5] with approximation ratio ln(δ− 0.5) + 1.5 where δ is the maximum degree
of the given graph. This algorithm also used a super-modular greedy potential function, which was a
desirable property in mathematics. However, in real life and industrial production, the size of problems
is always very large. When the size of problems is increased [6–9], the approximation algorithm will
be invalid. Considering these circumstances, researchers often use heuristic algorithms [10–13] to
deal with these problems. Although the heuristic algorithms cannot guarantee the optimality of the
solution they obtain, they can find high-quality solutions effectively within a reasonable time. Thus,
in this paper we propose a hybrid evolution method combining local search and genetic algorithm
(HELG) to solve MTDS.

Evolutionary algorithms include genetic algorithm, genetic programming, evolution strategies
and evolution programming, etc. Among them, genetic algorithm as a classical method is the most
widely used. Genetic algorithm is a computational model to simulate the natural selection and genetic
mechanism of Darwin’s biological evolution theory. It is a method to search the optimal solution by
simulating the natural evolution process. Genetic algorithm begins with a population representing
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the potential solution set of the problem, and a population consists of a certain number of individuals
encoded by genes. After the first generation of the population, according to the principle of survival
of the fittest, the evolution of generations produces more and better approximate solutions. In each
generation, the selection is based on the fitness of the individual in the problem domain. Individuals,
by means of genetic operators of natural genetics, perform crossovers and mutations to produce
populations representing new solution sets.

Recently, evolutionary algorithms play an important role in solving optimization problems. It is
common to adjust evolutionary algorithm to solve problems by adding a different problem-related
mechanism. One possible improvement is the hybrid of evolutionary method and local search
algorithm. Przewozniczek et al. investigated the pros and cons of hybridization on the baseof a hard
practical and up-to-date problem and then proposed an effective optimization method for solving the
routing and spectrum allocation of multicast flows problem in elastic optical networks [14]. Połap et al.
proposed three proposition to increase the efficiency of classical meta-heuristic methods [15]. In this
paper, the proposed algorithm takes advantage of local search framework as well as genetic algorithm.

Firstly, the algorithm creates a population including several individuals as initial solutions in
our algorithm. Then, for each initial solution, we prove its solution via the local search. After local
search, a repair-based crossover operation is proposed to improve the searchability of the algorithm.
The algorithm randomly selects two solutions in the population and randomly exchanges several
vertices of them. After crossover, if the obtained solutions are infeasible, the algorithm will repair
them. This operation enables the algorithm to search larger areas, resulting in obtaining more feaisble
solutions. In addition, we use a scoring function to help the method choose vertices more effective.
In detail, each vertex is assigned to a cost value, and then we calculate the scoring value of every
vertex by the cost value. The scoring function is used to measure the benefits of the state changing of a
vertex. Whenever the algorithm swaps a pair of vertices, we should try to increase the benefits of the
candidate solution and reduce the loss. This scoring value makes our algorithm efficient. When the
original HELG fails to find improved solutions, this heuristic can make the algorithm escape from the
local optimal.

Based on the above strategies, we design a hybrid evolutionary algorithm HELG for MTDS.
Since we are the first to solve MTDS with a heuristic algorithm, in order to evaluate the efficiency
of HELG, we carry out some experiments to compare HELG with a greedy algorithm and a
classical metaheuristics algorithm, the ant colony optimization (ACO) algorithm [16,17] for MTDS.
The experimental results show that on most instances our algorithm performs much better than the
greedy algorithm.

The remaining sections are arranged as follows: in Section 2, we give some necessary notations
and definitions. In Section 3, we introduce the novel scoring heuristic. The evolution algorithm HELG
for MTDS is described in Section 4. Section 5 gives the experimental evaluations and the experimental
results analysis. Finally, we summarize this paper and list future work.

2. Preliminaries

Given an undirected graph G = (V, E) with vertex set V and edge set E, each edge is a 2-element
subset of V. For an edge e = (u, v), vertices u and v are the endpoints of e, and u is adjacent to v.
The distance between u and v means the number of edges from the shortest path of u to v and is defined
by dist(u, v). Then the ith level neighborhood of a vertex v is defined by Ni(v) = {u|dist(u, v) = i}.
Specifically, N(v) = N1(v). The degree of a vertex v is deg(v) = |N(v)|.

A set D of V is a dominating set if each vertex not in D is adjacent to at least one vertex in D.
Total dominating set is a variant of dominating set. The definition of total dominating set is as follows.

Definition 1. (total dominating set) Given an undirected graph G = (V, E), a total dominating set (TDS) is a
subset D of V that every vertex of G is adjacent to some vertices in D, whether it is in D or not.
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The minimum total dominating set (MTDS) problem aims at identifying the TDS with the
minimum size in a given graph.

3. Scoring Heuristic

In our algorithm, we need to maintain a total dominating set as a candidate solution CS during
the construction and local search phases. It is important to decide which vertex should be added into
or removed from CS. In this section, we will introduce an effective scoring heuristic that can be used
to decide how to choose the vertices to be added and removed.

Given an undirected graph G = (V, E), a cost value denoted by ω(v) is applied to each vertex
v ∈ V, which will be maintained during the local search. For each vertex v ∈ V, ω(v) is initialized as 1
in the construction phase. In the local search phase, if CS uncovers the vertex v, the value of ω(v) will
be increased by 1 such that these uncovered vertices will have more opportunities to be selected.

Based on the cost value described above, the vertex scoring method will be defined. We denote
the scoring function as s, the scoring method is divided into two cases as follows:

• v 6∈ CS. The value of s(v) is the total cost value of vertices which will become dominated by CS
after adding vertex v into CS.

• v ∈ CS. The value of s(v) is the opposite number of the total cost value of vertices which will
become not dominated by CS after removing vertex v from CS.

The vertex scoring method is used to measure the benefits of changing the state of v. Obviously, if
v ∈ CS, s(v) ≤ 0. Otherwise, s(v) ≥ 0. This method can decide how to choose the vertices to be added
and removed.

4. Evolution Algorithm HELG for MTDS

In this section, we propose a hybrid evolutionary algorithm combining local search and genetic
algorithm. The algorithm includes three important phases: generation of a population including n
initial solutions, local search, and a repair-based crossover operation.

4.1. Population Initialization

We first generate a population including n initial solutions. We use a preprocessing method and
the restricted candidate list (RCL) to initialize a population. In the process of preprocessing, based
on the definition of MTDS, if the degree of a vertex is 1, its neighborhood will be added into CS and
forbidden to be removed from CS during the search. A function probid is used to implement this
process. For a vertex v, if probid(v) = 1, v will be forbidden to be removed from CS in the subsequent
search. RCL contains the vertices with good benefits. The algorithm chooses vertices from RCL
randomly to construct an initial candidate solution.

The pseudo code of construction phase is shown in Algorithm 1.
At first, the index k and population Pop are initialized (line 1). Then the n individuals are created

(lines 2–18). For each individual, the scoring function s of each vertex, the probid value of each vertex
and the candidate solution CS are initialized (lines 3–5). Then, the algorithm starts the preprocessing
process (lines 6–9). If the degree of a vertex corresponds to 1, the algorithm adds its neighborhood into
CS. Then the probid value of them will be assigned to 1 which means that they will be forbidden to be
removed from CS in the following phase. The algorithm then enters a loop to add vertices into CS
until it becomes a TDS (lines 10–16). The maximum value smax and the minimum value smin of s are
calculated in lines 11 and 12. The vertices whose scoring values are not less than smin + µ(smax − smin)

comprise the RCL (line 13). Here, µ is a parameter that belongs to [0, 1]. Then we choose a vertex u
from RCL randomly and add it into CS (lines 14–15). The scoring values of u and the 1st and 2nd level
neighborhood are updated in line 16. Then the just created individual is added into the Pop (line 17).
Then, k is updated in line 18. In the end, we return the population Pop (line 19).
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Algorithm 1: create_population (n)
Input: the population size n
Output: the initial population Pop

1 k← 0, Pop← {};
2 while k < n do
3 Initialize the scoring function s of each vertex based on the cost value ω;
4 Initialize the probid value of each vertex as 0;
5 CS← {};
6 for each v ∈ V do
7 if deg(v) == 1 then
8 CS← CS ∪ N(v);
9 probid(N(v))← 1;

10 while CS is not a TDS do
11 smax ←MAX{s(v) > 0, v ∈ V/CS};
12 smin ←MIN{s(v) > 0, v ∈ V/CS};
13 RCL← {v|s(v) ≥ smin + µ(smax − smin), v ∈ V/CS};
14 u← choose a vertex u from RCL randomly;
15 CS← CS ∪ {u};
16 update s(u), s(v1), and s(v2) for each vertex v1 ∈ N(u) and v2 ∈ N2(u);

17 Pop← Pop ∪ CS;
18 k ++;

19 return Pop;

4.2. Local Search Phase

Several candidate solutions are built in create_population phase. The local search phase explores
the neighborhood of the initial candidate solution to improve the solution quality and obtain a
smaller one. If no better solution is found, the algorithm will return the current solution as a local
optimum. Otherwise, the improved solution will be the new best candidate solution. This phase is
executed iteratively.

The pseudo code of local search phase is shown in Algorithm 2.
At the beginning of the algorithm, the number of iterations k and the local optimal solution CS∗

are initialized (line 1). Then the algorithm enters a loop until the maximum number of iterations mstep
is reached (line 2). In the search process, once a better solution is found, the algorithm updates CS∗

by CS and removes a vertex with the highest s from CS (lines 3–9). The probid value of the selected
vertex is forbidden to be 1. The number of iterations k is set to 0 (line 4). The scoring values of the just
removed vertex and its 1st and 2nd level neighborhood are updated in line 8. Otherwise, the algorithm
will remove a vertex v with the highest s and probid(v) 6= 1 from CS, breaking ties randomly (line 9).
The corresponding scoring values are updated in line 11. Subsequently, the algorithm selects a vertex
with the highest score and adds it to CS (lines 12–13). After that, the cost value of each undominated
vertex v and the scoring function of each v ∈ V are updated (lines 14–15). The step of iteration is
increased by 1 (line 16). In the end, the algorithm returns CS∗ as a local optimal solution.
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Algorithm 2: LocalSearch (CS, mstep)
Input: an initial candidate solution CS, the maximum number of iterations mstep
Output: an improved candidate solution CS∗

1 Initialize k← 0, CS∗ ← CS;
2 while k < mstep do
3 if CS is a TDS then
4 k = 0;
5 CS∗ ← CS;
6 v← select v from CS with the highest s(v), and probid(v) 6= 1, breaking ties randomly;
7 CS← CS/{v};
8 update s(v), s(u1) and s(u2) for each u1 ∈ N(v) and u2 ∈ N2(v);

9 v← select v from CS with the highest s(v) and probid(v) 6= 1, breaking ties randomly;
10 CS← CS/{v};
11 update s(v), s(u1), and s(u2) for each u1 ∈ N(v) and u2 ∈ N2(v);
12 v1 ← randomly select undominated vertex v′ and select v1 from N(v′) with the highest s(v1),

breaking ties randomly;
13 CS← CS ∪ {v1};
14 ω(v)++ for each undominated vertex v;
15 update s(u) for each u ∈ V;
16 k++;

17 return CS∗;

4.3. Repair-Based Crossover Operation

Genetic algorithms often use crossover to increase the diversity of the algorithm. The central role
of biological evolution in nature is the recombination of biological genes (plus mutations). Similarly,
the central role of genetic algorithms is the crossover operator of genetic algorithm. The so-called
crossover refers to the operation of replacing the partial structure of two parent individuals to generate
a new individual. Through crossover, the searchability of genetic algorithm has been greatly improved.

In this paper, we propose a repair-based crossover operation. After local search, our algorithm
obtains an improved population. We choose two solutions from the population randomly, and then
exchange the vertices in the two solutions with probability 0.5.

Because of the particularity of MTDS, the obtained solutions after crossover may be infeasible.
So we should repair the infeasible solutions and make them become total dominating sets. After
crossover, we check if the obtained solutions are total dominating sets. If a solution is infeasible, we
add some reasonable vertices through population initialization phase until it is feasible. Then we
perform a redundancy remove operation. For the solution obtained by crossover, we remove a vertex
and check whether the solution is feasible. If it is feasible, the vertex will be removed, and otherwise
it will be added back. The redundancy remove operation performs iteratively until every vertex has
been checked.

The solution obtained by the repair-based crossover operation will replace the two old solutions
into the population.

4.4. The Framework of HELG

In this paper, we propose a hybrid evolutionary algorithm HELG that combines local search and
genetic algorithm. The algorithm first generates a population including n initial solutions, and then
applies local search to improve each solution. The obtained n solutions will perform crossover to
produce new solutions. This algorithm will perform iteratively until time limit is satisfied.

The framework of HELG is shown in Algorithm 3 and described as below.
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Algorithm 3: HELG(G)
Input: an undirected graph G
Output: the best solution CS∗ found

1 initialize CS∗;
2 Pop = {S1, ..., Sn} ← create_population(n);
3 while time limit is not satisfied do
4 for each CS ∈ Pop do
5 CS← LocalSearch(CS, mstep);
6 if |CS| < |CS∗| then
7 CS∗ ← CS;

8 Pop← Crossover(Pop);
9 choose the best CS from Pop;

10 if |CS| < |CS∗| then
11 CS∗ ← CS;

12 return CS∗;

At first, the algorithm initializes the best solution CS∗ and a population Pop (lines 1–2). Then the
algorithm performs a loop (lines 3–11). For each solution CS of Pop, we use local search to improve
the quality of solution and if CS is better than CS∗, CS∗ is updated by CS (lines 4–7). For the obtained
n solutions, we perform the repair-based crossover operation to generate new solutions (line 8). If the
best solution CS among Pop is better than CS∗, CS∗ is updated by CS (lines 9–11) When the time limit
is satisfied, the best solution CS∗ is returned (line 12).

5. Experiments

In this section, we carry out a series of experiments to evaluate the efficiency of our algorithm.
The experiments are carried out on a classical benchmark DIMACS (the Center for Discrete
Mathematics and Theoretical Computer Science) [18]. We select 61 instances in the DIMACS benchmark.
The instances are from industry and generated by various models.

HELG is implemented in C++ and compiled by g++ with the -O3 option. We run the algorithm
on a machine with Intel(R) Xeon(R) CPU E7-4830 @2.13Ghz and 4GB memory under Linux. For each
instance, the HELG algorithm runs 30 times independently with different random seeds, until the time
limit (100 s) is satisfied. HELG has three important parameters (i.e., n, µ and mstep). In the population
creation phase, we set the RCL parameter µ = 0.1 and n = 10. In the local search phase, we set the
maximum number of iterations mstep = 100.

Since we are the first to solve MTDS with a heuristic algorithm, in order to evaluate the efficiency
of HELG, a greedy algorithm is as our control method which uses the same scoring heuristic. At first,
the candidate solution CS is empty. The greedy algorithm selects the vertex with the highest score
value and adds it into CS every time. When CS becomes a TDS, the algorithm stops and returns CS as
the optimal solution. Another comparison algorithm we use is a classical metaheuristics algorithm,
the ant colony optimization (ACO) algorithm [16,17], which uses the same initialization procedure
with our algorithm. We use this algorithm as a comparison algorithm to evaluate the effectiveness of
our algorithm. For each instance, the ACO also runs 30 times independently with different random
seeds, until the time limit (100 s) is satisfied.

For each instance, MIN is the minimum total dominating set found, AVG is the average size of
10 solutions, and Time is the running time when the algorithm gets the minimum total dominating set.
Because the greedy algorithm is only executed once for each instance, it has no average value and the
time is less than 1. Better solutions and time are expressed in bold.

The experimental results are shown in Tables 1 and 2. Compared with the greedy algorithm,
HELG can obtain better minimum solutions in 52 instances. In the remaining 9 instances, HELG gets
the same minimum solutions with the greedy algorithm. Compared with ACO, HELG can obtain better
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minimum solutions in 40 instances. In the remaining 21 instances, HELG gets the same minimum size
with ACO. Among them, HELG gets better average values than ACO in 16 instances, and gets the
same average value with ACO but performs faster in 5 instances. The DIMACS benchmark is divided
into 10 groups. We choose 1 instance from every group. Every instance is run 30 times independently.
The visualized comparisons of ACO and HELG can be seen by Kolmogorov-Smirnov test in Figure 1,
which shows the distribution of the total dominating set values. From these, we can observe that
HELG performs much better than ACO and greedy algorithm.

Table 1. Experimental results of greedy algorithm, ACO, and HELG on DIMACS I. The better minimum
or average solution values are in bold.

Instances Vertices Edges Greedy ACO HELG

MIN Time MIN AVG Time MIN AVG Time

brock200_2 200 10,024 7 <1 6 6 0.3 6 6 0.21
brock200_4 200 6811 10 <1 9 9 2.28 9 9 1.93
brock400_2 400 20,014 19 <1 16 16.3 6.28 15 15 5.39
brock400_4 400 20,035 19 <1 14 16.3 34.6 14 15.1 25.16
brock800_2 800 111,434 15 <1 13 14.2 15.2 12 12.3 10.5
brock800_4 800 111,957 18 <1 15 16.2 7.63 13 13 6.75

c-fat200-1.CLQ 200 1534 23 <1 22 22 48.62 20 20.3 43.93
c-fat200-2.CLQ 200 3235 12 <1 10 11 8.45 10 10 4.02
c-fat200-5.CLQ 200 8473 5 <1 5 5.3 13.51 4 4 2.46
c-fat500-1.CLQ 500 4459 53 <1 50 51.2 20.73 47 48.1 10.41
c-fat500-2.CLQ 500 9139 26 <1 24 25.9 79.62 23 23.5 74.99
c-fat500-5.CLQ 500 23,191 10 <1 9 9 11.12 9 9 8.08

C1000.9 1000 49,421 47 <1 45 45.6 68.45 44 44.3 64.97
C125.9 125 787 30 <1 21 22 45.2 20 21.1 38.16
C2000.5 2000 999,164 9 <1 10 10 46.7 9 9.5 43.37
C2000.9 2000 199,468 52 <1 51 52.4 17.89 50 51.6 11.64
C250.9 250 3141 33 <1 28 29 80.34 27 28.2 76.81
C4000.5 4000 3,997,732 11 <1 11 12.4 160.8 11 11.6 154.97
C500.9 500 12,418 39 <1 37 38.3 97.7 34 36.6 91.68

DSJC1000.5 1000 249,674 9 <1 8 9.1 11.6 8 8.8 7.38
DSJC500.5 500 62,126 9 <1 8 8 27.84 7 7.4 24.5

gen200_p0.9_44 200 1990 33 <1 26 27.2 77.1 26 26.6 76.25
gen200_p0.9_55 200 1990 31 <1 29 30.2 78.65 25 26.2 71.54
gen400_p0.9_55 400 7980 38 <1 35 35.5 53.2 34 35 51.65
gen400_p0.9_65 400 7980 38 <1 33 35 66.4 33 34.3 58.49
gen400_p0.9_75 400 7980 38 <1 35 36 27.5 33 35.2 20.4
hamming10-4 1024 89,600 23 <1 23 23 45.2 21 22.6 41.77
hamming6-2 64 192 19 <1 15 16.2 39.7 15 15.6 35.86
hamming6-4 64 1312 3 <1 3 3 0.01 3 3 0.01
hamming8-2 256 1024 69 <1 63 65 17.9 62 64.4 11.33
hamming8-4 256 11,776 9 <1 6 7.2 59.6 6 6.5 57.68

To further illustrate the efficiency contribution of our algorithm, we show the time-to-target
plot [12,19] in Figure 2 to compare HELG with ACO on brock400_4 and its target 14. To obtain the
plot, we performed 100 independent runs of each algorithm on brock400_4. The figure shows that the
probabilities of finding a solution of the target value by HELG are approximately 30% and 70% in at
most 13.78 and 33.43 s, respectively, whereas the probabilities of finding a solution of the target value
by ACO are approximately 30% and 70% in at most 23.62 and 43.47 s respectively, considerably longer
than HELG. From that, we can observe that the strategies we used in HELG are very effective.

The experimental results show that our algorithm performs much better than the comparison
algorithms. This proves that the genetic algorithm and local search in our algorithm are both
very effective.
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Figure 1. The total dominating set values obtained by · · · : ACO; −: HELG. Kolmogorov-Smirnov test
can be applied to display the distribution of these values.
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Table 2. Experimental results of greedy algorithm, ACO, and HELG on DIMACS II. The better minimum
or average solution values are in bold.

Instances Vertices Edges Greedy ACO HELG

MIN Time MIN AVG Time MIN AVG Time

johnson16-2-4 120 1680 11 <1 10 11.2 32.6 10 10.4 30.72
johnson32-2-4 496 14,880 24 <1 23 24.5 34.8 23 23.5 33.38
johnson8-2-4 28 168 5 <1 5 5.8 0.01 5 5 0
johnson8-4-4 70 560 12 <1 8 8 16.43 7 7.5 9.81

keller4 171 5100 8 <1 8 8 10.45 7 7.4 4.52
keller5 776 74,710 16 <1 17 17 8.28 15 16.5 2.16
keller6 3361 1,026,582 30 <1 30 30.8 61.2 29 29.6 54.68

MANN_a27 378 702 113 <1 75 77.4 100.63 67 79.5 81.69
MANN_a45 1035 1980 90 <1 90 90 3.25 90 90 0.03
MANN_a81 3321 6480 162 <1 162 163 1.28 162 162 0.17
MANN_a9 45 72 20 <1 16 18.6 40.5 16 16.8 34.05

p_hat1500-1.CLQ 1500 839,327 26 <1 24 26.7 26.5 24 24.5 18.01
p_hat1500-2.CLQ 1500 555,290 11 <1 13 14.1 98.6 8 9.2 87.62
p_hat1500-3.CLQ 1500 277,006 5 <1 5 6.1 63.2 4 4.9 59.48
p_hat300-1.CLQ 300 33,917 16 <1 17 18.4 126.3 14 15.2 97.86
p_hat300-2.CLQ 300 22,922 6 <1 7 7 4.58 6 6.5 0.54
p_hat300-3.CLQ 300 11,460 4 <1 4 5 35.48 3 3.1 31.86
p_hat700-1.CLQ 700 183,651 21 <1 21 21 74.69 17 20 64.01
p_hat700-2.CLQ 700 122,922 9 <1 11 13 54.31 8 10.2 48.35
p_hat700-3.CLQ 700 61,640 4 <1 4 5 6.43 4 4.4 3.25

san1000 1000 249,000 6 <1 7 8 8.45 6 6.5 4.73
san200_0.7_1 200 5970 9 <1 8 9 6.7 8 8.8 1.57
san200_0.7_2 200 5970 10 <1 9 9.4 75.12 7 7.9 63.8
san200_0.9_1 200 1990 29 <1 24 24 30.5 22 23.9 25.07
san200_0.9_2 200 1990 30 <1 27 27.8 86.5 24 25.9 77.4
san200_0.9_3 200 1990 31 <1 27 27.6 45.65 25 26.6 34.13
san400_0.5_1 400 39,900 5 <1 6 6 8.41 4 5.4 2.12
san400_0.7_1 400 23,940 13 <1 13 13 27.4 9 10.5 19.49
san400_0.7_2 400 23,940 11 <1 10 11 100.6 9 10.7 92.22
san400_0.7_3 400 23,940 14 <1 12 13.1 87.45 10 10.8 69.77
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Figure 2. Time-to-target plot comparing HELG with ACO on instance brock400_4 and its target 14.

6. Summary and Future Work

This paper proposes a hybrid evolutionary algorithm combining local search and genetic algorithm to
solve MTDS. A scoring heuristic is used to improve the efficiency of the algorithm. In the population
initialization phase, we create a population including several initial solutions. In the local search
phase, the algorithm improves the initial solutions by adding and removing operations. After that,
we propose a repair-based crossover operation to increase the diversity of our algorithm. A series
of experiments are carried out to evaluate the algorithm. The experimental results show that HELG
performs well in solving MTDS.

In the future, we would like to design more efficient evolutionary algorithms to solve MTDS.
We would like to relax this problem, such as the found MTDS is missing the adjacency of one vertex.
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We will study evolutionary algorithms in more MDS-related problems, for example, the multi-objective
MDS optimization problem.
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