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Abstract: For the May–Leonard asymmetric system, which is a quadratic system of the Lotka–Volterra
type depending on six parameters, we first look for subfamilies admitting invariant algebraic surfaces
of degree two. Then for some such subfamilies we construct first integrals of the Darboux type,
identifying the systems with one first integral or with two independent first integrals.
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1. Introduction

An important class of mathematical models describing different phenomena in biology,
ecology and chemistry are the so-called Lotka–Volterra systems, which are written in the form

ẋi = xi(
n

∑
j=1

aijxj + bi) (i = 1, . . . , n). (1)

They were introduced independently by Lotka and Volterra in the 1920s to model the interaction
among species, see [1,2], and continue being intensively investigated. For the class of systems in
Equation (1), most studies are devoted to the case n = 3. One of simplest models of such a type
describing a competition of three species was introduced by May and Leonard in [3]. It is a model
depending on two parameters and is written as the differential system

ẋ =x(1− x− αy− βz),

ẏ =y(1− βx− y− αz),

ż =z(1− αx− βy− z),

(2)

where x, y, z ≥ 0, 0 < α < 1 < β, and
α + β > 2. (3)
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It was shown in [3] that system (2) has four singular points in
R3
+ = {(x, y, z) ∈ R3, x, y, z ≥ 0}—three of them are on the boundary of R3

+ in

E1 = (1, 0, 0), E2 = (0, 1, 0), E3 = (0, 0, 1)

and the fourth one in the interior point

C = ((1 + α + β)−1, (1 + α + β)−1, (1 + α + β)−1).

There is a separatix cycle F formed by orbits connecting E1, E2 and E3 on the boundary of R3
+ and

every orbit in R3
+, except of the equilibrium point C, has F as ω-limit. It was shown in [3] that in the

degenerate case α + β = 2, the cycle F becomes a triangle on the invariant plane

x + y + z = 1,

all orbits inside the triangle are closed and every orbit in the interior of R3
+ has one of these closed

orbits as an ω-limit. Latter on, the dynamics of Equation (2) was studied in more details in [4–6] and
some other works.

A generalization of model (2) is the model described by the differential system

ẋ =x(1− x− α1y− β1z) = X(x, y, z),

ẏ =y(1− β2x− y− α2z) = Y(x, y, z),

ż =z(1− α3x− β3y− z) = Z(x, y, z),

(4)

where x, y, z ≥ 0 and αi, βi > 0 (1 ≤ i ≤ 3), which is called the asymmetric May–Leonard model.
The dynamics of Equation (4) were studied in [6–9]. In particular, Chi, Hsu and Wu [8] studied (4)
under the assumption

0 < αi < 1 < βi (1 ≤ i ≤ 3) (5)

and showed that under this assumption the system has a unique interior equilibrium P, which is
locally asymptotically stable if

A1 A2 A3 > B1B2B3,

where Ai = 1− αi, Bi = βi − 1, (1 ≤ i ≤ 3), and if

A1 A2 A3 < B1B2B3,

then P is a saddle point with a one-dimensional stable manifold. They also have shown that if
A1 A2 A3 6= B1B2B3, then the system does not have periodic solutions, and if

A1 A2 A3 = B1B2B3, (6)

then there is a family of periodic solutions. It was shown in [7] that even if assumption (5) is dropped,
the system (4) still can have a family of periodic solutions. Moreover, it was shown there, that the
periodic solutions of the system do not arise as a result of Hopf bifurcations, but their existence is due
to the Lyapunov theorem on holomorphic integrals.

First integrals of the May–Leonard system (2) were studied by Leach and Miritzis [10] (see also [11]),
who obtained the following first integrals:

(i) H1 = xyz
(x+y+z)3 if α + β = 2 and α 6= 1,

(ii) H2 = y(x−z)
x(y−z) if α = β 6= 1,

(iii) H3 = x/z and H4 = y/z, which are two independent first integrals, if α = β = 1.
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It was shown in [4] that system (2) is completely integrable, that is, it admits two independent
first integrals, if either α + β = 2 or β = α.

In this paper we study integrability of the asymmetric May–Leonard model (4). Using algorithms
from elimination theory, we first find systems of the form in Equation (4) admitting invariant planes
and invariant surfaces defined by the quadratic polynomials. Then we look for first integrals of the
Darboux type constructed using these invariant surfaces and find subfamilies of (4) admitting one or
two independent first integrals. As we show, the set of systems with first integrals is much larger for
system (4) than for the classical May–Leonard system (2).

2. Preliminaries

In this section we recall some general results from elimination theory and the Darboux theory of
integrability, which we shall use in our study.

Consider the system of differential equations

ẋ =P(x, y, z),

ẏ =Q(x, y, z),

ż =R(x, y, z),

(7)

where P, Q and R are polynomials of degree at most m, and let X be the corresponding vector field,

X = P
∂

∂x
+ Q

∂

∂y
+ R

∂

∂z
.

A C1 function
H : U → R

with U ⊂ R3, non-constant in any open subset of U is a first integral of the differential system
(7) if and only if XH ≡ 0 in U. Let H1 : U1 → R and H2 : U2 → R be two first integrals of the
system (7). It is said that H1 and H2 are functionally independent in U1 ∩U2 if their gradients are
independent in all the points of U1 ∩U2 except perhaps in a zero Lebesgue measure set. Equivalently,
Hi = Hi(x, y, z), i = 1, 2, are functionally independent if their Jacobian has maximal rank,

rank
∂(H1, H2)

∂(x, y, z)
= 2, (8)

in all the points of U1 ∩U2 except perhaps on a zero Lebesgue measure set. System (7) is completely
integrable in R3 if it has two independent first integrals in R3.

A Darboux polynomial of system (7) is a polynomial f (x, y, z) such that

X f =
∂ f
∂x

P +
∂ f
∂y

Q +
∂ f
∂z

R = K f , (9)

where K(x, y, z) is a polynomial of degree at most m− 1. The polynomial K(x, y, z) is called the cofactor
of f . It easy to see that if f is a Darboux polynomial of Equation (7), then the equation f = 0 defines an
algebraic surface which is invariant under the flow of system (7). For this reason, f often is referred as
an invariant algebraic surface of Equation (7).

A simple computation shows that if there are Darboux polynomials f1, f2, ..., fk with the cofactors
K1, K2, ..., Kk satisfying

k

∑
i=1

λiKi = 0, (10)
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where λ1, . . . , λk are some non-zero real numbers, then

H = f λ1
1 · · · f λk

k , (11)

is a first integral of (7). An integral of the form in Equation (11) is called a Darboux integral of system (7).
The ideas of the method go back to the works of Darboux [12,13]. Further developments of the

approach were presented in the works of Prelle and Singer [14] and Schlomiuk [15,16]. In [14], the
authors did not use the term “Darboux polynomials”, but they proposed an algorithm to find first
integrals using them. This algorithm was put in relation with the Darboux method in the work of
Schlomiuk [15,16]. See also [17,18] for more details on the method.

To find Darboux polynomials (algebraic invariant surfaces) of system (4) we will use the following
result from computational commutative algebra. Let I be an ideal in the polynomial ring k[x1, . . . , xn],
where k is a field, and ` be a fixed number from the set {0, 1, . . . , n− 1}. The `-th elimination ideal of I
is the ideal

I` = I ∩ k[x`+1, . . . , xn].

According to the Elimination Theorem (see, for example, [19,20]) in order to compute (for any
0 6 ` 6 n− 1) the `-th elimination ideal I` of an ideal I in k[x1, . . . , xn], one can choose the lexicographic
term order with

x1 > x2 > · · · > xn

on the ring k[x1, . . . , xn] and compute a Gröbner basis G for the ideal I with respect to this order. Then,
by the Elimination theorem, the set

G` := G ∩ k[x`+1, . . . , xn]

is a Gröbner basis for the `-th elimination ideal I`. Geometrically, the elimination means projecting the
variety V(I) of the ideal I to the affine space kn−` corresponding to the variables x`+1, . . . , xn.

3. Darboux Polynomials of System (4)

In this section, using the Elimination Theorem, we look for Darboux polynomials of degree two
for system (4). A general form of a polynomial of degree two is

f (x, y, z) = h000 + h100x + h010y + h001z + h200x2 + h110xy

+ h101xz + h020y2 + h011yz + h002z2.
(12)

A cofactor of any Darboux polynomials of system (7) is a polynomial of degree one which we
write in the form

K(x, y, z) = c0 + c1x + c2y + c3z. (13)

Polynomial (12) will be a Darboux polynomial of system (4) with cofactor (13) if

X f = K f , (14)

where now
X f :=

∂ f
∂x

X +
∂ f
∂y

Y +
∂ f
∂z

Z,

with X, Y and Z defined in (4).
Comparing the coefficients of the monomials on both sides of (14) we obtain the

polynomial system
g1 = g2 = ... = g19 = g20 = 0,
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where
g1 = −c0h000,

g2 = −c3h000 + h001 − c0h001,

g3 = −h001 − c3h001 + 2h002 − c0h002,

g4 = −2h002 − c3h002,

g5 = −c2h000 + h010 − c0h010,

g6 = −β3h001 − c2h001 − α2h010 − c3h010 + 2h011 − c0h011,

g7 = −2β3h002 − c2h002 − h011 − α2h011 − c3h011,

g8 = −h010 − c2h010 + 2h020 − c0h020,

g9 = −2h020 − c2h020,

g10 = −h011 − β3h011 − c2h011 − 2α2h020 − c3h020,

g11 = −c1h000 + h100 − c0h100,

g12 = −α3h001 − c1h001 − β1h100 − c3h100 + 2h101 − c0h101,

g13 = −2α3h002 − c1h002 − h101 − β1h101 − c3h101,

g14 = −β2h010 − c1h010 − α1h100 − c2h100 + 2h110 − c0h110,

g15 = −2β2h020 − c1h020 − h110 − α1h110 − c2h110,

g16 = −α3h011 − β2h011 − c1h011 − α1h101 − β3h101

− c2h101 − α2h110 − β1h110 − c3h110,

g17 = −h100 − c1h100 + 2h200 − c0h200,

g18 = −2h200 − c1h200,

g19 = −h110 − β2h110 − c1h110 − 2α1h200 − c2h200,

g20 = −h101 − α3h101 − c1h101 − 2β1h200 − c3h200.

(15)

We denote by I = 〈g1, g2, ..., g19, g20〉 the ideal generated by polynomials (15). Since computations
based on the Elimination Theorem are very laborious, to simplify them we consider separately the
cases h000 = 1 and h000 = 0, that is, we look separately for invariant curves f = 0 not passing and
passing through the origin, so from now on in this section we assume that h000 = 1.

To find Darboux polynomials of system (4) of degree two, we have to determine for which
values of parameters αi, βi (i = 1, 2, 3) system (15) has a solution with at least one of coefficient
h200, h002, h011, h020, h101, h110 different from zero. To satisfy this condition we have six options that can
be written in polynomial forms as

1− wh200 = 0, 1− wh110 = 0, 1− wh101 = 0,

1− wh020 = 0, 1− wh011 = 0, 1− wh002 = 0,
(16)

respectively (where w is a new variable). For instance, to find systems of the form (4) which have
surfaces with h200 6= 0, we can compute (for example, with the routine eliminate of the computer
algebra system SINGULAR [21]) the 13th elimination ideal of the ideal I(1) = 〈I, 1− wh200〉, in the ring
Q[w, c0, c1, c2, c3, h001, h002, h010, h011, h020, h100, h101, h110, α1, β1, α2, β2, α3, β3]. Denote this elimination
ideal by I(1)13 and its variety by V1 (that is, V1 = V(I(1)13 )). Proceeding analogously we find the other

five elimination ideals I(2)13 , . . . , I(6)13 corresponding to the other cases of Equation (16). Denote the

corresponding varieties V2 = V(I(2)13 ), . . . , V(I(6)13 ). It is clear that the union V = V1 ∪ ...∪V6 of these
six varieties contains the set of all systems (4) having invariant surfaces of the form (12) not passing
through the origin. To compute the irreducible decomposition of the variety V it is sufficient to
compute the ideal J = I(1)13 ∩ · · · ∩ I(6)13 , which defines the variety V = V1 ∪ ...∪V6 and then to find the
irreducible decomposition of V. The intersection of ideals can be computed with the routine intersect
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of SINGULAR, and the irreducible decomposition of V can be found with the routine minAssGTZ [22],
which is based on the algorithm of [23]. Theoretically, such computations should give all systems
in family (4) having invariant surfaces of degree two. However all the routines eliminate, intersect
and minAssGTZ rely on computations of many Gröbner bases, and such computations can be rarely
completed when computing over the field Q of rational numbers for polynomials in many variables.
To be able to complete our computations, we computed in the field of the finite characteristic 32003 and
then lifted the resulting ideals to the ring of polynomials with rational coefficients using the rational
reconstruction algorithm of [24] (a MATHEMATICA code for the algorithm can be found in [25]).

The primary decomposition of the radical of the ideal

J =
6⋂

i=1

I(i)13 (17)

computed using the routine minAssGTZ in the field of characteristic 32003 consists of 88 ideals, that is,
we have 88 irreducible components of the variety V(J) given in Appendix A. It means there are
88 conditions on the parameters αi, βi of system (4) for existence of an invariant surface of degree two
not passing through the origin.

However some of these conditions give systems with the same dynamics in the phase space,
since system (4) has a symmetry with respect to simple linear transformations. Namely, it is easily seen
that the transformations

x → z, y→ x, z→ y, (18)

x → y, y→ z, z→ x, (19)

x → y, y→ x, z→ z, (20)

x → z, y→ y, z→ z, (21)

x → x, y→ z, z→ y, (22)

which correspond to re-labeling of the coordinate axes, do not change the shape of the system.
For instance, under transformation (19) system (4) is changed into the system

ẋ =x(1− x− α2y− β2z),

ẏ =y(1− β3x− y− α3z),

ż =z(1− α1x− β1y− z),

(23)

which can be obtained from system (4) by the change of parameters

α1 → α3, β1 → β3, α2 → α1, β2 → β1, α3 → α2, β3 → β2. (24)

Thus, if we have a condition on the parameters of Equation (4) under which the system has an
algebraic invariant surface, another condition will be obtained by the transformation of the parameters
according to rule (24). For example, as we will see below, system (4) has the invariant surface

f = 2− 4x + 2x2 − 2y + yz

if condition (5) of Theorem 1 is fulfilled, that is, if

β3 = β1 = α3 + 1 = β2 − 3 = α2 + 1 = α1 − 1/2 = 0.

Applying to Equation (4) the transformation (19) we obtain that system (4) has the
invariant surface

f = 2− 4z + 2z2 − 2x + xy
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if the condition
β2 = β3 = α2 + 1 = β1 − 3 = α1 + 1 = α3 − 1/2 = 0

holds, that is, condition (3) is changed according to Equation (24). Similarly, after substitutions (20)–(22)
the conditions for existence of invariant surfaces are changed according to the rules

α1 → α2, β1 → β2, α2 → α3, β2 → β3, α3 → α1, β3 → β1, (25)

α1 → β2, β1 → α2, α2 → β1, β2 → α1, α3 → β3, β3 → α3, (26)

α1 → β3, β1 → α3, α2 → β2, β2 → α2, α3 → β1, β3 → α1, (27)

α1 → β1, β1 → α1, α2 → β3, β2 → α3, α3 → β2, β3 → α2, (28)

respectively.
We say, that two conditions for existence of invariant planes are conjugate if one can be obtained

from another by means of one of transformations (24), (25)–(28). For instance, condition (3) (which is
the same as condition (7) from Appendix A) and conditions (10), (19), (25), (33), (47) from Appendix A
can be obtained from each other by one of the transformations (24), (25)–(28), so all these conditions
are conjugate.

Note that some of the obtained 88 conditions give Darboux polynomials of degree two which are
not irreducible, but they are products of two polynomials of degree one. Namely, if

(i) α1 = β1 = 0 (condition 1 of the Appendix), then system (4) has the Darboux polynomial
(−1 + x)2 (and the conjugate conditions are 22 and 36 from Appendix A);

(ii) α2 = β1 = β2 + α1 − 2 = 0 (condition 5 of Appendix A), then system (4) has the Darboux
polynomial (−1 + x + z)2 (and the conjugate conditions are 44 and 78 from Appendix);

(iii) β1 + α3 − 2 = β2 + α1 − 2 = β3 + α2 − 2 = 0 (condition 88 of Appendix), then system (4) has
the Darboux polynomial (−1 + x + y + z)2.

From the analysis of the obtained 88 conditions we obtain the following result.

Theorem 1. System (4) has an irreducible invariant surface not passing through the origin if its parameters
have the values given in the following Table 1 or are conjugate to them.

Table 1. Parameter values for systems with invariant surfaces not passing through the origin.

α1 α2 α3 β1 β2 β3 Condition in Appendix A

1. 3 0 α3 0 1/2 β3 2
2. 3 0 α3 0 3 β3 4
3. 1 + α3 −1 α3 0 1− α3 0 6
4. 1/2 −1 −1 0 3 0 7
5. −1 3/2 3 0 3 0 8
6. 1 1/2 3 0 1 3 11
7. 3 −1 1/2 0 1/2 3 12
8. 1/2 3/2 3 0 3 1/2 14
9. 3 −1 −3 0 3 3 15
10. 1/2 3/2 2 0 3 1/2 16
11. 1− β3 2− β3 0 0 1 + β3 β3 17
12. α3 − 2 −1 α3 0 4− α3 3 18
13. 2− β2 3 1/2 3 β2 1/2 53
14. 1/2 3 3 3 3 1/2 54
15. 1/2 3 α3 2− α3 3 1/2 55
16. α1 3 3 3 2− α1 3 65
17. α3 − 2 3 α3 2− α3 4− α3 3 67
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Remark 1. For instance, the first row of the table means that the parameters α3 and β3 can be chosen arbitrary,
the other parameters satisfy the condition

α1 = 3, α2 = β1 = 0, β2 =
1
2

,

and this is condition 2 from Appendix A.

Proof of Theorem 1. For each case of the theorem we give below the irreducible Darboux polynomial
f of degree two which defines the invariant quadratic invariant surface f = 0 not passing through the
origin and the corresponding cofactor:

1. f = 1− x− 2y + y2; K = −x− 2y;
2. f = 1− 2x + x2 − 2y− 2xy + y2; K = −2(x + y);
3. f = 2− 2x− 2y + yz; K = −x− y;
4. f = 2− 4x + 2x2 − 2y + yz; K = −2x− y;
5. f = 2− 4x + 2x2 + 2xy− 2z + xz; K = −2x− z;
6. f = 2− 4x + 2x2 − 4y + 4xy + 2y2 − 2z + xz; K = −2x− 2y− z;
7. f = 1− x− 2y + y2 + yz; K = −x− 2y;
8. f = 2− 4x + 2x2 − 2y− 2z + xz; K = −2x− y− z;
9. f = 1− 2x + x2 − 2y− 2xy + y2 + yz; K = −2(x + y);

10. f = 1− 2x + x2 − y− z + xz; K = −2x− y− z;
11. f = 1− x− y− z + xz; K = −x− y− z;
12. f = 1− 2x + x2 − 2y + 2xy + y2 + yz; K = −2(x + y);
13. f = 1− x− y− 2z + z2; K = −x− y− 2z;
14. f = 1− 2x + x2 − y− 2z− 2xz + z2; K = −2x− y− 2z;
15. f = 1− 2x + x2 − y− 2z + 2xz + z2; K = −2x− y− 2z;
16. f = 1− 2x + x2 − 2y + 2xy + y2 − 2z− 2xz− 2yz + z2; K = −2(x + y + z);
17. f = 1− 2x + x2 − 2y + 2xy + y2 − 2z + 2xz− 2yz + z2; K = −2(x + y + z).

4. First Integrals of System (4)

In this section we look for Darboux first integrals of the system (4), which can be constructed
using the invariant surfaces obtained in the previous section.

Theorem 2. (a) If one of conditions 1–3, 11, 12, 17 of Theorem 1 holds, then the corresponding system (4)
admits at least one Darboux first integral. (b) If one of conditions 4–10, 13–16 of Theorem 1 holds, then the
corresponding system (4) is completely integrable, that is, it admits two independents Darboux first integrals.

Proof. First note that system (4) always has the following three invariant surfaces of degree one,
with the respective cofactors,

f1 = x; K1 = 1− x− α1y− β1z;

f2 = y; K2 = 1− β2x− y− α2z;

f3 = z; K3 = 1− α3x− β3y− z.

(29)

However, in most cases it is impossible to construct Darboux first integrals using just these
invariant planes and the surfaces given by Theorem 1. To find the integrals we additionally look
for invariant surfaces of the form (12) with h000 = 0 using the procedure described at the beginning
of Section 3. For each considered case we have to solve system (15) with h000 = 0 and parameters
αi, βi (i = 1, 2, 3) given by Theorem 1. Since some parameters are fixed the corresponding systems (15)
are easily solved with MATHEMATICA (no need for computations with SINGULAR now).

Case (a). To prove statement (a) of the theorem, we present the Darboux first integrals for each
case mentioned in the statement.
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If condition (1) of Theorem 1 is satisfied the system has the form

ẋ = x(1− x− 3y), ẏ = y(1− x/2− y)y, ż = z(1− α3x− β3y− z) (30)

Besides the invariant surfaces f1, f2 and f3 given above and the invariant surface

f = 1− x− 2y + y2 (31)

system (30) has the following surfaces f4, f5 (with cofactors K4, K5, respectively),

f4 = x + 4y; K4 = 1− x− y;

f5 = x + 2y− 2y2; K5 = 1− x− 2y.
(32)

From the corresponding Equation (10) we find that λ1 = λ3/2, λ2 = λ4, λ5 = −λ3 − 2λ4, λ6 = 0.
Thus, for arbitrary λ3, λ4 not both equal to zero system (30) has a Darboux first integral

H̃ = xλ4 yλ3(x + 4y)λ4
(

x− 2y2 + 2y
)−λ3−2λ4

(
−x + y2 − 2y + 1

) λ3
2 .

In particular, taking λ4 = 1 and = λ3 = 0 we have the Darboux first integral

H =
x(x + 4y)

(x + 2y− 2y2)2 .

Using the same approach we obtain the following Darboux first integrals for the remaining cases:

(2) H =
xy

(−x + x2 − y− 2xy + y2)2 ;

(3) H =
(x + y− yz)2

x2 + 2xy + y2 − 2yz
;

(11) H =
xz(1− x− y− z + xz)
(−x− y− z + 2xz)2 ;

(12) H =
yz

(−x + x2 − y + 2xy + y2 + yz)2 ;

(17) H =
yz

(−x + x2 − y + 2xy + y2 − z + 2xz− 2yz + z2)2 .

Case (b). For each system of this case we present two independent Darboux first integrals.
Case (4). Besides the invariant surface f1, f2, f3 given above and f of the previous theorem,

we have the invariant surfaces f4 = 4x + y− 2z with the cofactor K4 = 1− x − y− z. Using these
polynomials we can find the following two Darboux first integrals:

H1 =
z(2− 4x + 2x2 − 2y + yz)

(4x + y− 2z)
,

H2 =
yz
x2 .

To check if these first integrals are independent, we compute their gradients and obtain
that they are

G1 = {4(−2 + 2x + y)(1 + x− z)z
(4x + y− 2z)2 , − 2(1 + x− z)2z

(4x + y− 2z)2 ,

2(4x− 8x2 + 4x3 + y− 6xy + x2y− y2 + 4xyz + y2z− yz2)

(4x + y− 2z)2 },

G2 = { − 2yz
x3 ,

z
x2 ,

y
x2 },
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respectively. Then we verify if for the Jacobian

J = [G1, G2].

condition (8) holds. One of 2× 2 minors of the matrix J is

m1 = −
2z2(x− z + 1)

(
2x2 − 2x + yz− y

)
x3(4x + y− 2z)

.

Clearly, m1 is different from zero on the neighborhood of the origin except the set of the
points where

xz(x− z + 1)(2x2 − 2x + yz− y)(4x + y− 2z)2 = 0. (33)

Since the set defined by Equation (33) has Lebesgue measure zero, the Darboux first integrals H1

and H2 are independent.
Case (5). Besides the invariant surfaces f1, f2, f3 given in Equation (29) and f of the

previous theorem, we have the following invariant surfaces passing through the origin (with the
respective cofactors):

f4 = −4xy + 2xz + z2; K4 = −2(−1 + 2x + z);

f5 = 2y + z; K5 = 1− 3x− y− z;

f6 = 2x + 2y + z; K6 = 1− x− y− z;

f7 = −2x + 2x2 + 2xy− z + xz; K7 = 1− 2x− z.

Using these polynomials we can find the following two Darboux first integrals:

H1 =
xy2

z2(2x + 2y + z)
,

H2 =
xy2

(2y + z)(−2x + 2x2 + 2xy− z + xz)2 .

The gradients of them are

G1 = { y2(2y + z)
z2(2x + 2y + z)2 ,

2xy(2x + y + z)
z2(2x + 2y + z)2 , − xy2(4x + 4y + 3z)

z3(2x + 2y + z)2 },

G2 = { − y2(−2x + 6x2 + 2xy + z + xz)
(2y + z)(−2x + 2x2 + 2xy− z + xz)3 ,

2xy(−2xy + 2x2y− 2xy2 − 2xz + 2x2z− yz + xyz− z2 + xz2)

(2y + z)2(−2x + 2x2 + 2xy− z + xz)3 ,

− xy2(−2x + 2x2 − 4y + 6xy− 3z + 3xz)
(2y + z)2(−2x + 2x2 + 2xy− z + xz)3 },

respectively. Similarly as in the previous case, computing the minors of the Jacobian we check H1 and
H2 are independent.

Using similar computations we get the following pairs of independent Darboux first integrals for
the remaining cases:

(6) H1 =
z

x(2− 4x + 2x2 − 4y + 4xy + 2y2 − 2z + xz)
,

H2 =
z(2x + 4y + z)

y2(2− 4x + 2x2 − 4y + 4xy + 2y2 − 2z + xz)
;

(7) H1 = − x2

yz(−1 + x + 2y− y2 − yz)
,
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H2 = − (x− 2z)2

z(y + z)(−1 + x + 2y− y2 − yz)
;

(8) H1 =
xz(2− 4x + 2x2 − 2y− 2z + xz)

(y + z)2 ,

H2 =
(2x + z)(y + z)2

xy2 ;

(9) H1 =
yz(1− 2x + x2 − 2y− 2xy + y2 + yz)

x2 ,

H2 =
y2z(4x− z)

x2(x2 − 2xy + y2 + yz)
;

(10) H1 = − x(y− z + xz + z2)

z(−2x + 2x2 − y− z + 2xz)
,

H2 =
y2(x + z)

z(2x− 2x2 + y + z− 2xz)(y− z + xz + z2)
;

(13) H1 =
(−x− y− 2z + 2z2)2

z2(1− x− y− 2z + z2)
,

H2 =
xz2α1−2(x + y + 4z)2−2α1

y
;

(14) H1 =
(−2x + 2x2 − y− 2z− 4xz + 2z2)2

(x− z)2(1− 2x + x2 − y− 2z− 2xz + z2)
,

H2 =
x(y + 4z)2(−2x + 2x2 − y− 2z− 4xz + 2z2)2

z(x− z)4(1− 2x + x2 − y− 2z− 2xz + z2)2 ;

(15) H1 =
y(4x + y + 4z)

(2x− 2x2 + y + 2z− 4xz− 2z2)2 ,

H2 =
x(4x + y + 4z)1−α3(−2x + 2x2 − y− 2z + 4xz + 2z2)1+α3

z(x + z)2(1− 2x + x2 − y− 2z + 2xz + z2)
;

(16) H1 =
(x + y)z

(−x + x2 − y + 2xy + y2 − z− 2xz− 2yz + z2)2 ,

H2 =
1
y4 x4z2−2α1(1− 2x + x2 − 2y + 2xy + y2 − 2z− 2xz− 2yz + z2)1−α1

(−x + x2 − y + 2xy + y2 − z− 2xz− 2yz + z2)2α1−2.

Remark 2. Note that first two equations of (30) are independent of z, they are,

ẋ = x(1− x− 3y), ẏ = y(1− x/2− y)y. (34)

Therefore we cannot construct another independent first integral H2(x, y, z) of Equation (30) using only the
planes x = 0, y = 0, z = 0 and the surfaces defined by Equations (31) and (32). Indeed, since the equations of all
surfaces of this case, except of z = 0, are independent on z, if such integral would exist, it would be independent of z,
but then two-dimensional system (34) would have two independent first integrals, which is impossible.

In case (2), similarly as in case (1), the system is separable into a two-dimensional system and a single first
order equation, and we can construct only one Darboux first integral using the found invariant surfaces.

5. Conclusions

To summarize, we have found some Darboux first integrals of the May–Leonard system (4) which
are constructed using Darboux polynomials of degree one and two. We do not know if we found
all independent first integrals of system (4) which can be constructed from Darboux polynomials
of degree one and two. To verify if the list is complete, we have to find Darboux polynomials of
Equation (4), which define invariant algebraic surfaces passing through the origin, that is, polynomials
(12) with h000 = 0. A naïve expectation is that this case should be simpler, than the case h000 = 1,
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which we have successfully investigated in this paper. However it turns out that the case h000 = 0 is
computationally much more difficult and we were not able to complete computations for this case
using our computational facilities. We believe that a reason for this difficulty is that since the origin
is a singular point there are many invariant surfaces passing through the origin and it implies a
complicated structure of the elimination ideals which we have to compute using our approach.
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Appendix A

Here we list the irreducible components of the variety of ideals in (17), which give conditions for
existence in system (4) of invariant surfaces of degree two not passing through the origin of the system:

1. α1 = β1 = 0
2. −(1/2) + β2 = α2 = β1 = −3 + α1 = 0
3. −3 + β2 = α2 = β1 = −(1/2) + α1 = 0
4. −3 + β2 = α2 = β1 = −3 + α1 = 0
5. α2 = β1 = β2 + α1 − 2 = 0
6. β3 = −1 + α3 + β2 = 1 + α2 = β1 = −1 + α1 − α3 = 0
7. β3 = 1 + α3 = −3 + β2 = 1 + α2 = β1 = −(1/2) + α1 = 0
8. β3 = −3 + α3 = −3 + β2 = −(3/2) + α2 = β1 = 1 + α1 = 0
9. −3 + β3 = −(3/2) + α3 = β2 = 1 + α2 = β1 = −3 + α1 = 0

10. −3 + β3 = 1 + α3 = β2 = −(1/2) + α2 = β1 = 1 + α1 = 0
11. −3 + β3 = −3 + α3 = −1 + β2 = −(1/2) + α2 = β1 = −1 + α1 = 0
12. −3 + β3 = −(1/2) + α3 = −(1/2) + β2 = 1 + α2 = β1 = −3 + α1 = 0
13. 1 + α3 = β2 = −2 + α2 + β3 = β1 = −1 + α1 + β3 = 0
14. −(1/2) + β3 = −3 + α3 = −3 + β2 = −(3/2) + α2 = β1 = −(1/2) + α1 = 0
15. −3 + β3 = 3 + α3 = −3 + β2 = 1 + α2 = β1 = −3 + α1 = 0
16. −(1/2) + β3 = −2 + α3 = −3 + β2 = −(3/2) + α2 = β1 = −(1/2) + α1 = 0
17. α3 = −1 + β2 − β3 = −2 + α2 + β3 = β1 = −1 + α1 + β3 = 0
18. −3 + β3 = −4 + α3 + β2 = 1 + α2 = β1 = 2 + α1 − α3 = 0
19. 1 + β3 = −3 + α3 = 1 + β2 = α2 = −(1/2) + β1 = α1 = 0
20. 1 + β3 = −1 + α3 + β2 = α2 = −2 + α3 + β1 = α1 = 0
21. −(3/2) + β3 = −3 + α3 = −3 + β2 = α2 = 1 + β1 = α1 = 0
22. α2 = β2 = 0
23. −2 + β3 = −(1/2) + α3 = −(1/2) + β2 = α2 = −(3/2) + β1 = −3 + α1 = 0
24. −3 + β3 = −(1/2) + α3 = −(1/2) + β2 = α2 = −(3/2) + β1 = −3 + α1 = 0
25. 1 + β3 = α3 = −(1/2) + β2 = α2 = 1 + β1 = −3 + α1 = 0
26. 3 + β3 = −3 + α3 = −3 + β2 = α2 = 1 + β1 = −3 + α1 = 0
27. −(1/2) + β3 = −3 + α3 = −3 + β2 = α2 = 1 + β1 = −(1/2) + α1 = 0
28. α3 = −1 + β2 − β3 = α2 = 1 + β1 = −1 + α1 + β3 = 0
29. −3 + β3 = α3 = 1 + β2 = α2 = −(3/2) + β1 = −3 + α1 = 0
30. −3 + α3 = 2 + β2 − β3 = α2 = 1 + β1 = −4 + α1 + β3 = 0
31. −3 + β3 = −3 + α3 = −1 + β2 = α2 = −(1/2) + β1 = −1 + α1 = 0
32. β3 = −1 + α3 + β2 = α2 = −2 + α3 + β1 = −1 + α1 − α3 = 0
33. β3 = −(1/2) + α3 = β2 = 1 + α2 = −3 + β1 = 1 + α1 = 0
34. β3 = β2 = 1 + α2 − α3 = −2 + α3 + β1 = 1 + α1 = 0
35. β3 = 1 + α3 = β2 = −3 + α2 = −3 + β1 = −(3/2) + α1 = 0
36. α3 = β3 = 0



Mathematics 2019, 7, 292 13 of 15

37. β3 = −(1/2) + α3 = −3 + β1 = α1 = 0
38. β3 = −(1/2) + α3 = −(1/2) + β2 = −2 + α2 = −3 + β1 = −(3/2) + α1 = 0
39. β3 = −(1/2) + α3 = −(1/2) + β2 = −3 + α2 = −3 + β1 = −(3/2) + α1 = 0
40. β3 = −3 + α3 = −(1/2) + β1 = α1 = 0
41. β3 = −3 + α3 = −3 + β1 = α1 = 0
42. β3 = −3 + α3 = −3 + β2 = −(1/2) + α2 = −(1/2) + β1 = 1 + α1 = 0
43. β3 = −3 + α3 = −3 + β2 = 3 + α2 = −3 + β1 = 1 + α1 = 0
44. α1 = β1 + α3 − 2 = β3 = 0
45. β3 = −1 + α3 = −3 + β2 = −3 + α2 = −1 + β1 = −(1/2) + α1 = 0
46. β3 = −3 + β2 = −2 + α2 − α3 = −2 + α3 + β1 = 1 + α1 = 0
47. −(1/2) + β3 = α3 = 1 + β2 = −3 + α2 = 1 + β1 = α1 = 0
48. −(1/2) + β3 = −1 + α3 = −3 + β2 = −3 + α2 = −1 + β1 = α1 = 0
49. −(1/2) + β3 = α3 = β2 = −3 + α2 = 0
50. −(1/2) + β3 = 1 + α3 = β2 = −3 + α2 = −3 + β1 = −(1/2) + α1 = 0
51. −(1/2) + β3 = α3 = −(3/2) + β2 = −3 + α2 = −2 + β1 = −(1/2) + α1 = 0
52. −(1/2) + β3 = α3 = −(3/2) + β2 = −3 + α2 = −3 + β1 = −(1/2) + α1 = 0
53. −(1/2) + β3 = −(1/2) + α3 = −3 + α2 = −3 + β1 = −2 + α1 + β2 = 0
54. −(1/2) + β3 = −3 + α3 = −3 + β2 = −3 + α2 = −3 + β1 = −(1/2) + α1 = 0
55. −(1/2) + β3 = −3 + β2 = −3 + α2 = −2 + α3 + β1 = −(1/2) + α1 = 0
56. −3 + β3 = α3 = β2 = −(1/2) + α2 = 0
57. −3 + β3 = α3 = β2 = −3 + α2 = 0
58. −3 + β3 = −(3/2) + α3 = β2 = −(1/2) + α2 = −(1/2) + β1 = −2 + α1 = 0
59. −3 + β3 = −(3/2) + α3 = β2 = −(1/2) + α2 = −(1/2) + β1 = −3 + α1 = 0
60. −3 + β3 = 1 + α3 = β2 = −3 + α2 = −3 + β1 = 3 + α1 = 0
61. −3 + β3 = α3 = 1 + β2 = −(1/2) + α2 = −(1/2) + β1 = −3 + α1 = 0
62. −3 + β3 = α3 = 1 + β2 = −3 + α2 = 3 + β1 = −3 + α1 = 0
63. −3 + β3 = −(1/2) + α3 = −(1/2) + β2 = −3 + α2 = −3 + β1 = −3 + α1 = 0
64. −3 + β3 = −3 + α3 = −(1/2) + α2 = −(1/2) + β1 = −2 + α1 + β2 = 0
65. −3 + β3 = −3 + α3 = −3 + α2 = −3 + β1 = −2 + α1 + β2 = 0
66. −3 + β3 = −3 + α3 = −3 + β2 = −(1/2) + α2 = −(1/2) + β1 = −3 + α1 = 0
67. −3 + β3 = −4 + α3 + β2 = −3 + α2 = −2 + α3 + β1 = 2 + α1 − α3 = 0
68. −3 + β3 = −(1/2) + β2 = −(1/2) + α2 = −2 + α3 + β1 = −3 + α1 = 0
69. −3 + β3 = −3 + β2 = −3 + α2 = −2 + α3 + β1 = −3 + α1 = 0
70. −3 + α3 + β3 = β2 = −2 + α2 + β3 = 1 + β1 − β3 = α1 = 0
71. α3 = 1 + β2 = −2 + α2 + β3 = 1 + β1 − β3 = α1 = 0
72. 1 + β3 = α3 = −(3/2) + β2 = −3 + α2 = −3 + β1 = α1 = 0
73. 1 + β3 = −(1/2) + α3 = −(1/2) + β2 = −3 + α2 = −3 + β1 = α1 = 0
74. −(3/2) + β3 = −3 + α3 = −2 + β2 = −(1/2) + α2 = −(1/2) + β1 = α1 = 0
75. −(3/2) + β3 = −3 + α3 = −3 + β2 = −(1/2) + α2 = −(1/2) + β1 = α1 = 0
76. 1 + β3 = −3 + α3 = 3 + β2 = −3 + α2 = −3 + β1 = α1 = 0
77. 1 + β3 = −4 + α3 + β2 = −3 + α2 = −2 + α3 + β1 = α1 = 0
78. α3 = β2 = β3 + α1 − 2 = 0
79. 1 + α3 = β2 = −2 + α2 + β3 = −3 + β1 = −4 + α1 + β3 = 0
80. −1 + β3 = −(1/2) + α3 = β2 = −1 + α2 = −3 + β1 = −3 + α1 = 0
81. −1 + β3 = α3 = −(1/2) + β2 = −1 + α2 = −3 + β1 = −3 + α1 = 0
82. −(1/2) + α3 = −(1/2) + β2 = −2 + α2 + β3 = −3 + β1 = −3 + α1 = 0
83. −3 + α3 = −3 + β2 = −2 + α2 + β3 = −(1/2) + β1 = −(1/2) + α1 = 0
84. −3 + α3 = −3 + β2 = −2 + α2 + β3 = −3 + β1 = −3 + α1 = 0
85. α3 + β3 = −3 + β2 = −2 + α2 + β3 = −2 + β1 − β3 = −3 + α1 = 0
86. α3 = 1 + β2 = −2 + α2 + β3 = −2 + β1 − β3 = −3 + α1 = 0
87. −3 + α3 = 2 + β2 − β3 = −2 + α2 + β3 = −3 + β1 = −4 + α1 + β3 = 0
88. β1 + α3 − 2 = β2 + α1 − 2 = β3 + α1 − 2 = 0.
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