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Abstract: A crucial issue in applying the ordered weighted averaging (OWA) operator for decision
making is the determination of the associated weights. This paper proposes a general least convex
deviation model for OWA operators which attempts to obtain the desired OWA weight vector
under a given orness level to minimize the least convex deviation after monotone convex function
transformation of absolute deviation. The model includes the least square deviation (LSD) OWA
operators model suggested by Wang, Luo and Liu in Computers & Industrial Engineering, 2007, as a
special class. We completely prove this constrained optimization problem analytically. Using this
result, we also give solution of LSD model suggested by Wang, Luo and Liu as a function of n and α

completely. We reconsider two numerical examples that Wang, Luo and Liu, 2007 and Sang and Liu,
Fuzzy Sets and Systems, 2014, showed and consider another different type of the model to illustrate
our results.

Keywords: decision making; OWA operator; operator weights; degree of orness; absolute disparity;
least convex deviation model

1. Introduction

Yager [1,2] introduced the concept of ordered weighted averaging (OWA) operator. It is an
important issue to the application and theory of OWA operators to determine the weights of the
operators. Previous studies have proposed a number of approaches for obtaining the associated
weights in different areas such as date mining, decision making, neural networks, approximate
reasoning, expert systems, fuzzy system and control [1–20]. A number of approaches have been
proposed for the identification of associated weights, including exponential smoothing [6], quantifier
guided aggregation [19,20] and learning [20]. O’Hagan [9] proposed another approach that determines
a special class of OWA operators having maximal entropy for the OWA weights; this approach is
algorithmically based on the solution of a constrained optimization problem. Hong [10] provided
new method supporting the minimum variance problem. Fullér and Majlender [7,8] suggested a
minimum variance approach to obtain the minimal variability OWA weights and proved that the
maximum entropy model could be transformed into a polynomial equation that could be proved
analytically. Liu and Chen [13] proposed a parametric geometric approach that can be used to obtain
maximum entropy weights. Wang and Parkan [18] suggested a new method which generates the
OWA operator weights by minimizing the maximum difference between any two adjacent weights.
They transferred the minimax disparity problem to a linear programming problem, obtained weights
for some special values of orness, and proved the dual property of OWA. Liu [12] proved that the
minimax disparity OWA problem of Wang and Parkan [18] and the minimum variance problem of
Fullér and Majlender [7] would always produce the same weight vector. Emrouznejad and Amin [5]
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gave an alternative disparity problem to identify the OWA operator weights by minimizing the sum of
the deviation between two distinct OWA weights. Amin and Emrouznejad [3,4] proposed an extended
minimax disparity model. Hong [11] proved this open problem in a mathematical sense. Recently,
Wang et al. [18] suggested a least square deviation model for obtaining OWA operator weights,
which is nonlinear and was proved by using LINGO program for a given degree of orness. Sang and
Liu [17] proved this constrained optimization problem analytically, using the method of Lagrange
multipliers. Liu [14] stidied the general minimax disparity OWA operator optimization problem
which includes a minimax disparity OWA operator optimization model and a general convex OWA
operator optimization problem which includes the maximum entropy [7] and minimum variance OWA
problem [8,10,15]. Liu [15] suggested a general optimization model for determining ordered weighted
averaging (OWA) operators and three specific models for generating monotonic and symmetric
OWA operators.

In this paper, we propose a general least convex deviation model for OWA operators which
attempts to obtain the desired OWA weight vector under a given orness level to minimize the least
convex deviation after monotone convex function transformation of absolute deviation. The model
includes the least square deviation (LSD) OWA operators model suggested by Wang et al. [1].
We completely prove the optimization problem mathematically and consider the same numerical
examples that Wang et al. [1] and Sang and Liu [17] presented in their illustration of the application of
the least square deviation model. We also determine the solution OWA operator weights not for some
discrete value of α but for all orness levels 0 ≤ α ≤ 1 as a function of α.

2. The Least Convex Deviation Model

Yager [2] introduced an aggregation technique based on the ordered weighted averaging (OWA)
operators. An OWA operator of dimension n is a mapping F : Rn → R that has an associated weighting
vector W = (w1, · · · , wn)T with properties w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, · · · , n, and

F(a1, · · · , an) =
n

∑
i=1

wibi,

where bj is the jth largest element of a collection of the aggregated objects {a1, · · · , an}. In [2], Yager
introduced a measure of "orness" associated with the weighting vector W of an OWA operator, which
is defined as

orness(W) =
n

∑
i=1

n− i
n− 1

wi.

Wang and Parkan [17] proposed a minimax disparity OWA operator optimization problem:

Minimize max
i∈{1,··· ,n−1}

|wi − wi+1|

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

The minimax disparity approach obtains OWA operator weights based on the minimization of
the maximum difference between any two adjacent weights. Recently, Liu [14] considered the general
minimax disparity OWA operator optimization problem as follows.

Minimize max
i∈{1,··· ,n−1}

|F′(wi)− F′(wi+1)|

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.
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where F is a strictly convex function on [0, ∞) and is at least two order differentiable.
Liu [14] also considered a general convex OWA operator optimization problem with given

orness level:

Minimize VW =
n

∑
i=1

F(wi)

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 < α < 1, (1)

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

where F is a strictly convex function on [0, 1] and is at least two order differentiable.
When F(x) = x ln x, (1) becomes the maximum entropy OWA operator problem that was

discussed in [7,12]. F(x) = x2 in (1) corresponds to minimum variance OWA operator problem [8,10].
When F(x) = xp, p > 1, (1) becomes the OWA problem of Rényi entropy [15].

Wang et al. [1] have introduced the following least squares deviation (LSD) method as an
alternative approach to determine the OWA operator weights.

Minimize
n−1

∑
i=1

(wi+1 − wi)
2

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1, (2)

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

They solved this problem by using LINGO or MATLAB software package. Recently, Sang and
Liu [17] solved this constrained optimization problem analytically by using the method of Lagrange
multipliers. The general least convex deviation model for OWA operators attempts to obtain the
desired OWA weight vector under a given orness level to minimize the least convex deviation after
monotone convex function transformation of absolute deviation, which includes the least square
deviation (LSD) problem as a special case.

We now propose the general least convex deviation model with a given orness level as follows,

Minimize F(W) =
n−1

∑
i=1

F (|wi+1 − wi|)

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1, (3)

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n,

where F is a strictly convex function on [0, 1], and F′ is continuous on [0, 1) such that F′(0) = 0.
The followings are well-known propositions which can be easily checked.

Proposition 1. If orness(W) = 1, then W = (1, 0, · · · , 0) is the only feasible solution of the model (3).
For orness(W) = 0, W = (0, · · · , 0, 1) is the only feasible solution of the model (3). Since F(W) = 0 if
and only if W = (1/n, · · · , 1/n), we have that if orness(W) = 1/2, then W = (1/n, · · · , 1/n) is the only
optimum solution of the model (3).

Proposition 2. If W∗ = (w∗1 , · · · , w∗n) is an optimal solution of the model (3) for a given level of
orness(W) = α, then Ŵ∗ = (ŵ∗1 , · · · , ŵ∗n), where w∗i = ŵ∗n−i+1, i = 1, · · · , n is an optimal solution of
the model (3) for orness(W) = 1− α, and vice versa. Hence, for any α > 1/2, we can consider the model (3)
for degree of orness (1− α), and then take the reverse of that optimal solution.
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By Proposition 1 and 2, without loss of generality, we may assume that α ∈ (0, 1/2).

3. Optimal Solution of the Least Convex Deviation Problem

In this section, we consider the mathematical proof of the optimization problem (3). We need the
following lemmas to find optimal solution of the model (3).

Lemma 1. Let {wi} be the set of nonnegative weighting vectors where wi = a for i = 1, · · · , k0, wi = b for i =
k0 + 1, · · · , n− 1, a < b = wn−1 > wn such that ∑n

i=1
n−i
n−1 wi = α, ∑n

i=1 wi = 1. If 0 < α < 1/2, then there
exists the set {w∗i } of nonnegative weighting vectors such that ∑n

i=1
n−i
n−1 w∗i = α, 0 ≤ w∗i ≤ w∗i+1 ≤ 1, i =

1, · · · , n− 1, ∑n
i=1 w∗i = 1, and

n−1

∑
i=1

F(|w∗i+1 − w∗i |) ≤
n−1

∑
i=1

F(|wi+1 − wi|).

Proof. We note that
k0

∑
i=1

n− i
n− 1

a +
n

∑
i=k0+1

n− i
n− 1

b = α

and
k0a + (n− k0 − 1)b + wn = 1.

Consider ε > 0 and δ > 0 (δ > 0 depends on ε > 0) such that

k0

∑
i=1

n− i
n− 1

(a + ε) +
n

∑
i=k0+1

n− i
n− 1

(b− δ) = α, (4)

and define a function H(ε) on ε ≥ 0 by

H(ε) = k0(a + ε) + (n− k0)(b− δ).

Then H(ε) ia continuous and

H(0) = k0a + (n− k0)b > k0a + (n− k0 − 1)b + wn = 1.

Let a + ε′ = b− δ′ = a′ for some ε′ > 0 and δ′ > 0. Then we have

n

∑
i=1

n− i
n− 1

a′ =
na′

2
= α

so that a′ = 2α/n. Now since 0 < α < 1/2,

H(ε′) = k0(a + ε′) + (n− k0)(b− δ′) = k0a′ + (n− k0)a′ = na′ = 2α < 1

and then there exist ε∗ and δ∗ such that 0 < ε∗ < ε′ and 0 < δ∗ < δ′ and

H(ε∗) = k0(a + ε∗) + (n− k0)(b− δ∗) = 1,

and, by (4),
k0

∑
i=1

n− i
n− 1

(a + ε∗) +
n

∑
i=k0+1

n− i
n− 1

(b− δ∗) = α.
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Let

w∗i =

{
a + ε∗, i = 1, · · · , k0

b− δ∗, i = k0 + 1, · · · , n.

Then since a < a + ε∗ < b− δ∗ < b and F is strictly increasing, we have

n−1

∑
i=1

F(|w∗i+1 − w∗i |) = F((b− a)− (ε∗ + δ∗))

< F(b− a)

= F(|wk0+1 − wk0 |)

≤
n−1

∑
i=1

F(|wi+1 − wi|).

This completes the proof.

Lemma 2. Let {wi} be the set of nonnegative weighting vectors such that ∑n
i=1

n−i
n−1 wi = α, ∑n

i=1 wi = 1.
If 0 < α < 1/2, then there exists the set {w∗i } of nonnegative weighting vectors such that ∑n

i=1
n−i
n−1 w∗i =

α, 0 ≤ w∗i ≤ w∗i+1 ≤ 1, ∑n
i=1 w∗i = 1 and

n−1

∑
i=1

F(|w∗i+1 − w∗i |) ≤
n−1

∑
i=1

F(|wi+1 − wi|).

Proof. Let w(i) be the i-th smallest weighting vector of {wi}. Then we have

α =
n

∑
i=1

n− i
n− 1

wi ≥
n

∑
i=1

n− i
n− 1

w(i).

Hence there exists some w′(k0)
such that w(k0)

≤ w′(k0)
≤ w(k0+1) and

k0

∑
i=1

n− i
n− 1

w′(k0)
+

n

∑
i=k0+1

n− i
n− 1

w(i) = α (5)

where 1 ≤ k0 ≤ n. Since

1 =
n

∑
i=1

w(i) ≤ k0w′(k0)
+

n

∑
i=k0+1

w(i),

we consider two possible cases;

k0w′(k0)
+

n

∑
i=k0+1

w(i) = 1

or

k0w′(k0)
+

n

∑
i=k0+1

w(i) > 1.

First we suppose that

k0w′(k0)
+

n

∑
i=k0+1

w(i) = 1
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and let

w∗i =

w′(k0)
, i = 1, · · · , k0

w(i), i = k0 + 1, · · · , n.

Since w(i) ≤ w∗i , i = 1, 2, · · · n and 1 = ∑n
i=1 w(i) = ∑n

i=1 w∗i , we have that w(i) = w∗i , i = 1, 2, · · · n
and then ∑n

i=1
n−i
n−1 w∗i = α, 0 ≤ w∗i ≤ w∗i+1 ≤ 1 and ∑n

i=1 w∗i = 1. Since F is nondecreasing on [0, ∞),

n−1

∑
i=1

F(|wi+1 − wi|) ≥
n−1

∑
i=1

F(|w(i+1) − w(i)|) =
n−1

∑
i=1

F(|w∗i+1 − w∗i |).

Now we suppose that

k0w′(k0)
+

n

∑
i=k0+1

w(i) > 1. (6)

We note that for 0 ≤ ε ≤ 1, there exists 0 ≤ h(ε) = δ ≤ 1 such that

H1(ε, δ) =
k0

∑
i=1

n− i
n− 1

[(1− ε)w′(k0)
+ εw(k0+1)] +

n

∑
i=k0+1

n− i
n− 1

[(1− δ)w(i) + δw(k0+1)] = α. (7)

Then h is an increasing continuous function of ε and we have three possible cases as ε ↑ 1.;
(Case 1) h(ε0) = 1 : H1(ε0, 1) = α for some 0 < ε0 < 1, (Case 2) h(1) = 1 : H1(1, 1) = α, and (Case 3)
h(1) = δ0 : H1(1, δ0) = α for some 0 < δ0 < 1.

We define a function H(ε) on 0 ≤ ε ≤ 1 by

H(ε) =
k0

∑
i=1

[(1− ε)w′(k0)
+ εw(k0+1)] +

n

∑
i=k0+1

[(1− δ)w(i) + δw(k0+1)]

such that H1(ε, δ) = α. Then H is continuous and, then by (6), we have

H(0) = k0w′(k0)
+

n

∑
i=k0+1

w(i) > 1. (8)

(Case 1) H1(ε0, 1) = α for some 0 < ε0 < 1;
From (7), we have

k0

∑
i=1

n− i
n− 1

[(1− ε0)w′(k0)
+ εw(k0+1)] +

n

∑
i=k0+1

n− i
n− 1

w(k0+1) = α.

There are two possible cases, that is,

H(ε0) =
k0

∑
i=1

[(1− ε0)w′(k0)
+ ε0w(k0+1)] +

n

∑
i=k0+1

w(k0+1) ≤ 1 (9)

or

H(ε0) =
k0

∑
i=1

[(1− ε0)w′(k0)
+ ε0w(k0+1)] +

n

∑
i=k0+1

w(k0+1) > 1.
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First, suppose that

H(ε0) =
k0

∑
i=1

[(1− ε0)w′(k0)
+ ε0w(k0+1)] +

n

∑
i=k0+1

w(k0+1) ≤ 1.

Then, from (8) and (9), there exist 0 < ε∗ ≤ ε0 and 0 < δ∗ ≤ 1 such that

H(ε) =
k0

∑
i=1

[(1− ε∗)w′(k0)
+ ε∗w(k0+1)] +

n

∑
i=k0+1

(1− δ∗)w(i) + δ∗w(k0+1) = 1.

Put

w∗i =

[(1− ε∗)w′(k0)
+ ε∗w(k0+1)], i = 1, · · · , k0

(1− δ∗)w(i) + δ∗w(k0+1), i = k0 + 1, · · · , n.

Then we have ∑n
i=1

n−i
n−1 w∗i = α, 0 ≤ w∗i ≤ w∗i+1 ≤ 1 and ∑n

i=1 w∗i = 1. And since F is
nondecreasing on [0, ∞), by construction of w∗i for i = 1, 2, · · · , n,

n−1

∑
i=1

F(|wi+1 − wi|) ≥
n−1

∑
i=1

F(|w(i+1) − w(i)|)

≥ F|w(k0+1) − w(k0)
|+

n−1

∑
i=k0+1

F((1− δ∗)|w(i+1) − w(i)|)

≥
n−1

∑
i=1

F(|w∗i+1 − w∗i |).

Second, suppose that

H(ε0) =
k0

∑
i=1

[(1− ε0)w′(k0)
+ ε0w(k0+1)] +

n

∑
i=k0+1

w(k0+1) > 1, (10)

and let a = (1− ε0)w′(k0+1) + ε0w(k0+1), b = w(k0+1) and wn = 1− (∑k0
i=1[(1− ε0)w′(k0+1) + ε0w(k0+1)] +

∑n−1
i=k0+1 w(k0+1)). Then a < b > wn and from Lemma 1, we obtain w∗i , i = 1, 2, · · · , n such that

∑n
i=1

n−i
n−1 w∗i = α, 0 ≤ w∗i ≤ w∗i+1 ≤ 1, ∑n

i=1 w∗i = 1, and ∑i=n−1
i=1 F(|w∗i+1−w∗i |) ≤ ∑i=n−1

i=1 F(|wi+1−wi|).
(Case 2) H1(1, 1) = α;
From (7),

k0

∑
i=1

n− i
n− 1

w(k0+1) +
n

∑
i=k0+1

n− i
n− 1

w(k0+1) = α,

hence
w(k0+1) =

2α

n
<

1
n

.

We note that

H(1) =
n

∑
i=1

w(k0+1) = 2α < 1. (11)

Since H(0) > 1 and H(1) < 1 from (8) and (11), there exist 0 < ε∗ < 1, 0 < δ∗ < 1 such that

H(ε) =
k0

∑
i=1

[(1− ε∗)w′(k0)
+ ε∗w(k0+1)] +

n

∑
i=k0+1

(1− δ∗)w(i) + δ∗w(k0+1) = 1.
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Hence we obtain w∗i , i = 1, 2, · · · , n by putting

w∗i =

(1− ε∗)w′(k0)
+ ε∗w(k0+1), i = 1, · · · , k0

(1− δ∗)w(i) + δ∗w(k0+1), i = k0 + 1, · · · , n

such that ∑n
i=1

n−i
n−1 w∗i = α, 0 ≤ w∗i ≤ w∗i+1 ≤ 1 and ∑n

i=1 w∗i = 1. And, just like (Case 1), we have

n−1

∑
i=1

F(|wi+1 − wi|) ≥
n−1

∑
i=1

F(|w∗i+1 − w∗i |).

(Case 3) H1(1, δ0) = α for some 0 < δ0 < 1;
From (7), we have

k0+1

∑
i=1

n− i
n− 1

w(k0+1) +
n

∑
i=k0+2

n− i
n− 1

[(1− δ0)w(i) + δ0w(k0+1)] = α. (12)

There are two possible cases, that is,

H(1) = (k0 + 1)w(k0+1) +
n

∑
i=k0+2

[(1− δ0)w(i) + δw(k0+1)] ≤ 1

or

H(1) = (k0 + 1)w(k0+1) +
n

∑
i=k0+2

[(1− δ0)w(i) + δw(k0+1)] > 1.

But if H(1) ≤ 1,then it is easy to obtain desired w∗i , i = 1, 2, · · · , n by the similar arguments to the
above. Hence we consider the case

H(1) = (k0 + 1)w(k0+1) +
n

∑
i=k0+2

[(1− δ0)w(i) + δw(k0+1)] > 1. (13)

Now (12) and (13) are exactly the same as (5) and (6) regarding w(k0+1) as w′(k0)
and (1− δ)w(i) +

δw(k0+1) as w(i), i = k0 + 2, · · · , n in (5) and (6). If we use the same arguments as above finite number
of times, then we finally have the following situation; there exist w′′i , i = 1, · · · , n such that

n−2

∑
i=1

n− i
n− 1

w′′(n−2) +
1

n− 1
w′′(n−1) = α.

and
(n− 2)w′′(n−2) + w′′(n−1) + w′′(n) > 1.

If we put a = w′′(n−2), b = w′′(n−1) and wn = 1− [(n− 2)w′′(n−2) + w′′(n−1)] in Lemma 1, then we
obtain the desired result of w∗i , i = 1, 2, · · · , n by using Lemma 1 again. We complete the proof.

The following result is immediately from Lemma 2.

Lemma 3. The model (3) is equivalent to the following model:

Minimize ∑n−1
i=1 F(wi+1 − wi)

subject to orness(W) = ∑n
i=1

n−i
n−1 wi = α, 0 ≤ α ≤ 1/2,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n, (14)

wi ≤ wi+1, i = 1, · · · , n− 1,
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where F is a strictly convex function on [0, ∞), and F′ is continuous on [0, 1) such that F′(0) = 0.

Lemma 4. If we put wi = ∑i
k=1 xk, i = 1, · · · , n, then the model (14) is transformed into the following model:

Min VW = ∑n
k=2 F(xk)

subject to orness(W) = ∑n
k=1

(n−k)(n−k+1)
2(n−1) xk = α, 0 ≤ α ≤ 1/2,

∑n
k=1(n− k + 1)xk = 1, (15)

0 ≤ xk, k = 1, · · · , n, .

where F is a strictly convex function on [0, 1] with continuous first differentiability of F such that F′(0) = 0.

We now prove the optimization problem of model (3). We note that F is strictly convex if and only
if F′ is strictly increasing.

Theorem 1. Let F be a strictly convex function on [0, 1] and F′ be continuous on [0, 1) such that F′(0) = 0.
Then the optimal solution for the model (3) with given orness level 0 < α < 1/2 is as follow:

In case of w∗1 = x∗1 = 0, it is the weighting function w∗i = ∑i
k=1 x∗k , i = 1, 2, · · · , n with

x∗k =

{
(F′)−1(a∗(n− k)(n− k + 1) + b∗(n− k + 1)), k ∈ H

0, k /∈ H
(16)

where a∗, b∗ are determined by the constraints:∑k∈H
(n−k)(n−k+1)

2(n−1) x∗k = α

∑k∈H(n− k + 1)x∗k = 1
(17)

and H = {k| a∗(n− k)(n− k + 1) + b∗(n− k + 1) > 0}.
In case of w∗1 = x∗1 > 0, it is the weighting function w∗i = ∑i

k=1 x∗k , i = 1, 2, · · · , n with

x∗k = (F′)−1
(

c∗(k− 1)(n− k + 1)
n− 1

)
, k = 2, 3, · · · , n (18)

and

x∗1 =
1
n

(
1−

n

∑
k=2

(n− k + 1)x∗k

)
(19)

where c∗ is determined by the constraints such that

1− 2α =
n

∑
k=1

(k− 1)(n− k + 1)
n− 1

x∗k . (20)

Proof. By Lemma 4, we consider the following model (15) to get x∗k for i = 1, 2, · · · , n.

Minimize VW =
n

∑
k=2

F(xk)

subject to orness(W) =
n

∑
k=1

(n− k)(n− k + 1)
2(n− 1)

xk = α, 0 < α < 1/2,

n

∑
k=1

(n− k + 1)xk = 1, 0 ≤ xk, k = 1, · · · , n.
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There are two possible cases such as (case 1) w∗1 = x∗1 = 0 or (2) w∗1 = x∗1 > 0.
(Case 1) w∗1 = x∗1 = 0.
Let x∗k = max{(F′)−1(a∗(n− k)(n− k + 1) + b∗(n− k + 1)), 0}
such that

∑(n− k)(n− k + 1)x∗k = 2(n− 1)α (21)

∑(n− k + 1)x∗k = 1 (22)

and let xk for k = 1, · · · , n be a vector such that

∑(n− k)(n− k + 1)xk = 2(n− 1)α (23)

∑(n− k + 1)xk = 1, 0 ≤ xk, k = 1, · · · , n. (24)

We also note that

F′(x∗k ) =

{
0, k /∈ H

a∗(n− k)(n− k + 1) + b∗(n− k + 1), k ∈ H
(25)

and we put xk = x∗k + βk for k = 1, · · · , n. Then, noting that xk = βk, k /∈ H, we have

∑
k/∈H

(n− k + 1)xk + ∑
k∈H

(n− k + 1)βk =
n

∑
k=1

(n− k + 1)βk = 0 (26)

from (22) and (24) because

1 =
n

∑
k=1

(n− k + 1)xk

=
n

∑
k=1

(n− k + 1)(x∗k + βk)

=
n

∑
k=1

(n− k + 1)x∗k +
n

∑
k=1

(n− k + 1)βk

= 1 +
n

∑
k=1

(n− k + 1)βk.

We also have, from (21) and (23)

∑
k/∈H

(n− k)(n− k + 1)xk + ∑
k∈H

(n− k)(n− k + 1)βk (27)

=
n

∑
k=1

(n− k)(n− k + 1)βk = 0,



Mathematics 2019, 7, 326 11 of 20

because

2(n− 1)α =
n

∑
k=1

(n− k)(n− k + 1)xk

=
n

∑
k=1

(n− k)(n− k + 1)(x∗k + βk)

=
n

∑
k=1

(n− k)(n− k + 1)x∗k +
n

∑
k=1

(n− k)(n− k + 1)βk

= 2(n− 1)α +
n

∑
k=1

(n− k)(n− k + 1)βk.

We now show that

n

∑
k=2

F(xk) ≥
n

∑
k=2

F(x∗k ).

Since F(y)− F(y0) ≥ F′(y0)(y− y0) (the equality holds if and only if y = y0), we have that

n

∑
k=2

F(xk)−
n

∑
k=2

F(x∗k ) =
n

∑
k=2

F(x∗k + βk)−
n

∑
k=2

F(x∗k )

≥
n

∑
k=2

F′(x∗k )βk

=
n

∑
k=1

F′(x∗k )βk

= ∑
k∈H

βk[a∗(n− k)(n− k + 1) + b∗(n− k + 1)]

= a∗ ∑
k∈H

(n− k)(n− k + 1)βk + b∗ ∑
k∈H

(n− k + 1)βk

= a∗[− ∑
k/∈H

(n− k)(n− k + 1)xk] + b∗[− ∑
k/∈H

(n− k + 1)xk]

= − ∑
k/∈H

xk[a∗(n− k)(n− k + 1) + b∗(n− k + 1)]

≥ 0,

where the second equality comes from the fact that F′(x∗1) = F′(0) = 0, the third equality comes
from (25), the fifth equality comes from (26) and (27) and the second inequality comes from the
fact that a∗(n − k)(n − k + 1) + b∗(n − k + 1) ≤ 0 for k /∈ H. The equality holds if and only if
βi = 0, i = 2, · · · , n. This completes the Case 1.

(Case 2) w∗1 = x∗1 > 0.
Let

x∗k = (F′)−1
(

c∗(k− 1)(n− k + 1)
n− 1

)
, k = 2, 3, · · · , n (28)

and

x∗1 =
1
n

(
1−

n

∑
k=2

(n− k + 1)x∗k

)
(29)

where c∗ is determined by the constraints such that
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1− 2α =
n

∑
k=1

(k− 1)(n− k + 1)
n− 1

x∗k . (30)

Then from (29),

n

∑
k=1

(n− k + 1)x∗k = 1. (31)

We note that

1− 2α =
n

∑
k=1

(k− 1)(n− k + 1)
n− 1

x∗k

=
n

∑
k=1

(n− k + 1)x∗k − 2
n

∑
k=1

(n− k)(n− k + 1)
2(n− 1)

x∗k .

Since ∑n
k=1(n− k + 1)x∗k = 1, we have

n

∑
k=1

(n− k)(n− k + 1)x∗k = 2(n− 1)α. (32)

and then x∗k for k = 1, 2, · · · , n satisfies constraints of the model (15). We now show that x∗k for
k = 1, 2, · · · , n is the optimal solution of the model (15). Let xk for k = 1, 2, · · · , n be a vector such that

n

∑
k=1

(n− k)(n− k + 1)xk = 2(n− 1)α (33)

n

∑
k=1

(n− k + 1)xk = 1, xk > 0. (34)

Then from (33) and (34),

1− 2α =
n

∑
k=1

(n− k + 1)xk − 2
n

∑
k=m

(n− k)(n− k + 1)
2(n− 1)

xk (35)

=
n

∑
k=1

(k− 1)(n− k + 1)
n− 1

xk.

If we put xk = x∗k + βk, k = 1, 2, · · · , n, then we have

n

∑
k=1

(k− 1)(n− k + 1)
n− 1

βk = 0 (36)

because

1− 2α =
n

∑
k=1

(k− 1)(n− k + 1)
n− 1

xk

=
n

∑
k=1

(k− 1)(n− k + 1)
n− 1

(x∗k + βk)

=
n

∑
k=1

(k− 1)(n− k + 1)
n− 1

x∗k +
n

∑
k=2

(k− 1)(n− k + 1)
n− 1

βk

= 1− 2α +
n

∑
k=1

(k− 1)(n− k + 1)
n− 1

βk
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where the first equality comes from (35) and the last equality comes from (30). Hence we have

n

∑
k=2

F(xk)−
n

∑
k=2

F(x∗k ) =
n

∑
k=2

F(x∗k + βk)−
n

∑
k=2

F(x∗k )

≥
n

∑
k=2

F′(x∗k )βk

= c∗
n

∑
k=2

(k− 1)(n− k + 1)
n− 1

βk

= c∗
n

∑
k=1

(k− 1)(n− k + 1)
n− 1

βk

= 0

where the second equality comes from (28) and the fourth equality comes from (36). The equality holds
if and only if βi = 0 for i = 2, · · · , n. This completes the proof.

Note 1. Observe that H = {k| a∗(n− k) + b∗ > 0} is either {1, 2, · · · , m− 1} or {m, m + 1, · · · , n}
for some m ∈ {1, 2, · · · , n}. By Lemma 2, the solution OWA operator weights for 0 ≤ α ≤ 1/2 has
the form

W∗ =
(
0, 0, · · · , 0, w∗m, w∗m+1, · · · , w∗n

)
.

Then H = {m, m + 1, · · · , n} and by , w∗m < w∗m+1 < · · · ,< w∗n. We also note that w∗1 = x∗1 > 0
⇔ H = {1, 2, · · · , n}, and w∗1 = 0⇔ H = {m, m + 1, · · · , n} for some m ≥ 2.

As a special case of model (3), we consider the following model for p > 1.

Minimize
n−1

∑
i=1

(wi+1 − wi)
p

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1, (37)

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

Note 2. Let Sm(α) be a subset of 0 < α < 1/2 on which the optimal solution for the model (37)
with given orness level 0 < α < 1/2 has the form of (0, · · · , 0, w∗m, w∗m+1, · · · , w∗n), 0 < w∗m, · · · , w∗n.
If x∗m = w∗m is a linear function of α with positive slope, then we define Jn(m) by {Jn(m) < α} =

{α| x∗m = w∗m > 0}. We also have

Sm(α) = {α| x∗m = w∗m > 0} ∩ {α| x∗m−1 = w∗m−1 > 0}c = {Jn(m) < α ≤ Jn(m− 1)}.

From now on we have the closed form of the exact optimal solutions of the LSD OWA model
specifically as a function of n and α.

Corollary 1 ([17]). The optimal solution for the model (37) with given orness level 0 < α < 1/2 when p = 2
and w∗1 = x∗1 > 0 is the weighting function w∗i = ∑i

k=1 x∗k , i = 1, 2, · · · , n, where

x∗1 =
10(n2 − n)α− 3n2 + 5n + 2

2n(n2 + 1)

and

x∗k =
15(1− 2α)(k− 1)(n− k + 1)

2n(n3 + n2 + n + 1)
, k = 2, · · · , n
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on Jn(1) = 3n2−5n−2
10n(n−1) < α < 1/2.

Proof. By the Equation (20) in with F(x) = x2 and (F′)−1(x) = 1
2 x,

1− 2α =
n

∑
k=1

(k− 1)(n− k + 1)
n− 1

(F′)−1
(

c∗(k− 1)(n− k + 1)
n− 1

)
=

n

∑
k=1

(k− 1)(n− k + 1)
n− 1

1
2

(
c∗(k− 1)(n− k + 1)

n− 1

)
=

c∗n(n3 + n2 + n + 1)
60(n− 1)

,

then we have

c∗ =
60(n− 1)(1− 2α)

n(n3 + n2 + n + 1)
.

Then by, Equation (18)

x∗k = (F′)−1
(

c∗(k− 1)(n− k + 1)
n− 1

)
=

1
2

c∗(k− 1)(n− k + 1)
n− 1

=
1
2

60(n− 1)(1− 2α)

n(n3 + n2 + n + 1)
(k− 1)(n− k + 1)

n− 1

=
30(1− 2α)(k− 1)(n− k + 1)

n(n3 + n2 + n + 1)

for k = 2, · · · , n and hence by Equation (19)

x∗1 =
1
n

(
1−

n

∑
k=2

(n− k + 1)x∗k

)

=
1
n

(
1−

n

∑
k=2

30(1− 2α)(k− 1)(n− k + 1)2

n(n3 + n2 + n + 1)

)

=
10(n2 − n)α− 3n2 + 5n + 2

2n(n2 + 1)
.

Since x∗1 = w∗1 > 0, noting that x∗1 is a linear function of α with positive slope,

(n− 2)(3n + 1)
10n(n− 1)

< α <
1
2

.

So that w∗i = ∑i
k=1 x∗k , i = 1, 2, · · · , n is the optimal solution for the model (37) for Jn(1) =

3n2−5n−2
10n(n−1) < α < 1

2 .

Corollary 2 ([17]). The optimal solution for the model (38) with given orness level 0 < α < 1/2 when
p = 2 and H = {m, m + 1, · · · , n} for m ∈ {2, · · · , n} is the weighting function w∗i = ∑i

k=m x∗k , i =

m, m + 1, · · · , n,
with

x∗1 = x∗2 = · · · = x∗m−1 = 0,

x∗k =
a∗(n− k)(n− k + 1) + b∗(n− k + 1)

2
, k = m, · · · , n (38)
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where

a∗ =
A(n, m, α)

B(n, m)
and b∗ =

C(n, m, α)

D(n, m)
,

A(n, m, α) = −480α(n− 1)(2n− 2m + 3) + 120(n−m)(3n− 3m + 5)

B(n, m) = (n−m)(n−m + 1)(n−m + 2)(n−m + 3)
(

3(n−m)2 + 9(m− n) + 8
)

C(n, m, α) = −240α(n− 1)(3n− 3m + 5) + 96
(

3(n−m)2 + 6(n−m) + 1
)

D(n, m) = (n−m + 1)(n−m + 2)(n−m + 3)
(

3(n−m)2 + 9(m− n) + 8
)

on Jn(m) < α ≤ Jn(m− 1), m = 2, · · · , n− 1
with

Jn(0) =
1
2

, Jn(m) =
(n−m− 1)(3n− 3m + 4)

10(n−m + 1)(n− 1)
. (39)

Proof. Let H = {m, m + 1, · · · , n} be given for m ∈ {2, · · · , n} and F(x) = x2, (F′)−1(x) = 1
2 x in the

Equation (16) of Theorem 1. If

n

∑
k=m

(n− k)(n− k + 1)
2(n− 1)

1
2
(a∗(n− k)(n− k + 1) + b∗(n− k + 1)) = α

and
n

∑
k=m

(n− k + 1)
1
2
(a∗(n− k)(n− k + 1) + b∗(n− k + 1)) = 1,

then we have

a∗ =
A(n, m, α)

B(n, m)
, b∗ =

C(n, m, α)

D(n, m)

where

A(n, m, α) = −480α(n− 1)(2n− 2m + 3) + 120(n−m)(3n− 3m + 5)

B(n, m) = (n−m)(n−m + 1)(n−m + 2)(n−m + 3)
(

3(n−m)2 + 9(m− n) + 8
)

C(n, m, α) = −240α(n− 1)(3n− 3m + 5) + 96
(

3(n−m)2 + 6(n−m) + 1
)

D(n, m) = (n−m + 1)(n−m + 2)(n−m + 3)
(

3(n−m)2 + 9(m− n) + 8
)

.

Hence we have

x∗k =
a∗(n− k)(n− k + 1) + b∗(n− k + 1)

2
, m ≤ k ≤ n.

Since x∗m = w∗m is the linear function of α with positive slope, we have {Jn(m) < α} = {α| x∗m > 0},
so that

Jn(m) =
(n−m− 1)(3n− 3m + 4)

10(n−m + 1)(n− 1)
.

This completes the proof.

From Corollary 1, x∗m is a linear function of α on each interval (Jn(i), Jn(i− 1)], i = 1, 2, · · · , n− 1.
It is also easy to check that x∗m is continuous as a function of α. Hence we have the following property.
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Proposition 3. Let w∗m = fm(α), m = 1, 2, · · · , n, as a function of α, be the optimal solution for the model (37)
with given orness level 0 ≤ α ≤ 1 when p = 2. Then w∗m = fm(α) is continuous and piecewise linear.

4. Numerical Examples

We consider the same numerical example that Wang et al. [1] presented in their illustration of
the application of the least square deviation model for n = 5. Wang et al. [18] determined the OWA
operator weights satisfying discrete degrees of orness: α = 0, 0.1, · · · , 0.9, 1. But, in this example,
we determine the solution OWA operator weights as a continuous function of α for all orness level
0 ≤ α ≤ 1 using our results.

Example 1 ([3]). Suppose that p = 2 and n = 5. Then, from Theorem 1 and Equation (39) of Corollary 2,

J5(0) =
1
2

, J5(1) =
6

25
, J5(2) =

13
80

, J5(3) =
1

12
, J5(4) = 0.

In case of (J5(1), J5(0)] = ( 6
25 , 1

2 ], we substituting n with 5 and k with 1, 2, · · · , 5 in equations of
Theorem 1. Then

x∗1 =
−12 + 50α

65
, x∗2 =

2− 4α

13
, x∗3 =

3− 6α

13
, x∗4 =

3− 6α

13
, x∗5 =

2− 4α

13
.

Thus the optimal solution of the problem is

w∗1 =
−12 + 50α

65
, w∗2 =

−2 + 30α

65
, w∗3 =

1
5

, w∗4 =
28− 30α

65
, w∗5 =

38− 50α

65
.

In case of (J5(2), J5(1)] = ( 13
80 , 6

25 ], we substituting n with 5 and k with 2, · · · , 5 in Equation (38) of
Corollary 2. Then

x∗1 = 0, x∗2 =
−26 + 160α

155
, x∗3 =

33− 60α

155
, x∗4 =

57− 160α

155
, x∗5 =

46− 140α

155
.

Thus the optimal solution of the problem is

w∗1 = 0, w∗2 =
−26 + 160α

155
, w∗3 =

7 + 100α

155
, w∗4 =

64− 60α

155
, w∗5 =

110− 200α

155
.

Similarly, we can obtain optimal solutions as a linear function of α on each intervals (J5(3), J5(2)] =
( 1

12 , 13
80 ] and (J5(4), J5(3)] = (0, 1

12 ], as on (J5(3), J5(2)] = ( 1
12 , 13

80 ], the optimal solution is

w∗1 = 0, w∗2 = 0, w∗3 =
−3 + 36α

19
, w∗4 =

6 + 4α

19
, w∗5 =

16− 40α

19
,

and on (J5(4), J5(3)] = (0, 1
12 ], the optimal solution is

w∗1 = 0, w∗2 = 0, w∗3 = 0, w∗4 = 4α, w∗5 = 1− 4α.

In terms of Proposition 2, if the orness level α ∈ ( 1
2 , 1), the optimal solutions Ŵ∗ = (ŵ∗1 , · · · , ŵ∗n)

is the dual of the optimal solutions W∗ = (w∗1 , · · · , w∗n) with 1− α ∈ (0, 1
2 ) and ŵ∗i = w∗n−i+1.

Table 1 shows the OWA operator weights determined by model (37) with n = 5 and p = 2 as a
continuous piecewise linear function of 0 ≤ α ≤ 1/2.
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Table 1. The LSD solution OWA operator weights.

W
Orness(W) = α

0 ≤ α ≤ 1
12

1
12 < α ≤ 13

80
13
80 < α ≤ 6

25
6
25 < α ≤ 1

2

w∗1 0 0 0 −12+50α
65

w∗2 0 0 −26+160α
155

−2+30α
65

w∗3 0 −3+36α
19

7+100α
155

1
5

w∗4 4α 6+4α
19

64−60α
155

28−30α
65

w∗5 1− 4α 16−40α
19

46−140α
155

38−50α
65

We next consider the same numerical example that Sang and Liu [17] presented in their illustration
of the application of the least square deviation model for n = 10. Sang and Liu [17] determined the
OWA operator weights satisfying discrete degrees of orness: α = 0, 0.1, · · · , 0.9, 1. But, in this example,
we determine the solution OWA operator weights w∗k , k = 1, 2, · · · , 10 as a function of α for all orness
level 0 ≤ α ≤ 1.

Example 2 ([17]). Suppose that p = 2 and n = 10. Then, from Corollary 1 and Equation (39) of Corollary 2,
we have

J10(0) =
1
2

, J10(1) =
62
225

, J10(2) =
98

405
, J10(3) =

5
24

, J10(4) =
11
63

,

J10(5) =
19

135
, J10(6) =

8
75

, J10(7) =
13

180
, J10(8) =

1
27

, J10(9) = 0.

In case of (J10(1), J10(0)] = ( 62
225 , 1

2 ], we substitute k with 1, 2, · · · , 10 in equations of Corollary 1. Then

x∗1 =
−62 + 225α

505
, x∗2 =

27− 54α

1111
, x∗3 =

48− 96α

1111
, x∗4 =

63− 126α

1111
, x∗5 =

72− 144α

1111
,

x∗6 =
75− 150α

1111
, x∗7 =

72− 144α

1111
, x∗8 =

63− 126α

1111
, x∗9 =

48− 96α

1111
, x∗10 =

27− 54α

1111
.

Thus the optimal solution of the problem is

w∗1 = − 62
505

+
45α

101
, w∗2 = − 547

5555
+

441α

1111
, w∗3 = − 307

5555
+

345α

1111
, w∗4 =

8
5555

+
219α

1111
,

w∗5 =
368
5555

+
75α

1111
, w∗6 =

743
5555

− 75α

1111
, w∗7 =

1103
5555

− 219α

1111
, w∗8 =

1418
5555

− 345α

1111
,

w∗9 =
1658
5555

− 441α

1111
, w∗10 =

163
505
− 45α

101
.

In case of (J10(2), J10(1)] = ( 98
405 , 62

225 ], we substitute k with 2, · · · , 10 in Equation (38) of
Corollary 2. Then

x∗1 = 0, x∗2 =
243α

748
− 147

1870
, x∗3 =

3α

22
− 1

55
, x∗4 = − 21α

1496
+

329
11220

,

x∗5 = −189α

1496
+

239
3740

, x∗6 = −75α

374
+

16
187

, x∗7 = −177α

748
+

529
5610

,

x∗8 = −351α

1496
+

337
3740

, x∗9 = −291α

1496
+

273
3740

, x∗10 = −87α

748
+

241
5610

.
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Thus the optimal solution of the problem is

w∗1 = 0, w∗2 =
243α

748
− 147

1870
, w∗3 =

345α

748
− 181

1870
, w∗4 =

669α

1496
− 757

11220
,

w∗5 =
60α

187
− 2

561
, w∗6 =

45α

374
+

46
561

, w∗7 = −87α

748
+

989
5610

,

w∗8 = −525α

1496
+

2989
11220

, w∗9 = −6α

11
+

56
165

, w∗10 = −45α

68
+

13
34

.

Similarly, we can obtain optimal solutions as a linear function of α on each intervals such as
(J10(3), J10(2)] = ( 5

24 , 98
405 ], (J10(4), J10(3)] = ( 11

63 , 5
24 ], (J10(5), J10(4)] = ( 19

135 , 11
63 ], (J10(6), J10(5)] =

( 8
75 , 19

135 ], (J10(7), J10(6)] = ( 13
180 , 8

75 ], (J10(8), J10(7)] = ( 1
27 , 13

180 ] and (J10(9), J10(8)] = (0, 1
27 ].

Example 3. In this example we consider a different type of the model (37) when p = 3/2 and n = 10 :

Minimize ∑i=9
i=1(wi+1 − wi)

3
2

subject to orness(W) = ∑10
i=1

n−i
9 wi = α, 0 ≤ α ≤ 1, (40)

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , 10.

We determine the solution OWA operator weights w∗k , k = 1, 2, · · · , 10 as a function of α on (J10(1), 1/2].

If p = 3/2 then F(x) = x
3
2 , and then (F′)−1(x) = 4

9 x2. By the Equation (20) in with F(x) = x
3
2 and

(F′)−1(x) = 4
9 x2, we have

1− 2α =
n

∑
k=1

(k− 1)(n− k + 1)
n− 1

(F′)−1
(

c∗(k− 1)(n− k + 1)
n− 1

)

=
10

∑
k=1

(k− 1)(10− k + 1)
10− 1

4
9

(
c∗(k− 1)(10− k + 1)

10− 1

)2

.

Since c∗ = 27
47630

√
−142890α + 71445, we have

x∗k =
4
9

(
c∗(k− 1)(10− k + 1)

10− 1

)2

= − 3
23815

(2α− 1)(k− 1)2(k− 11)2

for k = 2, · · · , 10 in Equation (18) of and

x∗1 =
1

10

(
1−

10

∑
k=2

(n− k + 1)x∗k

)
= − 238

2165
+

909
2165

α.

in Equation (19) of .
Since x∗1 = w∗1 > 0,

J10(1) =
238
909

< α < 1/2.

Thus the optimal solution of the problem (40) in case of (J10(1), 1/2] = ( 238
909 , 1/2] is

w∗1 = − 238
2165

+
909α

2165
, w∗2 = − 475

4763
+

9513α

23815
, w∗3 = − 1607

23815
+

7977α

23815
, w∗4 = − 284

23815
+

5331α

23815
,

w∗5 =
1444

23815
+

375α

4763
, w∗6 =

3319
23815

− 375α

4763
, w∗7 =

5047
23815

− 5331α

23815
, w∗8 =

1274
4763

− 7977α

23815
,

w∗9 =
7138
23815

− 9513α

23815
, w∗10 =

671
2165

− 909α

2165
.
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By similar method in the proof of Corollary 2, we have

J10(m) = − (m− 9)(4m3 − 133m2 + 1480m− 5516)
126(m− 11)(m2 − 22m + 122)

, m = 1, 2, · · · , 9.

Since 0.2 ∈ (J10(3), J10(2)] = (0.198, 0.230],

a∗ = 0.022, b∗ = −0.157

and from Equation (16) in ,

x∗k =
4
9
(a∗(10− k)(11− k) + b∗(11− k))2 , k = 3, 4, · · · , 10,

that is
x∗1 = x∗2 = 0, x∗3 = 0.0001, x∗4 = 0.012, x∗5 = 0.033, x∗6 = 0.051

x∗7 = 0.058, x∗8 = 0.050, x∗9 = 0.032, x∗10 = 0.011

so that the optimal solution is

w∗1 = w∗2 = 0, w∗3 = 0.0001, w∗4 = 0.012, w∗5 = 0.046, w∗6 = 0.097

w∗7 = 0.155, w∗8 = 0.205, w∗9 = 0.237, w∗10 = 0.248.

Similarly for 0.1 ∈ (J10(7), J10(6)] = (0.070, 0.103], we have

a∗ = −0.099, b∗ = 0.385,

and from Equation (16) in ,

x∗1 = · · · = x∗6 = 0, x∗7 = 0.056, x∗8 = 0.140, x∗9 = 0.145, x∗10 = 0.066

so that the optimal solution is

w∗1 = · · · = w∗6 = 0, w∗7 = 0.056, w∗8 = 0.196, w∗9 = 0.341, w∗10 = 0.407.

5. Conclusions

This paper proposes a general least convex deviation model for obtaining OWA operator weights,
with orness as its control parameter. This general model includes the least squares deviation (LSD)
method by Wang et al. [1] as a special class. We completely proved this constrained optimization
problem mathematically. Using this result, we also give solution of LSD model suggested by Wang,
Luo and Liu as a function of n and α completely. We considered the same numerical examples that
Wang et al. [1] and Sang and Liu [17], and presented the exact optimal solutions as a function of n and
α completely.
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