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Abstract: The purpose of this paper is to introduce α f -proximalH-contraction of the first and second
kind in the setup of complete fuzzy metric space and to obtain optimal coincidence point results.
The obtained results unify, extend and generalize various comparable results in the literature. We also
present some examples to support the results obtained herein.
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1. Introduction and Preliminaries

Several nonlinear problems arising in various branches of mathematics, engineering, economics,
physics, astronomy, biology and economics can be formulated as a fixed point problem of the form
f x = x, where f is a nonlinear operator defined on a set equipped with some topological structure.
Due to an equivalence among fixed point problem and integral and differential equation problem,
variational inequality problem and optimization problems attracted the attention of researchers [1–3].
The Banach [4] contraction principle is one of the significant tools for solving such problems.

On the other hand, fixed point equation Tx = x has no solution if T : A→ B, where A and B are
any nonempty disjoint subsets of a metric space (X, d). It is then natural to find a point x ∈ A such
that the error between x and Tx is minimum. Such a point is called an approximate solution of a fixed
point equation.

A study of necessary conditions to guarantee the existence of an approximate solution of fixed point
equations has its due importance in fixed point theory. Among approximate solutions, finding an optimal
solution is an active research area.

A point x∗ in A which satisfies d(x∗, Tx∗) = d(A, B) is called a best proximity point of T and the
pair (x∗, Tx∗) is called a best proximity pair. A best proximity point x∗ in A indeed solves the following
optimization problem:

min
x∈A

d(x, Tx).

Best proximity pair theorem deals with the conditions which guarantee the solution of optimization
problem given above. Clearly, if sets A and B are not disjoint or identical, then best proximity point and

Mathematics 2019, 7, 327; doi:10.3390/math7040327 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-1485-6163
https://orcid.org/0000-0001-9320-9433
http://www.mdpi.com/2227-7390/7/4/327?type=check_update&version=1
http://dx.doi.org/10.3390/math7040327
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 327 2 of 13

fixed point problem of mapping T become equivalent and hence best proximity point results are a potential
generalization of fixed point results.

A classical best approximation result by K. Fan in [5] reads as follows: Let T : A→ X be a continuous
mapping, where A is nonempty compact convex subset of a Banach space then T has approximate fixed point
in A. For more results, see [6–9].

On the other hand, a framework of probabilistic metric spaces is a matter of great interest for
engineers, social scientist and mathematicians, see, for example, [10–13]. Kramosil and Michalek [14]
proposed the concept of fuzzy metric space. In [15] using continues t-norm, the concept of fuzzy metric
spaces was modified. This modification can be viewed as a generalization of probabilistic metric space
to fuzzy case (see [14]).

For some interesting fixed point results in the setup of fuzzy metric space, we refer the
reader to [16–18]. Vetro and Salimi [19] studied best proximity point theorems in the framework
of non-Archimedean fuzzy metric spaces—see also [20,21].

This paper deals with the problem of finding an optimal approximate solution of coincidence point
equation in the framework of fuzzy metric spaces. We study necessary conditions which guarantee the
existence and uniqueness of such solutions. The main focus lies on introducing general contractive
conditions on operators T and g so that the solution is guaranteed. This paper is divided into four
sections: some known definitions, lemmas and important results are discussed in the first section.
In the second section, optimal coincidence best proximity point results in complete fuzzy metric space
are studied. In the next section, we obtain similar results in complete ordered fuzzy metric space.
Section 4 is devoted to the applications of obtained results in fixed point theory. Conclusions are given
in the last section.

In this section, some basic definitions and known results are discussed which will be needed in
the sequel.

Definition 1. A commutative and associative binary operation ∗ on [0, 1] is called t− norm if α ∗ 1 = α and
α ∗ β ≤ γ ∗ δ whenever α ≤ γ and β ≤ δ holds true, for any α, β, γ, δ ∈ [0, 1]. Moreover, if ∗ is a continuous
mapping, then ∗ is called a continuous t-norm [10].

Define binary operations ∧, ., and ∗L on [0, 1] by a ∧ b = min{a, b}, a · b = ab, and a ∗L b =

max{a + b− 1, 0}. Note that ∧, ., and ∗L are continuous t-norms, called min, product and Lukasiewicz
t-norms, respectively. Furthermore, ∗L ≤ · ≤ ∧.

Definition 2. A fuzzy set M on X× X× [0, ∞) is called a fuzzy metric (compare [22]) if:

(i) M(x, y, t) is positive,
(ii) M(x, y, t) = 1⇔ x = y,
(iii) M(y, x, t) = M(x, y, t),
(iv) M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s),
(v) M(x, y, ·) : [0, ∞)→ [0, 1] is left continuous,

for any x, y, z ∈ X, and t, s > 0, where X is a nonempty set and ∗ is continuous t-norm. The triplet (X, M, ∗)
is said to be a fuzzy metric space.

In the above definition, if

M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s) for all t, s > 0,

is replaced with
M(x, z, max{t, s}) ≥ M(x, y, t) ∗M(y, z, s) for all t, s > 0,

then M is called non-Archimedean fuzzy metric on X.
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Since M is a fuzzy set on X2 × [0, ∞) and M(x, y, t) is regarded as the degree of closeness of x and
y with respect to t ≥ 0.

Furthermore, M(x, y, ·) is a nondecreasing function on (0, ∞), for each x, y ∈ X [23].
The set

BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε}

is an open M− ball in X, where x ∈ X, ε ∈ (0, 1), t > 0. Note that fuzzy metric M induces Hausdorff
topology on X. A sequence {xn} converges to an element x in fuzzy metric space X ( with respect to
τM ) if and only if lim

n→∞
M(xn, x, t) = 1 for all t > 0. A sequence {xn} is a Cauchy sequence in a fuzzy

metric space X if, for each t > 0 and ε ∈ (0, 1), there exists n0 ∈ N such that M(xn, xm, t) > 1− ε

for all n, m ≥ n0. If every Cauchy sequence in a fuzzy metric space X is convergent, then X is called
a complete. If the limit of any convergent sequence in A belongs to A, then A is closed. If each sequence
in A has a convergent subsequence, then A is compact.

Define a fuzzy metric Md on a given metric space (X, d) by

Md(x, y, t) =
t

t + d(x, y)
.

Then, (X, Md, ·) is called standard fuzzy metric space [15].
Let A and B be nonempty subsets of a fuzzy metric space X. Then,

M(x, A, t) = sup
a∈A

M(x, a, t), for t > 0

gives distance of a point x ∈ X from A. Moreover,

M(A, B, t) = sup{M(a, b, t) : a ∈ A, b ∈ B}.

is the distance between A and B. Consider a coincidence point equation gx = Tx. A point x in A is said
to be an optimal solution of coincidence point equation Tx = gx, if

M(gx, Tx, t) = M(A, B, t)

holds [20].

Definition 3. [19] Let x ∈ X and t > 0. Define A0(t) and B0(t) as follows:

A0(t) = {x ∈ A : M(x, y, t) = M(A, B, t) for some y ∈ B}, and

B0(t) = {y ∈ B : M(x, y, t) = M(A, B, t) for some x ∈ A}.

Definition 4. [20] Let f : be a self mapping on A if M( f x, f y, t) ≤ M(x, y, t) for any x, y ∈ A and t > 0
then f is called fuzzy expansive.

If, in the above definition, inequality is replaced with equality, then f is called fuzzy isometry.

Definition 5. [20] A set B is said to be fuzzy approximately compact with respect to A if for every sequence
{yn} in B and for some x ∈ A, M(x, yn, t) −→ M(x, B, t) implies that x ∈ A0(t).

Wardowski [18] defined a classH of mapping that consists upon the mappings η : (0, 1]→ [0, ∞),
where η is continuous and strictly decreasing on [0, 1]. It follows from the definition ofH that η(1) = 0
for any η ∈ H.
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Definition 6. [18] A sequence {xn} in a fuzzy metric space (X, M, ∗) is said to be M-Cauchy if, for every
ε ∈ (0, 1), t > 0, there exists n0 ∈ N such that

η(M(xm, xn, t)) < ε

for all m, n ≥ n0, where η ∈ H.

Definition 7. A mapping T : X → X is said to be (a) α−admissible if α(x, y, t) ≥ 1 implies that
α(Tx, Ty, t) ≥ 1; (b) αR-admissible if

α(Tx, Ty, t) ≥ 1 that implies α(x, y, t) ≥ 1.

Definition 8. A sequence {xn} in X converging to an element x ∈ X is said to be α-regular if for
α(xn, xn+1, t) ≥ 1, we have a subsequence {xnk} of {xn} such that α(xnk , x, t) ≥ 1 holds for all k ∈ N.

Proposition 1. A set A is said to be α-complete, if, for any sequence, {yn} in A with α(yn, yn+1, t) ≥ 1 and
yn → y0 as n→ ∞ implies α(yn, y0, t) ≥ 1.

Definition 9. A mapping T : A → B is said to be α f -proximal admissible mapping if for any x, y, u, v ∈ A
and t > 0,

α(x, y, t) ≥ 1
M(u, Tx, t) = M(A, B, t)
M(v, Ty, t) = M(A, B, t)

 =⇒ α(u, v, t) ≥ 1.

Definition 10. A mapping T : A −→ B is said to be an α f -proximal H-contraction of first kind if for any
u, v, x, y in A and t > 0, there exists a function η ∈ H such that

M(u, Tx, t) = M(A, B, t)
M(v, Ty, t) = M(A, B, t)

}
=⇒ α(x, y, t)η(M(u, v, t)) ≤ k[η(M(x, y, t))].

Definition 11. Let g : A→ A. A mapping T : A −→ B is said to be an α f -proximalH-contraction of second
kind if for any u, v, x, y in A and t > 0, there exists a function η ∈ H such that

M(gu, Tx, t) = M(A, B, t)
M(gv, Ty, t) = M(A, B, t)

}
=⇒ α(gx, gy, t)η(M(gu, gv, t)) ≤ k[η(M(x, y, t)]).

In the above definition, if we take g = IA, then α f -proximal H−contraction of second kind
becomes α f -proximalH−contraction of first kind.

2. Optimal Coincidence Point Solution in Fuzzy Metric Spaces

We start with the following result.

Lemma 1. Let T : A −→ B be an α f -proximal admissible mapping. Suppose that A0(t) 6= φ and
T(A0(t)) ⊆ B0(t). If there exists x0, x1 ∈ A0(t) such that M(x1, Tx0, t) = M(A, B, t) and α(x0, x1, t) ≥ 1,
then starting with x0 in A0(t), we may find a sequence {xn} ⊂ A0(t) such that

M(xn+1, Txn, t) = M(A, B, t)
and α(xn+1, xn, t) ≥ 1 for all n ∈ N.

}
(1)
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Proof. By given assumption, Tx1 ∈ T(A0(t)) ⊆ B0(t), there exists x2 ∈ A such that M(x2, Tx1, t) =
M(A, B, t) and hence x2 ∈ A0(t). Thus, we have

α(x0, x1, t) ≥ 1,

M(x1, Tx0, t) = M(A, B, t) and

M(x2, Tx1, t) = M(A, B, t).

As T is α f -proximal admissible mapping, we obtain that α(x1, x2, t) ≥ 1. Continuing this way,
we obtain a sequence {xn} ⊂ A0(t) which satisfies condition (1).

Definition 12. A sequence {xn} ⊂ A0(t) satisfying condition (1) is called (α, T)-proximal fuzzy sequence
starting with x0 ∈ A0(t).

Definition 13. A set A0(t) is called proximal (α, T)-complete if and only if every (α, T)-proximal fuzzy
Cauchy sequence starting with some x0 ∈ A0(t) converges to an element in A0(t).

We also need following Lemma in the sequel.

Lemma 2. Let T : A → B, where A and B are nonempty closed subsets of a complete fuzzy metric space X,
if A0(t) 6= ∅ and T(A0(t)) ⊆ B0(t). Then, the set A0(t) is proximal (α, T)-complete provided that B is
approximately compact with respect to A.

Proof. Let x0 be a given point in A0(t) and {xn} a (α, T)-proximal fuzzy Cauchy sequence starting
with some x0 ∈ A0(t), that is,

M(xn, Txn−1, t) = M(A, B, t) with α(xn, xn−1, t) ≥ 1.

Since (X, M, ∗) is complete and A is closed, there exist an element x∗ in A such that
lim

n→∞
M(xn, x∗, t) = 1. Furthermore,

M(xn, B, t) ≥ M(xn, Txn−1, t) = M(A, B, t) ≥ M(xn, B, t).

On taking limit as n→ ∞ on both sides of the above inequality, we have

M(x∗, B, t) ≥ M(x∗, Tx∗, t) ≥ M(x∗, B, t),

which implies that
M(x∗, B, t) = M(x∗, Tx∗, t).

Taking yn = Tx∗ for all n ∈ N and using the assumption that B is approximately compact with
respect to A, we have x∗ ∈ A0(t).

Theorem 1. Let g : A→ A be a one to one fuzzy expansive and αR-admissible mapping with ∅ 6= A0(t) ⊆
g(A0(t)) for any t > 0. Suppose that a continuous mapping T : A→ B is α f -proximalH-contraction of second
kind and α f -proximal admissible mapping with T(A0(t)) ⊆ B0(t), where B is fuzzy approximately compact
with respect to A. If there exists x0, x1 ∈ A0(t) such that M(gx1, Tx0, t) = M(A, B, t) and α(x0, x1, t) ≥ 1.
Then, mappings g and T have a unique optimal coincidence point x∗ in A0(t).

Proof. Let x0, x1 be a given point in A0(t) such that M(gx1, Tx0, t) = M(A, B, t) and α(x0, x1, t) ≥ 1.
Since T(A0(t)) ⊆ B0(t) and A0(t) ⊆ g(A0(t)) for any t > 0, it follows that there exists an element x2

in A0(t) ⊆ g(A0(t)) such that M(gx2, Tx1, t) = M(A, B, t). Since T is α f -proximal admissible mapping
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and g is αR-admissible mapping, α(gx1, gx2, t) ≥ 1 implies that α(x1, x2, t) ≥ 1. Continuing this way,
we can obtain a sequence {gxn} in A0(t) such that the following holds true:

M(gxn+1, Txn, t) = M(A, B, t) = M(gxn+2, Txn+1, t) with α(xn, xn+1, t) ≥ 1 and α(xn+1, xn+2, t) ≥ 1,

which implies that

η(M(xn+1, xn+2, t)) ≤ η(M(gxn+1, gxn+2, t)) ≤ α(xn, xn+1, t)η(M(gxn+1, gxn+2, t))

≤ kη(M(xn, xn+1, t)). (2)

In addition,
M(gxn, Txn−1, t) = M(A, B, t) = M(gxn+1, Txn, t)

implies that

η(M(xn, xn+1, t)) ≤ η(M(gxn, gxn+1, t)) ≤ α(xn−1, xn, t)η(M(gxn, gxn+1, t))

≤ kη(M(xn−1, xn, t)). (3)

From Labels (3) and (2), we have

η(M(xn+1, xn+2, t)) ≤ η(M(gxn+1, gxn+2, t)) ≤ α(xn, xn+1, t)η(M(gxn+1, gxn+2, t))

≤ kη(M(xn, xn+1, t))

≤ k2η(M(xn−2, xn−1, t)).

Continuing on the same lines, we obtain

η(M(xn+1, xn+2, t)) ≤ η(M(gxn+1, gxn+2, t)) ≤ α(xn, xn+1, t)η(M(gxn+1, gxn+2, t))

≤ kη(M(xn, xn+1, t))

≤ k2η(M(xn−2, xn−1, t))

≤ · · ·
≤ kn+1η(M(x0, x1, t)).

Since k ∈ (0, 1) and η is strictly decreasing, we have

η(M(xn+1, xn+2, t)) ≤ η(M(gxn+1, gxn+2, t))

≤ kn+1η(M(x0, x1, t))

< η(M(x0, x1, t))

and
M(xn+1, xn+2, t) ≥ M(x0, x1, t) > 0, n ∈ N, t > 0.

Now, consider any n, m ∈ N, m < n, and {ai}i∈N be a strictly decreasing sequence of positive
numbers such that ∑∞

i=1 ai = 1. Then, we have

M(xm, xn, t) ≥ M(gxm, gxn, t) ≥ M(gxm, gxm, t−∑n−1
i=m ait) ∗M(gxm, gxn, ∑n−1

i=m ait)

≥ 1 ∗M(gxm, gxm+1, amt) ∗M(gxm+1, gxm+2, am+1t) ∗ · · · ∗M(gxn−1, gxn, an−1t)

≥
n−1
∏

i=m
M(gxi, gxi+1, ait).
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Thus,

η(M(gxm, gxn, t)) ≤ η(
n−1

∏
i=m

M(gxi, gxi+1, ait))

≤
n−1

∑
i=m

η(M(gxi, gxi+1, ait))

≤
n−1

∑
i=m

kiη(M(gx0, gx1, t)), m, n ∈ N, m < n, t > 0.

The above sum is finite, and η(M(gx0, gx1, ait)i∈N is non-decreasing and η(M(gxi, gxj, ti)) is

bounded, hence the series
∞
∑

i=1
kiη(M(gx0, gx1, t)) is convergent. Consequently, for some ε > 0, there

exist n0 ∈ N such that
∞
∑

i=1
kiη(M(gx0, gx1, t)) < ε and

η(M(gxm, gxn, t)) ≤
n−1

∑
i=m

kiη(M(gx0, gx1, t) < ε, m, n ≥ n0, m < n, t > 0.

Hence, {gxn} is a M-Cauchy sequence in A0(t). Furthermore, A0(t) is closed. As A0(t) is proximal
(α, T)-complete (Lemma 2), the sequence {gxn} converges to some element gx∗ in A0(t), that is,

lim
n→∞

M(gxn, gx∗, t) = 1.

Now,

M(gxn, B, t) ≥ M(gxn, Txn+1, t)

= M(A, B, t) ≥ M(gxn, B, t)

implies that
M(gx∗, B, t) ≥ M(gx∗, Tx∗, t) ≥ M(gx∗, B, t).

Take yn = Tx∗ (say) in B. As g is continuous, the sequence {gxn} converges to gx∗, and
M(gx∗, yn, t)→ M(gx∗, B, t). Since B is fuzzy approximately compact with respect to A, gx∗ ∈ A0(t).
Since A0 ⊆ g(A0), there exist some u ∈ A0(t) such that

M(gu, Tx∗, t) = M(A, B, t) = M(gxn+1, Txn, t) for all n ∈ N.

Since α(xn, xn−1, t) ≥ 1 and T is α f -proximal admissible mapping, hence α(gxn+1, gxn, t) ≥ 1 and
{gxn} converges to gx∗. Since A0(t) is proximal (α, T)-complete, we therefore have α(gx∗, gxn, t) ≥ 1.
In addition, g is αR-admissible mapping, which implies that α(x∗, xn, t) ≥ 1. As {g, T} is α f -proximal
H−contraction of second kind and g is a fuzzy expansive mapping, we have

α(x∗, xn, t)η(M(gu, gxn+1, t)) ≤ k(η(M(x∗, xn, t))).

Taking limit as n→ ∞ on both sides of the above inequality, we obtain gu = gx∗. Furthermore, g
is one to one and hence u = x∗. Thus,

M(gx∗, Tx∗, t) = M(gu, Tx∗, t) = M(A, B, t)

gives that x∗ is the optimal coincidence point of the pair {g, T}.



Mathematics 2019, 7, 327 8 of 13

Uniqueness: Let y∗ be another optimal coincidence point of mappings g, and T in A0(t), then

M(gx∗, Tx∗, t) = M(A, B, t) and

M(gy∗, Ty∗, t) = M(A, B, t), α(x∗, y∗, t) ≥ 1.

Since {g, T} is α f -proximalH-contraction of second kind and g is fuzzy expansive, so

η(M(gx∗, gy∗, t)) ≤ α(x∗, y∗, t)η(M(gx∗, gy∗, t))

≤ k(η(M(x∗, y∗, t))) < η(M(x∗, y∗, t)),

a contradiction—hence the result.

Example 1. Let X = [0, 1]×R, A = {(0, x) : x ≥ 0 and x ∈ R} and B = {(1, y) : y ≥ 0 and y ∈ R}.
Then,

Md(A, B, t) =
t

t + 1
, A0(t) = {(0, 0)} and B0(t) = {(1, 0)}.

Define T : A→ B and g : A→ A by:

T(x, 0) = (1,
x
4
) and g(0, x) = (0, 4x).

In addition, consider η(t) = 1
t − 1, t ∈ (0, 1] and α : X× X× (0, ∞) by

α(x, y, t) =

{
1, x, y ∈ [0, ∞),
0, otherwise.

Obviously, T(A0(t)) = B0(t) and A0(t) = g(A0(t)). Note that the points u = (0, x1), v = (0, x2),
x = (0, y1) and y = (0, y2) in A satisfies M(gu, Tx, t) = M(A, B, t) and M(gv, Ty, t) = M(A, B, t) if
x1 =

y1

16
and x2 =

y2

16
. Under these circumstances, T becomes α f -proximalH-contraction of second kind. Thus,

all of the conditions of the Theorem (1) are satisfied. Moreover, (0, 0) is an unique optimal coincidence point of
(g, T) in A0(t).

Theorem 2. Let T : A→ B be a continuous α f -proximalH-contraction of first kind and α f -proximal admissible
mapping with T(A0(t)) ⊆ B0(t) for any t > 0. If there exists x0, x1 ∈ A0(t) such that M(x1, Tx0, t) = M(A, B, t)
and α(x0, x1, t) ≥ 1, then the mapping T has a unique best proximity point x∗ in A0(t) provided that A0(t) is
proximal (α, T)-complete and B is fuzzy approximately compact with respect to A.

Proof. By taking g = IA in Theorem (1). In this case, α f -proximal H-contraction of second kind
becomes an α f -proximalH-contraction of first kind and the result follows.

Corollary 1. Let g : A→ A be a one to one fuzzy non-expansive mapping and T : A→ B with A0(t) 6= φ,
T(A0(t)) ⊆ B0(t), A0(t) ⊆ g(A0(t)) for any t > 0. If A0(t) is proximal (α, T)-complete and B is fuzzy
approximately compact with respect to A, the pair (g, T) further satisfies the following implication:

M(gu, Tx, t) = M(A, B, t)
M(gv, Ty, t) = M(A, B, t)

}
implies that η(M(gu, gv, t)) ≤ kη(M(x, y, t)),

where η ∈ H. Then, the pair (g, T) has a unique optimal coincidence point x∗ in A0(t).

Proof. Take α(x, y, t) = 1 for all x, y ∈ A0(t) and t > 0 in Theorem (1). The proof follows under the
same lines as in Theorem (1).
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3. Optimal Coincidence Point and Approximation Results in Ordered Structures

In this section, we will provide results in ordered metric spaces.
Let (X, M, ∗) is a fuzzy metric space and (X,�) is a partially ordered set. Then, (X, M, ∗,�)

is known as a partially ordered fuzzy metric space. In the sequel sets, A and B are assumed to be
nonempty closed subsets of (X, M, ∗,�).

A nonempty set X is called partially ordered fuzzy metric space if (X, M, ∗) is a fuzzy metric
space and � is a partial order on X. Suppose that A and B are subsets of a partially ordered fuzzy
metric space X.

Definition 14. [24] A mapping T : A −→ B is called (a) nondecreasing or order preserving if for any x, y in
A with x � y, we have Tx � Ty (b) an ordered reversing if, for any x, y in A with x � y, we have Tx � Ty (c)
monotone if it is order preserving or order reversing.

Definition 15. [21] A mapping T : A −→ B is called proximal fuzzy order preserving (proximal fuzzy
order reversing), if:

x � y
M(u, Tx, t) = M(A, B, t)
M(v, Ty, t) = M(A, B, t)

 =⇒ u � v (u � v), for any u, v, x and y in A.

If A = B in the above definition, then proximal fuzzy order preserving (proximal fuzzy order
reversing) mapping will become order preserving (order reversing).

Lemma 3. Let A0(t) and T(A0(t)) ⊆ B0(t).Then, for a ∈ A0(t), there exists a sequence {xn} ⊂ A0(t)
such that

x0 = a,
M(xn+1, Txn, t) = M(A, B, t), for all n ∈ N with (xn, xn+1) ∈ ∆.

}
(4)

Proof. Define the function α : A× A× [0, ∞)→ [0, ∞) by

α(x, y, t) =

{
1, if (x, y) ∈ ∆,
0, otherwise.

(5)

By the set ∆, we mean the collection of x, y ∈ X such that either x � y or y � x. From Equation (1),
by taking the above function, we obtain a sequence which satisfies the condition Equation (4).

Definition 16. [21] A sequence {xn} ⊂ A0(t) satisfying the condition (4) is called ordered proximal Picard
sequence starting with a ∈ A0(t).

Definition 17. [21] A set A0(t) is ordered proximal T-orbitally complete if and only if every ordered proximal
Picard Cauchy sequence {xn} starting with x0 ∈ A0(t) converges to an element in the set A0(t).

Lemma 4. Let T : A→ B be continuous, fuzzy proximally monotone and α f -proximalH-contraction of first
kind with A0(t) 6= ∅ and T(A0(t)) ⊆ B0(t). Suppose that each pair of elements in partially ordered complete
fuzzy metric spaces (X, M, ∗,�) has a lower and upper bound. Then, A0(t) is fuzzy proximal T-orbitally
complete provided that T is one to one on A0(t) and there exists a function α : A× A× [0, ∞)→ [0, ∞) such
that (x, y) ∈ ∆ and α(x, y, t) ≥ 1 for all x, y ∈ A.

Proof. Consider a function α : A× A× [0, ∞) → [0, ∞) defined in Equation (5). Let x0 be a given point
in A0(t) and {xn} be an ordered proximal Picard Cauchy sequence starting with x0. As (X, M,∗,�) is complete
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ordered fuzzy metric space and A is closed, there exist some x∗ in A such that limn→∞ M(xn, x∗, t) = 1.
By definition of ordered proximal Picard sequence {xn}, we have

M(xn, Txn−1, t) = d(A, B) and M(xn+1, Txn, t) = M(A, B, t) with (xn−1, xn) ∈ ∆

for all n ∈ N. Since T is a α f -proximal H-contraction of first kind and function α(x, y, t) defined in
Equation (5) agrees with the α f−proximal admissible mapping defined on A× A, the rest of the proof
follows on the same lines given in Equation (2).

Theorem 3. Let T : A→ B be continuous, proximally monotone and α f -proximalH-contraction of first kind
with A0(t) 6= φ and T(A0(t)) ⊆ B0(t). Suppose that each pair of elements in partially ordered complete fuzzy
metric spaces (X, M, ∗,�) has a lower and upper bound. If B is approximately fuzzy compact with respect to
A, then T has a unique best proximity point x∗ in A0(t) provided that T is one-to-one on A0(t) and for all
(x, y) ∈ ∆ such that α(x, y, t) ≥ 1 for all x, y ∈ A.

Proof. Let x0 be a given point in A0(t). From Lemma (1), the ordered proximal Picard sequence {xn} in
A0(t) satisfies

M(xn, Txn−1, t) = M(A, B, t), M(xn+1, Txn, t) = M(A, B, t) (6)

for all n ∈ N. In addition, define a function α : A× A× [0, ∞)→ [0, ∞) which satisfies Equation (5),
since T is a α f -proximalH-contraction of first kind. The following arguments are similar to those in
the proof of Lemma (2) and Theorem (1) by taking g = IA. In addition, the function α(x, y, t) agrees
with the α f -proximal admissible mapping defined on A× A. Following the same lines of the proof of
Theorem (1), the result follows.

Theorem 4. Let g : A → A be an expansive mapping, α : A× A× [0, ∞) → [0, ∞) and T : A → B with
A0(t) 6= φ, T(A0(t)) ⊆ B0(t) and A0(t) ⊆ g(A0(t)) for any t > 0. If B is approximately compact with
respect to A and the pair (g, T) is α f -proximalH−contraction of second kind. Suppose that each pair of elements
in partially ordered complete fuzzy metric spaces (X, M, ∗,�) has a lower and an upper bound. Then, the pair
(g, T) has a unique optimal coincidence point x∗ in A0(t) provided that α(x, y, t) ≥ 1 such that (x, y) ∈ ∆ for
all x, y ∈ A.

Proof. Let x0 be a given point in A0(t). As T(A0(t)) ⊆ B0(t) and A0(t) ⊆ g(A0(t)), we can choose
an element x1 in A0(t) such that M(gx1, Tx0, t) = M(A, B, t) where (x0, x1) ∈ ∆. In addition,
Tx1 ∈ T(A0(t)) ⊆ B0(t), and A0(t) ⊆ g(A0(t)), there exists an element x2 ∈ A0(t) such that
M(gx2, Tx1, t) = M(A, B, t). Since g is ordered, where (gx1, gx2) ∈ ∆, hence α(gx1, gx2, t) = 1.
Continuing this way, we can obtain a sequence {gxn} in A0(t) such that it satisfies

M(gxn, Txn−1, t) = M(A, B, t) and M(gxn+1, Txn, t) = M(A, B, t), where (gxn−1, gxn) ∈ ∆ and (gxn, gxn+1) ∈ ∆.

Define a function α : A× A× [0, ∞)→ [0, ∞) as in Equation (4) which agrees with α f -proximal
admissible mapping. Following the arguments similar to those in Equation (1), the result follows.

Corollary 2. If T : A → B is a α f -proximal H-contraction of first kind with A0(t) 6= φ and T(A0(t)) ⊆
B0(t) for any t > 0. Then, T has a unique best proximity point x∗ in A0(t) provided that B is approximative
compact with respect to A.

Corollary 3. Let T : A→ B be α f -proximalH-contraction of first kind with A0(t) 6= φ, T(A0(t)) ⊆ B0(t)
for any t > 0. Suppose that each pair of elements in the partially ordered complete metric space (X, M, ∗,�) has
a lower and upper bound. If B is approximately compact with respect to A, then T has a unique best proximity
point x∗ in A0(t) provided that α(x, y, t) ≥ 1 such that (x, y) ∈ ∆ for all x, y ∈ A.



Mathematics 2019, 7, 327 11 of 13

Example 2. Suppose that X = [0, 1]×R, A = {(0, x) : x ≤ 0 and x ∈ R} and B = {(1, y) : y ≤ 0 and
y ∈ R}. Note that

Md(A, B, t) =
t

t + 1
, A0(t) = {(0, 0)} and B0(t) = {(1, 0)}.

Define T : A→ B by

T(x, 0) = (1,
x
5
)andx � y is defined as x ≤ y.

Obviously, T(A0(t)) = B0(t) and A0(t) = g(A0(t)). Note that the points u = (0, x1), v = (0, x2), x =

(0, y1) and y = (0, y2) in A satisfy M(u, Tx, t) = M(A, B, t) and M(v, Ty, t) = M(A, B, t) if x1 =
y1

5
,

x2 =
y2

5
and α(x, y, t) = 1 as (x, y) ∈ ∆. In addition, η(M(u, v, t)) ≤ kη(M(x, y, t)) holds true, where

η(t) = 1
t − 1. Thus, all the conditions of the corollary (3) are satisfied. Moreover, (0, 0) is the best proximity point

of T in A0(t) if k ≥ 1
5

.

4. Application:

As an application of obtained results, we prove some new fixed point theorems as follows. We start
with the following:

Theorem 5. Let (X, M, ∗) be a complete fuzzy metric space, and α : A× A× [0, ∞)→ [0, ∞). If T : X → X
is α-admissible mapping such that the following hold:

(i) α(x, y, t)η(M(Tx, Ty, t)) ≤ kη(M(x, y, t), where η ∈ H.
(ii) There exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1.
(iii) Either T is continuous or {xn} is α−ordered regular.

Then, T has a fixed point x∗ ∈ X and {Tnx0} converges to x∗.

Proof. Let A = B = X. We prove that T is α f -proximalH−contraction of first kind. Let x, y, u, v ∈ X
such that the following conditions hold:

(x, y) ∈ ∆,
M(u, Tx, t) = M(A, B, t),
M(v, Ty, t) = M(A, B, t).

As M(A, B, t) = 1, we have u = Tx and v = Ty. Since T satisfies the condition (i), therefore

α(x, y, t)η(M(u, v, t)) = α(x, y, t)η(M(Tx, Ty, t)) ≤ kη(M(x, y, t))

implies that T is α f -proximalH-contraction of first kind. Consider
α(x, y, t) ≥ 1,
M(u, Tx, t) = M(A, B, t),
M(v, Ty, t) = M(A, B, t).

Then, α-admissible property of T implies that α(u, v, t) = α(Tx, Ty, t) ≥ 1. Therefore, T is
α-ordered regular admissible mapping. Applying condition (ii), there exists x0 ∈ X such that
α(x0, Tx0, t) ≥ 1. If we choose x1 = Tx0, then

α(x0, x1, t) ≥ 1 and M(A, B, t) = M(x1, Tx0, t) = M(Tx0, Tx0, t).
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Since set B is approximately compact with respect to A. All the conditions of Theorem (2) are
satisfied, so there exists x∗ ∈ X such that M(x∗, Tx∗, t) = M(A, B, t) for all t > 0 and hence Tx∗ = x∗.
In the following remark, we compared the already existing results in literature.

Remark 1. Latif et al. [25] defined α-proximal fuzzy contraction of type-I and type-II. If we define η(t) =

1− ψ(tα), where ψ ∈ Ψ (as defined in [25]) and α ∈ [0, 1], then η ∈ H. Then, α f -proximal contraction
of first and second kind will reduce to α-proximal fuzzy contraction of type-I and type-II in [25]. If we take
α(x, y, t) = 1 for all x, y ∈ A, t > 0 and η(t) = 1− ψ(tα) in Theorem (1), (2) and simplify our results along
with some minor conditions on involved mappings, we obtain Theorems 2.2, 3.2, 3.5, and 3.8 in [25].

Explanation: Take η(t) = 1−ψ(tα), where ψ ∈ Ψ (as defined in [25]) and α ∈ (0, 1) in α f -proximal
contraction of first kind defined in Equation (2) as η(M(u, v, t)) ≤ k[η(M(x, y, t))], then we have

1− ψ([M(u, v, t)]α) ≤ k(1− ψ([(M(x, y, t)]α)

−ψ([M(u, v, t)]α) ≤ k− kψ([M(x, y, t)]α) ≤ −kψ([(M(x, y, t)]α), since k ∈ (0, 1)

−ψ([M(u, v, t)]α) ≤ −kψ([(M(x, y, t)]α)

ψ([M(u, v, t)]α) ≥ kψ([(M(x, y, t)]α).

Furthermore,
ψ(M(u, v, t)) ≥ ψ([M(u, v, t)]α) ≥ kψ([(M(x, y, t)]α).

We have
ψ(M(u, v, t)) ≥ kψ([(M(x, y, t)]α).

If ψ(M(u, v, t)) ≥ M(u, v, t) ≥ kψ([(M(x, y, t)]α) happens, then we have M(u, v, t) ≥
kψ([(M(x, y, t)]α), which is an α-proximal fuzzy contraction of type-I defined in [25]. A similar
explanation exist for α-proximal fuzzy contraction of type-II.

5. Conclusions

In this paper, we introduced α f -proximal contraction of first and second kind in complete fuzzy
metric space and some optimal coincidence point results are obtained. Some examples are provided to
show that the results presented in this paper generalize comparable existing results in the sense of
nonself mapping. Furthermore, we obtained optimal coincidence point results of such contractions in
ordered structures along with some examples. If we restrict ourselves to self mapping only, results
in [16,18] are extended. We provided an application in fixed point theory, if we restrict non-self
mappings to self mappings in the framework of a complete fuzzy metric space.

Though techniques to prove best proximity point results are not new but an introduction of a
new class of mappings in the framework of fuzzy metric spaces extends the scope of the study of best
proximity point theory. Moreover, there is not much work done in fuzzy metric spaces. Our results
will open new avenues of research in this direction. It will be interesting to study the same problem for
a pair of non-self mappings in fuzzy metric spaces. Moreover, the study of coupled best proximity
point in such spaces will also be a valuable contribution towards best proximity point theory.
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