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Abstract: In this paper, we propose two new methods to perform goodness-of-fit tests on the
log-logistic distribution under progressive Type II censoring based on the cumulative residual
Kullback-Leibler information and cumulative Kullback-Leibler information. Maximum likelihood
estimation and the EM algorithm are used for statistical inference of the unknown parameter.
The Monte Carlo simulation is conducted to study the power analysis on the alternative distributions
of the hazard function monotonically increasing and decreasing. Finally, we present illustrative
examples to show the applicability of the proposed methods.
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1. Introduction

The log-logistic distribution is a kind of classical life distribution in reliability. Scholars have
extensively studied this distribution. In [1,2], they mainly studied the nature of the distribution,
and a method for obtaining the exact confidence interval of the shape parameter of the log-logistic
distribution based on the maximum likelihood estimation was proposed. In [3,4], scholars found that
log-logistic distribution was often used for life analysis, especially the reliability characteristics of the
research model; while [5–7] studied the applications of this distribution in the fields of the economy,
networks, and the environment.

The log-logistic distribution has two main advantages. One is that the hazard function is not
strictly monotonous and has some flexibility in representing product failure rate. Second, its cumulative
distribution function has a closed form, which is more advantageous for life analysis of censored data.

A random variable X is said to have the log-logistic distribution if its cumulative distribution
function (cdf) is expressed as:

FX(x) = 1− (1 + xβ)−1 x ≥ 0, β > 0. (1)

The probability density function (pdf) is as follows:

fX(x) =
βxβ−1

(1 + xβ)2 x ≥ 0, β > 0. (2)

In many life analyses, sometimes, in order to save money and resources, the data will be truncated,
and the data obtained are not complete. Such data are classified as censored data. Type I censoring,
Type II censoring, and progressive censoring are the most common censoring methods.

Progressive Type I censoring is a time-fixed censorship in which individuals are deleted at a
predetermined ratio at the same time interval at a fixed observation time. Progressive Type II censoring
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is a fixed amount of censorship, that is censoring at a certain percentage each time a failed individual
occurs. Progressive censoring refers to the method of continually censoring in observation, which is
different from only censoring at the end of the experiment. This article mainly discusses the progressive
Type II censorship.

The steps to perform progressive Type II censoring are as follows: n individuals are tested, and
after the first individual fails, randomly take R1 individuals from the surviving n− 1 individuals.
Continue to observe until the next failed individual appears, then randomly select R2 individuals
from the surviving n − 2− R1 individuals to no longer observe, and repeat the process until the
mth individual failure is observed, and all last Rm remaining individuals are withdrawn from the
observation, which results in a (R1, R2, · · · , Rm) censoring scheme.

There are many studies on the statistical inference problem of censored data: In [8], different
progressive censoring methods for samples in life testing were systematically studied. The confidence
interval of the unknown parameter under Type II censoring was provided by [9]. They derived
precise confidence intervals for different vital features, such as quantile, position, reliability, and scale.
The method was also applied to the single-parameter and two-parameter exponential models to verify
the feasibility and practicability. An algorithm was proposed in [10] for simulating the data generation
of progressive Type II censoring, which will be used in the Monte Carlo simulations later.

In this article, we will present the log-logistic distribution fitting experiment based on cumulative
entropy under progressive Type II censoring. The other parts of the article are arranged as follows:
In Section 2, we will introduce Kullback-Leibler (KL) information and its related properties. In Section 3,
maximum likelihood estimation and the EM algorithm are used for statistical inference of the
unknown parameter. We construct two test statistics due to CRKL and CKL in Section 4. The Monte
Carlo simulation is presented to study power on the alternative distributions in Section 5. Finally,
we will provide an illustrative example in Section 6 and prove the applicability of the statistics.

2. Entropy and Kullback-Leibler Information

As the quantification of information, the average amount of information after redundancy is
excluded is called information entropy. In 1948, Shannon proposed the concept of information entropy
for the first time in order to clarify the relationship between probability and information redundancy.
The Shannon entropy is for the discrete random variable X. Now that we want to extend this concept
to the case of continuous random variables, we will get a very important concept, namely differential
entropy. The definition is as follows:

H(X) =
∫ ∞

0
f (x)[− ln f (x)]dx, (3)

where ln(·) represents the natural logarithm, f (x) represents the probability density function of the
random variable X.

In the last few years, information theory measures have been used in many fields to verify the
consistency of the distribution in statistical inference. For example, Vasicek [11] first proposed a
distribution fitting test for a normal distribution using maximum entropy. Vasicek’s contribution has
greatly contributed to the development of entropy-based distribution fitting test topics. Afterwards,
many scholars have studied this topic; refer to [12–14].

A distribution fitting test using Kullback-Leibler (KL) divergence was proposed in [15,16] , and its
definition is as follows:

KL(F : G) =
∫ ∞

0
f (x) ln

f (x)
g(x)

dx, (4)

where f (x) and g(x) represent the density functions related to F(x) and G(x) distributions.

Lemma 1. It is known from the inequality ln x ≤ x− 1 that KL(F : G) is non-negative.
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Lemma 2. F(x) and G(x) are equally distributed if and only if KL(F : G) = 0.

Proof. Under the premise that KL information is non-negative, Formula (4) shows that the smaller
the distance between the two distributions, the smaller the corresponding KL divergence. When
KL(F : G) = 0,

KL(F : G) =
∫ ∞

0
f (x) ln

f (x)
g(x)

dx

=
∫ ∞

0
− f (x) ln

g(x)
f (x)

dx

≥
∫ ∞

0
f (x)(1− g(x)

f (x)
)dx = 0,

the equal sign holds, i.e., ln g(x)
f (x) =

g(x)
f (x) − 1. Referring to the inequality ln x ≤ x− 1, we get f (x) = g(x).

Because f (x) and g(x) represent the density functions related to F(x) and G(x) distributions, F(x)
and G(x) are equally distributed.

According to Lemmas 1 and 2, when G(x) is known as the log-logistic distribution, the empirical
distribution function Fn(x) can be obtained from the collected data. Then, the value of KL(Fn : G) can
be calculated for the distribution fitting test. If the value of KL information is approximately zero to a
certain extent, we can think that F(x) and G(x) are equally distributed.

The limitation of differential entropy is that it only applies to random variables that have
continuous density functions. Authors of [17] presented the concept of cumulative residual
entropy (CRE), in order to extend the scope of application to random variables without specific
density functions. The scheme performs a distribution fitting test according to the survival function
F(x) = 1− F(x) in the reliability analysis. The cumulative residual entropy is applied to random
variables that are non-negative, and the definition is:

CRE(X) =
∫ ∞

0
F(x)[− ln F(x)]dx. (5)

Baratpour [14] proposed a new CRE-based method for comparing the distance between two
distributions, named cumulative residual Kullback-Leibler (CRKL) divergence. They also constructed
fitting tests under exponential distribution. It is also possible to verify that CRKL is non-negative with
a method similar to that of KL information.

CRKL(F : G) =
∫ ∞

0
F(x)[− ln

F(x)
G(x)

]dx− [E(X)− E(Y)], (6)

where F(x) and G(x) are the survival functions of the random variables X and Y. E(X) and E(Y) are
the expectations of X and Y.

Authors of [18] proposed cumulative entropy (CE), which is a new method based on classical
differential information entropy. This cumulative entropy is the expected average of the inactivity
time of the random lifetime X. This metric is particularly well-suited to address issues related to aging
characteristics based on past and inactive time in reliability analysis. They defined CE as:

CE(X) =
∫ ∞

0
F(x)[− ln F(x)]dx. (7)

Another cumulative KL information (CKL) related to the cumulative distribution function was
proposed in [19] and was expressed as follows:

CKL(F : G) =
∫ ∞

0
F(x)[− ln

F(x)
G(x)

]dx− [E(Y)− E(X)]. (8)
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According to ln x ≤ x− 1, x > 0, we can prove that CKL(F : G) ≥ 0. Only when the equation
holds, F(x)=G(x).

3. Parameter Estimations

3.1. Maximum Likelihood Estimation

We are going to discuss the maximum likelihood estimation of the log-logistic distribution under
the progressive Type II censored data in this section. Suppose X(1), X(2), · · · , X(m) are the fail times
obtained by m observations for a given censoring scheme R1, R2, · · · , Rm. In the following derivation,
X(i) will be recorded as xi. Then, we have:

L(β) = c
m

∏
i=1

[1− F(xi)]
Ri f (xi)

= c
m

∏
i=1

β
xβ−1

i

(1 + xβ
i )

2+Ri
, (9)

c = n · (n− R1 − 1) · (n− R1 − R2 − 2) · · · (n− R1 · · · − Rm−1 −m + 1),

where β is the shape parameter, c is a fixed coefficient, and the corresponding log-likelihood function
is as follows:

ln L(β) = ln c + ln βm +
m

∑
i=1

[(β− 1) ln xi − (2 + Ri) ln(1 + xβ
i )]. (10)

The likelihood equation for the parameter β is:

d
dβ

ln L(β) =
m
β
+

m

∑
i=1

ln
xi[1− (1 + Ri)xβ

i ]

1 + xβ
i

= 0. (11)

From the above Formula (11), theoretically, we can get the maximum likelihood form β̂ of the
parameter β, but the likelihood equation is complicated and nonlinear, so the explicit solution of β

cannot be calculated. The approximate solution obtained by the simulation method cannot prove the
uniqueness of the solution.

Based on the deficiencies of the maximum likelihood in solving traditional problems, in the actual
problem processing, the EM algorithm, dichotomy, or the Newton-Raphson method can be selected
according to the convenience level to solve the estimated value. Considering that the existing research
of the dichotomy and Newton-Raphson method has been perfected, this paper only elaborates on the
EM algorithm to further complete the maximum likelihood estimation.

3.2. Expectation Maximization Algorithm

Dempster [20] first proposed an expected maximization algorithm named the EM algorithm.
Originally derived from [21], it was gradually matured and modified, such as the GEM algorithm [22]
and the Monte Carlo EM algorithm.

The EM algorithm is an iterative algorithm for solving the maximum likelihood estimations in
incomplete data problems. It transforms the optimization problem of a complex likelihood function
into a simple function optimization problem.

In general, the order statistic of the observed data is represented by X = (x1, x2, · · · , xm).
Zi = (zi1, zi2, · · · , ziRi ) indicates missing data, that is when xi is observed, Ri variables are randomly
deleted from the remaining n− i−∑i−1

j=1 Rj individuals. The individual component lifetimes of Zi are
greater than xi and are out of order.
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X and Z are combined to form complete data W = (X, Z) = (w1, w2, · · · , wn). The key to the
EM algorithm is that it is easy to obtain the combined density function of the data after completion.
When the effective datum X is known, the conditional density of the missing variable Z can be
quickly obtained. β is the unknown parameter to be estimated. p(x, z|β) is the distribution density of
the complete data, and p(z|β, x) indicates the conditional distribution of the missing variable Z after
given observation data.

The EM algorithm divides the problem into the following steps:

Step 1 Add the missing variable Z. Combined with the distribution function (1), it is easy to obtain:

p(z|β, x) =
m

∏
j=1

Rj

∏
k=1

f (zjk|β)
1− F(xj, β)

=
m

∏
j=1

Rj

∏
k=1

βzβ−1
jk (1 + xβ

j )

(1 + zβ
jk)

2
. (12)

p(x, z|β) = p(z|β, x)p(x|β) = c
m

∏
j=1

[ f (xj|β)
Rj

∏
k=1

f (zjk|β)]

= c
m

∏
j=1

[
βxβ−1

j

(1 + xβ
j )

2

Rj

∏
k=1

βzβ−1
jk

(1 + zβ
jk)

2
]. (13)

c = n · (n− R1 − 1) · (n− R1 − R2 − 2) · · · (n− R1 · · · − Rm−1 −m + 1).

The log-likelihood function of full data l(β|w) = l(β|x, z) is as follows:

l(β|x, z) =
m

∑
j=1

[ln f (xj|β) +
Rj

∑
k=1

ln f (zjk|β)] =
m

∑
j=1

[ln
βxβ−1

j

(1 + xβ
j )

2
+

Rj

∑
k=1

ln
βzβ−1

jk

(1 + zβ
jk)

2
]. (14)

Step 2 E step (expectation step): Derive the maximum likelihood function of the complete data.
Find their conditional expectations Q(β|β(i), w).

Q(β|β(i), w)
4
= E[l(β|w)|X = x, β = β(i)]

= ∑
z

l(β|x, z)p(z|β(i), x)

=
m

∑
j=1

[(β− 1) ln xj + ln β− 2 ln(1 + xβ
j )

+

Rj

∑
k=1

((β− 1)E(ln zjk) + ln β− 2E(ln(1 + zβ
jk)))].

(15)

Step 3 M step (maximization step): Maximize the expected value and get the next iteration value β(i+1).

∂Q
∂β

=
m

∑
j=1

[
1
β
+ ln xj − 2

xβ
j ln xj

1 + xβ
j

+

Rj

∑
k=1

(
1
β
+ E(ln zjk))] = 0,

β =

m

∑
j=1

(1 + Rj)

m

∑
j=1

[2
xβ

j ln xj

1 + xβ
j

− ln xj −
Rj

∑
k=1

E(ln zjk)]

. (16)
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Let:

Aj =
xβ

j ln xj

1 + xβ
j

, E(ln zjk) = β ln(1 + xβ
j )

∫ ∞

xj

zβ−1
jk ln zjk

(1 + zβ
jk)

2
dzjk

4
= B,

β(i+1) =

m

∑
j=1

(Rj + 1)

m

∑
j=1

[2Aj − ln xj −
Rj

∑
k=1

B]

. (17)

Step 4 Use β(i+1) instead of β(i) in step E, repeating the E and M steps. When |β(i+1) − β(i)| or
|Q(β(i+1)|β(i), w)−Q(β(i)|β(i), w)| is sufficiently small, stop the iteration.

4. Distribution Fitting Test Statistics

EDF test statistics are usually used to measure the distance between two empirical distribution
functions Fn(x) and Fβ̂(x). If the original hypothesis H0 is established, the estimated value β̂ of β can
be obtained. In this paper, we will propose two EDF test statistics related to CRKL and CKL. We will
use these two statistics to test whether the unknown distribution satisfies the log-logistic distribution
of the null hypothesis and propose multiple alternative distributions at the same time.

Given a set of censored schemes R = (R1, R2, ..., Rm), let x1:m:n < x2:m:n < · · · < xm:m:n be a
sample of the distribution Fβ(x) under progressive Type II censoring. The distribution function of the
log-logistic is Fβ(x) = 1− (1 + xβ)−1, where β is an unknown shape parameter.

Based on CRKL, CKL, and the obtained censored sample, we consider the following hypothesis.

H0 : F(x) = Fβ(x) v.s. H1 : F(x) 6= Fβ(x).

When the statistic is found to be large enough, we reject the null hypothesis.
The empirical distribution function of the complete data can be derived using order statistics.

In the same way, we can estimate the empirical distribution function Fm:n(x) of the censored data,
which is presented as:

Fm:n(x) =


0 x < x1:m:n
αi:m:n xi:m:n ≤ x < xi+1:m:n, i = 1, · · · , m− 1
αm:m:n x ≥ xm:m:n.

(18)

Balakrishnan [10] found that αi:m:n was the ith expected value of statistical data obeying
uniformly-distributed data under progressive Type II censoring, i.e., αi:m:n = E(Ui:m:n).

Since Ui are not independent of each other, we let 0 < V1, V2, · · · , Vm < 1 and:

V1 =
1−Um

1−Um−1

V2 =
1−Um−1

1−Um−2
· · ·

Vm−1 =
1−U2

1−U1
Vm = 1−U1.

(19)

The joint density function of V1, V2, · · · , Vm is obtained by the Jacobian transform method.

f (V1, V2, · · · , Vm) = c
m

∏
i=1

V
i−1+∑m

j=m−i+1 Rj

i . (20)
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According to the factorization theorem, Vi are independent of each other and obey Beta(i +
∑m

j=m−i+1 Rj, 1) (i = 1, · · · , m), respectively. Then, we have:

αi:m:n = 1−
m

∏
j=m−i+1

j + Rm−j+1 + · · ·+ Rm

j + 1 + Rm−j+1 + · · ·+ Rm
. (21)

When the sample obeys the log-logistic distribution function (1), the censored CRKL is able to be
reduced as:

CRKL(Fm:n : Fβ) =
∫ xm:m:n

0
(1− Fm:n(x)) ln

1− Fm:n(x)
(xβ + 1)−1 dx

−
∫ xm:m:n

0
(1− Fm:n(x))dx +

∫ xm:m:n

0
(1 + xβ)−1dx

=
m−1

∑
i=1

(1− αi:m:n) ln(1− αi:m:n)(xi+1:m:n − xi:m:n)

+
m−1

∑
i=1

(1− αi:m:n)
∫ xi+1:m:n

xi:m:n

ln(1 + xβ)dx

−
m−1

∑
i=1

(1− αi:m:n)(xi+1:m:n − xi:m:n)

+ [xm:m:n −
1
β

xm:m:n ln(1 + xβ
m:m:n) +

1
β

∫ xm:m:n

0
ln(1 + xβ)dx].

(22)

The unknown parameter β should be replaced by its expectation maximization estimate β̂EM.
In order to make the statistics free of units, divide (23) by ∑m−1

i=0 (1− αi:m:n)(xi+1:m:n − xi:m:n). Get the
following statistic ˆCRKL.

ˆCRKL = A + B + C− 1, (23)

where:

A =

m−1

∑
i=1

(1− αi:m:n)(xi+1:m:n − xi:m:n) ln(1− αi:m:n)

m−1

∑
i=1

(1− αi:m:n)(xi+1:m:n − xi:m:n)

,

B =

m−1

∑
i=1

(1− αi:m:n)
∫ xi+1:m:n

xi:m:n

ln(1 + xβ)dx

m−1

∑
i=1

(1− αi:m:n)(xi+1:m:n − xi:m:n)

,

C =
xm:m:n − 1

β xm:m:n ln(1 + xβ
m:m:n) +

1
β

∫ xm:m:n
0 ln(1 + xβ)dx

m−1

∑
i=1

(1− αi:m:n)(xi+1:m:n − xi:m:n)

.

Similarly, the statistic based on CKL is as follows:

ˆCKL = D− E− F + 1, (24)



Mathematics 2019, 7, 361 8 of 20

where:

D =

m−1

∑
i=1

αi:m:n(xi+1:m:n − xi:m:n) ln αi:m:n

m−1

∑
i=1

(1− αi:m:n)(xi+1:m:n − xi:m:n)

,

E =

m−1

∑
i=1

αi:m:n

∫ xi+1:m:n

xi:m:n

ln[1− (1 + xβ)−1]dx

m−1

∑
i=1

(1− αi:m:n)(xi+1:m:n − xi:m:n)

,

F =
xm:m:n − 1

β xm:m:n ln(1 + xβ
m:m:n) +

1
β

∫ xm:m:n
0 ln(1 + xβ)dx

m−1

∑
i=1

(1− αi:m:n)(xi+1:m:n − xi:m:n)

.

Obviously, neither ˆCRKL nor ˆCKL depend on the scale; therefore, they are suitable for
goodness-of-fit tests.

5. Monte Carlo Simulations

Monte Carlo simulation is a method of solving many computational problems using random
numbers. Based on a probabilistic model, statistical simulations or samplings are performed using
an electronic computer to obtain an approximate solution to the problem, according to the process
depicted by the model. Currently, there is related research in many fields, such as: the environment [23],
computer science and technology [24], physics [25], finance [26], etc.

For the ˆCRKL and ˆCKL tests, when the significance level α is determined and the statistic is larger
than the critical value, we reject the null hypothesis. Since the quantile cannot be determined from
the distribution of ˆCRKL (23) and ˆCKL (24), we use the Monte Carlo simulation method to obtain the
critical values ˆCRKL0.95, ˆCRKL0.90, ˆCKL0.95, and ˆCKL0.90.

Lemma 3. Suppose X obeys the log-logistic distribution, and let Y = ln(1 + xβ), then Y obeys the standard
exponential distribution.

Proof. Suppose the distribution functions of the random variables X and Y are FX(x) and
FY(y), respectively.

FX(x) = 1− (1 + xβ)−1 x ≥ 0, β > 0.

When y > 0:

FY(y) = P(Y ≤ y) = P(ln(1 + xβ) ≤ y) = P(X ≤ (ey − 1)
1
β ) = FX((ey − 1)

1
β ) = 1− e−y.

Let X1 < X2 < · · · < Xm be a sample for a given progressive Type II censored scheme from the
log-logistic distribution of which the unknown parameter is β. Let Yi = ln(1 + xβ

i ). From Lemma 3,
we can see that Y1 < Y2 < · · · < Ym is the order statistic of the data from the standard exponential
distribution under progressive Type II censoring. Refer to [10] for the following transformation:

S1 = nY1

S2 = (n− R1 − 1) · (Y2 −Y1)

· · ·
Sm = (n− R1 − · · · − Rm −m + 1) · (Ym −Ym−1).
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According to the above transformation, Thomas [27] proved that S1, S2, · · · , Sm were independent
of each other and conformed to the standard exponential distribution. Ten thousand random samples
(S1, S2, · · · , Sm) can be generated by R software and part of the code is shown in the Appendix A.
The samples under progressive Type II censoring were obtained by corresponding transformation.

Under the experimental assumption of size n, censored number m, significance level α, censored
scheme (R1, · · · , Rm), and distribution (1) with β = 2, we randomly generated 10,000 sets of
progressive Type II censoring samples. From the law of large numbers, we know that if a test is
repeated multiple times under a constant condition, the probability can be replaced by the frequency
of the random event.

Because the study of the exponential distribution [14] indicated that the hazard function had a
great influence on the study of the power of statistics, we present alternatives in Table 1 classified by
the type of hazard function:

Table 1. Alternative hypotheses for power study.

Statistics Hazard Function Distributions

1 ˆCRKL monotone decreasing Pareto(5); Weibull: W(0.2,1);
Generalized exponential distribution: Gexp(0.5,1)

2 ˆCRKL monotone increasing Bathtub-shaped: B(2,15)

3 ˆCKL monotone decreasing Pareto(12); Weibull: W(0.2,1);
Generalized exponential distribution: Gexp(0.5,1)

4 ˆCKL monotone increasing Rayleigh: R(0.2); Bathtub-shaped: B(2,200)

The power study indicates the probability of rejecting the null hypothesis under the condition
that the alternative hypothesis is established. It is a test of whether or not the test statistics we have
proposed are feasible.

According to the classification method of the hazard function, the power study of this paper
involved seven alternative hypotheses. To calculate the value of the test statistics, the parameters of
the alternative distributions were estimated using the EM algorithm.

(a) H0 : X ∼ log-logistic(2) vs. H1 : X ∼ Pareto(5):

f (x; β) = β(1 + x)−(β+1), x ≥ 0, β > 0,

F(x; β) = 1− (1 + x)−β,

h(x; β) =
β

1 + x
,

L(β) = cβm
m

∏
i=1

(1 + xi)
−(β+1+βRi),

c = n · (n− R1 − 1) · (n− R1 − R2 − 2) · · · (n− R1 · · · − Rm−1 −m + 1).

The shape parameter is β, and the failure rate had a downward trend as x increased.
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(b) H0 : X ∼ log-logistic(2) vs. H1 : X ∼ Rayleigh(0.2):

f (x; β) =
xe−x2/2β2

β2 , x ≥ 0, β > 0,

F(x; β) = 1− e−x2/2β2
,

h(x; β) =
x
β2 ,

L(β) = cβ−2m
m

∏
i=1

xie−x2
i (Ri+1)/2β2

.

The shape parameter is β, and the failure rate was on the rise as x increased.
(c) H0 : X ∼ log-logistic(2) vs. H1 : X ∼Weibull(0.2,1):

f (x; k, λ) =
k
λ
(

x
λ
)k−1e−(x/λ)k

, x ≥ 0, k > 0, λ > 0,

F(x; k, λ) = 1− e−(x/λ)k
,

h(x; k, λ) =
k
λ
(

x
λ
)k−1,

L(k, λ) = c(
k
λ
)m

m

∏
i=1

(
xi
λ
)k−1e−(xi/λ)k(Ri+1),

where k > 0 and λ > 0 are the shape parameter and scale parameter corresponding to the
distribution, respectively. k < 1 indicates that the failure rate tended to decrease as the experiment
time elapsed. k = 1 means that the change in failure rate was independent of time. k > 1 indicates
that the failure rate was increasing as the experiment time went on.

(d) H0 : X ∼ log-logistic(2) vs. H1 : X ∼ Bathtub-shaped(2,15):

f (x; β, λ) = λβxβ−1eλ(1−exβ
)+xβ

, x ≥ 0, β > 0, λ > 0,

F(x; β, λ) = 1− eλ(1−exβ
),

h(x; β, λ) = λβxβ−1exβ
,

L(β, λ) = cλmβm
m

∏
i=1

xβ−1
i exβ

i +λ(1−exβ
i )(Ri+1).

The unknown shape parameter and scale parameter of the distribution are β and λ. In fact, λ did
not have an influence on h(x). This distribution had an increased hazard function when β > 1.
Otherwise, h(x) was bathtub shaped.

(e) H0 : X ∼ log-logistic(2) vs. H1 : X ∼ Gexp(0.5,1):

f (x; β, λ) = βλ(1− e−λx)β−1e−λx, x ≥ 0, β > 0, λ > 0,

F(x; β, λ) = (1− e−λx)β,

h(x; β, λ) =
βλe−λx(1− e−λx)β−1

1− (1− e−λx)β
,

L(β, λ) = cβmλm
m

∏
i=1

(1− e−λxi )β−1e−λxi (1− (1− e−λxi )β)Ri ,

where β is the shape parameter and λ is the scale parameter. The hazard function of this
distribution tended to increase when β > 1. h(x) is constant over time if β = 1. When β < 1,
h(x) decreased.
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To analyze the power of these alternative distributions, we selected 12–18 sets of censored schemes
for n = 10, 20, and 30, and 10,000 Monte Carlo simulations were performed under each censorship plan.
Tables 2–4 and Figures 1–4 show the simulation results.

Table 2. Powers of ˆCRKL for the monotone decreasing hazard at the 5% and 10% significance levels for
the different censorship schemes in the case of sample sizes n = 10, 20, and 30.

Schemes 5% 10%
n m (R1, . . . , Rm) Pareto(5) W(0.2) Gexp(0.5) Pareto(5) W(0.2) Gexp(0.5)
10 5 5,0,0,0,0 0.733 0.187 0.348 0.836 0.204 0.476

5 0,5,0,0,0 0.716 0.200 0.282 0.827 0.208 0.410
5 0,0,5,0,0 0.674 0.238 0.322 0.821 0.261 0.426
5 0,0,0,5,0 0.722 0.283 0.285 0.824 0.316 0.384
5 0,0,0,0,5 0.777 0.345 0.245 0.853 0.372 0.328
5 1,1,1,1,1 0.711 0.378 0.336 0.835 0.399 0.410
7 3,0,0,0,0,0,0 0.825 0.108 0.470 0.902 0.115 0.560
7 0,3,0,0,0,0,0 0.766 0.107 0.421 0.887 0.114 0.547
7 0,0,3,0,0,0,0 0.722 0.104 0.361 0.891 0.114 0.479
7 0,0,0,0,0,3,0 0.672 0.247 0.353 0.817 0.266 0.491
7 0,0,0,0,0,0,3 0.701 0.475 0.386 0.838 0.503 0.489
7 1,0,0,1,0,0,1 0.770 0.265 0.379 0.884 0.290 0.520

20 10 10,0,0,0,0,0,0,0,0,0 0.918 0.068 0.585 0.969 0.074 0.704
10 0,10,0,0,0,0,0,0,0,0 0.820 0.054 0.534 0.940 0.057 0.661
10 0,0,0,0,0,10,0,0,0,0 0.866 0.106 0.419 0.937 0.114 0.580
10 0,0,0,0,0,0,0,10,0,0 0.710 0.251 0.428 0.861 0.265 0.531
10 0,0,0,0,0,0,0,0,0,10 0.823 0.627 0.454 0.901 0.645 0.526
10 1,1,1,1,1,1,1,1,1,1 0.793 0.349 0.515 0.911 0.372 0.638
15 5,0,0,...,0,0 0.980 0.026 0.714 0.992 0.029 0.880
15 0,5,0,...,0,0 0.959 0.018 0.681 0.987 0.023 0.813
15 0,...,0,5,0,...,0 0.963 0.038 0.663 0.983 0.045 0.735
15 0,0,...,0,5,0 0.858 0.163 0.539 0.927 0.178 0.679
15 0,0,0,...,0,5 0.860 0.453 0.647 0.931 0.475 0.761
15 1,1,..,1,...,1,1 0.931 0.121 0.630 0.977 0.130 0.758
18 2,0,0,...,0,0 0.995 0.004 0.785 0.998 0.004 0.906
18 0,2,0,...,0,0 0.987 0.012 0.782 0.996 0.012 0.866
18 0,...,0,2,0,...,0 0.987 0.017 0.738 0.994 0.018 0.861
18 0,0,...,0,2,0 0.985 0.035 0.704 0.996 0.038 0.806
18 0,0,0,...,0,2 0.967 0.082 0.694 0.994 0.092 0.803
18 1,0,0,...,0,1 0.993 0.039 0.752 0.999 0.040 0.873

30 15 15,0,0,...,0,0 0.975 0.024 0.720 0.991 0.026 0.886
15 0,15,0,...,0,0 0.930 0.020 0.651 0.978 0.024 0.795
15 0,...,0,15,0,...,0 0.898 0.060 0.528 0.956 0.067 0.646
15 0,0,...,0,15,0 0.761 0.379 0.454 0.850 0.398 0.567
15 0,0,0,...,0,15 0.892 0.713 0.559 0.945 0.723 0.631
15 1,1,...,1,...,1 0.876 0.287 0.653 0.945 0.300 0.401
20 10,0,0,...,0,0 0.995 0.006 0.850 0.998 0.006 0.935
20 0,10,0,...,0,0 0.982 0.006 0.792 0.998 0.008 0.913
20 0,...,0,10,0,...0 0.978 0.013 0.734 0.992 0.016 0.848
20 0,0,...,0,10,0 0.843 0.282 0.566 0.913 0.297 0.694
20 0,0,0,...,0,10 0.898 0.712 0.666 0.947 0.740 0.779
20 1,0,1,0,...,0,1,0 0.971 0.035 0.660 0.990 0.045 0.790
25 5,0,0,...,0,0 0.995 0.001 0.909 0.997 0.002 0.967
25 0,5,0,...,0,0 0.996 0.000 0.902 0.998 0.000 0.966
25 0,...,0,5,0,...,0 0.989 0.002 0.827 0.998 0.003 0.935
25 0,0,...,0,5,0 0.955 0.054 0.718 0.986 0.066 0.813
25 0,0,0,...,0,5 0.977 0.163 0.780 0.999 0.182 0.910
25 1,1,..,1,...,1,1 0.997 0.024 0.852 0.999 0.027 0.937
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Table 3. Powers of ˆCKL for the monotone decreasing hazard at the 5% and 10% significance levels for
the different censorship schemes in the case of sample sizes n = 10, 20, and 30.

Schemes 5% 10%
n m (R1, . . . , Rm) Pareto(12) W(0.2) Gexp(0.5) Pareto(12) W(0.2) Gexp(0.5)
10 5 0,5,0,0,0 0.786 0.602 0.161 0.904 0.765 0.232

5 0,0,5,0,0 0.678 0.424 0.195 0.866 0.660 0.302
5 0,0,0,5,0 0.527 0.309 0.247 0.838 0.466 0.334
5 0,0,0,0,5 0.084 0.703 0.366 0.236 0.744 0.478
5 1,1,1,1,1 0.449 0.369 0.272 0.914 0.465 0.383
7 3,0,0,0,0,0,0 0.590 0.708 0.051 0.792 0.826 0.080
7 0,3,0,0,0,0,0 0.835 0.761 0.093 0.934 0.862 0.120
7 0,0,3,0,0,0,0 0.828 0.712 0.077 0.914 0.850 0.107
7 0,0,0,0,0,3,0 0.902 0.573 0.193 0.975 0.758 0.260
7 0,0,0,0,0,0,3 0.851 0.429 0.385 0.989 0.549 0.518
7 1,0,0,1,0,0,1 0.983 0.684 0.276 1.000 0.848 0.395

20 10 10,0,0,0,0,0,0,0,0,0 0.376 0.711 0.007 0.637 0.827 0.019
10 0,10,0,0,0,0,0,0,0,0 0.855 0.870 0.053 0.920 0.914 0.073
10 0,0,0,0,0,10,0,0,0,0 0.814 0.728 0.065 0.929 0.828 0.099
10 0,0,0,0,0,0,0,10,0,0 0.928 0.679 0.185 0.969 0.793 0.228
10 0,0,0,0,0,0,0,0,0,10 0.835 0.790 0.532 0.976 0.827 0.660
10 1,1,1,1,1,1,1,1,1,1 0.998 0.707 0.370 1.000 0.859 0.506
15 5,0,0,...,0,0 0.045 0.659 0.002 0.193 0.803 0.002
15 0,5,0,...,0,0 0.494 0.883 0.004 0.717 0.927 0.005
15 0,...,0,5,0,...,0 0.461 0.803 0.003 0.783 0.873 0.004
15 0,0,...,0,5,0 0.974 0.746 0.081 0.992 0.849 0.135
15 0,0,0,...,0,5 1.000 0.877 0.565 0.998 0.961 0.697
15 1,1,..,1,...,1,1 1.000 0.965 0.131 1.000 0.989 0.216
18 2,0,0,...,0,0 0.005 0.694 0.002 0.064 0.858 0.003
18 0,2,0,...,0,0 0.155 0.850 0.003 0.337 0.916 0.005
18 0,...,0,2,0,...,0 0.122 0.793 0.002 0.384 0.880 0.002
18 0,0,...,0,2,0 0.547 0.793 0.001 0.848 0.896 0.004
18 0,0,0,...,0,2 0.999 0.974 0.095 1.000 0.993 0.158
18 1,0,0,...,0,1 0.913 0.937 0.005 0.980 0.966 0.011

30 15 15,0,0,...,0,0 0.054 0.670 0.002 0.191 0.829 0.002
15 0,15,0,...,0,0 0.798 0.903 0.012 0.876 0.956 0.015
15 0,...,0,15,0,...,0 0.730 0.763 0.024 0.856 0.854 0.033
15 0,0,...,0,15,0 0.937 0.610 0.297 0.980 0.754 0.359
15 0,0,0,...,0,15 0.945 0.885 0.631 1.000 0.905 0.762
15 1,1,...,1,...,1 1.000 0.902 0.401 1.000 0.979 0.508
20 10,0,0,...,0,0 0.004 0.631 0.002 0.026 0.852 0.001
20 0,10,0,...,0,0 0.527 0.897 0.002 0.712 0.963 0.003
20 0,...,0,10,0,...0 0.448 0.815 0.003 0.666 0.914 0.004
20 0,0,...,0,10,0 0.993 0.712 0.174 0.999 0.885 0.269
20 0,0,0,...,0,10 1.000 0.632 0.669 1.000 0.802 0.779
20 1,0,1,0,...,0,1,0 0.830 0.806 0.007 0.955 0.904 0.013
25 5,0,0,...,0,0 0.002 0.692 0.001 0.003 0.829 0.001
25 0,5,0,...,0,0 0.095 0.928 0.001 0.273 0.974 0.002
25 0,...,0,5,0,...,0 0.054 0.853 0.000 0.221 0.931 0.001
25 0,0,...,0,5,0 0.894 0.781 0.003 0.988 0.911 0.011
25 0,0,0,...,0,5 1.000 1.000 0.600 1.000 1.000 0.722
25 1,1,..,1,...,1,1 0.990 0.980 0.002 1.000 0.991 0.007
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Table 4. Powers for the monotone increasing hazard at the 5% and 10% significance levels for the
different censorship schemes in the case of sample sizes n = 10, 20, and 30.

5% 10%
Schemes ˆCRKL ˆCKL ˆCRKL ˆCKL

n m (R1, . . . , Rm) B(15) R(0.2) B(200) B(15) R(0.2) B(200)
10 5 5,0,0,0,0 0.572 0.848 0.665 0.910 0.929 0.906

5 0,5,0,0,0 0.631 0.916 0.863 0.934 0.963 0.990
5 0,0,5,0,0 0.557 0.841 0.300 0.841 0.954 0.793
5 0,0,0,5,0 0.443 0.786 0.027 0.739 0.936 0.401
5 0,0,0,0,5 0.509 0.757 0.020 0.770 0.918 0.001
5 1,1,1,1,1 0.420 0.854 0.041 0.688 0.968 0.405
7 3,0,0,0,0,0,0 0.569 0.658 0.474 0.970 0.806 0.801
7 0,3,0,0,0,0,0 0.824 0.874 0.908 0.991 0.927 0.981
7 0,0,3,0,0,0,0 0.859 0.911 0.924 0.992 0.964 0.987
7 0,0,0,0,0,3,0 0.389 0.952 0.699 0.709 0.979 0.958
7 0,0,0,0,0,0,3 0.325 0.993 0.255 0.539 1.000 0.789
7 1,0,0,1,0,0,1 0.404 0.992 0.966 0.729 1.000 0.998

20 10 10,0,0,0,0,0,0,0,0,0 0.860 0.358 0.127 1.000 0.504 0.488
10 0,10,0,0,0,0,0,0,0,0 0.950 0.858 0.988 1.000 0.924 1.000
10 0,0,0,0,0,10,0,0,0,0 0.868 0.884 0.962 0.997 0.935 1.000
10 0,0,0,0,0,0,0,10,0,0 0.516 0.925 0.939 0.788 0.973 0.998
10 0,0,0,0,0,0,0,0,0,10 0.117 0.990 0.002 0.370 0.999 0.019
10 1,1,1,1,1,1,1,1,1,1 0.358 0.995 0.999 0.645 0.999 0.999
15 5,0,0,...,0,0 1.000 0.042 0.008 0.999 0.123 0.067
15 0,5,0,...,0,0 1.000 0.463 0.536 1.000 0.634 0.846
15 0,...,0,5,0,...,0 0.999 0.531 0.448 1.000 0.742 0.879
15 0,0,...,0,5,0 0.568 0.960 0.906 0.885 0.989 0.996
15 0,0,0,...,0,5 0.266 1.000 0.999 0.526 1.000 1.000
15 1,1,..,1,...,1,1 0.595 0.998 0.999 0.909 1.000 1.000
18 2,0,0,...,0,0 0.997 0.010 0.001 0.999 0.042 0.002
18 0,2,0,...,0,0 0.998 0.101 0.013 1.000 0.208 0.132
18 0,...,0,2,0,...,0 1.000 0.137 0.014 0.996 0.334 0.160
18 0,0,...,0,2,0 0.978 0.422 0.141 1.000 0.707 0.596
18 0,0,0,...,0,2 0.679 1.000 0.996 0.955 1.000 1.000
18 1,0,0,...,0,1 0.925 0.803 0.548 1.000 0.938 0.872

30 15 15,0,0,...,0,0 0.999 0.040 0.001 0.998 0.133 0.017
15 0,15,0,...,0,0 1.000 0.750 0.922 1.000 0.861 0.990
15 0,...,0,15,0,...,0 0.971 0.824 0.864 0.996 0.917 0.996
15 0,0,...,0,15,0 0.289 0.943 0.746 0.568 0.985 0.990
15 0,0,0,...,0,15 0.142 1.000 0.017 0.254 1.000 0.122
15 1,1,...,1,...,1 0.511 1.000 1.000 0.804 1.000 1.000
20 10,0,0,...,0,0 0.998 0.002 0.002 0.998 0.009 0.005
20 0,10,0,...,0,0 0.997 0.370 0.527 0.995 0.535 0.794
20 0,...,0,10,0,...0 1.000 0.487 0.566 1.000 0.661 0.898
20 0,0,...,0,10,0 0.501 0.977 0.987 0.734 0.995 1.000
20 0,0,0,...,0,10 0.173 1.000 0.997 0.368 1.000 0.999
20 1,0,1,0,...,0,1,0 0.987 0.764 0.738 1.000 0.905 0.996
25 5,0,0,...,0,0 1.000 0.002 0.001 1.000 0.003 0.002
25 0,5,0,...,0,0 1.000 0.044 0.023 1.000 0.094 0.110
25 0,...,0,5,0,...,0 0.999 0.088 0.014 1.000 0.167 0.108
25 0,0,...,0,5,0 0.857 0.658 0.309 0.999 0.865 0.886
25 0,0,0,...,0,5 0.504 1.000 1.000 0.836 1.000 1.000
25 1,1,..,1,...,1,1 0.997 0.925 0.940 1.000 0.987 0.998



Mathematics 2019, 7, 361 14 of 20

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m = 5

Schemes

P
ow

er
s

Pareto(5)
W(0.2)
Gexp(0.5)

1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

m = 7
Schemes

P
o
w
e
rs

Pareto(5)

W(0.2)

Gexp(0.5)

Figure 1. Powers of different schemes for the monotone decreasing hazard function for the ˆCRKL test,
in the case of n = 10, m = 5 and 7.
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Figure 2. Powers of different schemes for the monotone decreasing hazard function for the ˆCKL test,
in the case of n = 10, m = 5 and 7.
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Figure 3. Powers of different schemes for the monotone increasing hazard function Bathtub-shaped(15)
for the ˆCRKL test, in the case of n = 20 and 30.
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Figure 4. Powers of different schemes for the monotone increasing hazard function Rayleigh(0.2) for
the ˆCKL test, in the case of n = 20 and 30.

The average values of power in Tables 2–4 were 0.575, 0.561, and 0.706, respectively. The ratio of
power over 0.65 in each table reached 52.43%, 54.17%, and 66.32%.

The trend of the test statistic on the censored program can be obtained by the analysis of
Figures 1–4:

• From Figure 1, different censorship schemes had little effect on power for the ˆCRKL test when the
hazard function monotonically decreased.

• From Figure 2, for the ˆCKL test, there was no obvious trend in power study for the monotone
decreasing hazard function under different censored schemes.

• From Figure 3, when the censorship only happened at the end, the power for the monotone
increasing hazard function for the ˆCRKL test was lower.

• From Figure 4, when the censorship only happened at the beginning and the hazard function
monotonically increased, the power for the ˆCKL test was lower.

Therefore, we obtained the following conclusions: Before performing the goodness-of-fit test,
we selected the test statistic by analyzing the hazard function of the relevant distributions. When
the hazard function was monotonically decreasing, the statistic ˆCKL was selected. When the hazard
function increased monotonically, if the censoring occurred only at the beginning of the experiment,
we used ˆCRKL; if the censoring only occurred at the end of the experiment, we used ˆCKL; in other
cases, both test statistics were acceptable.

6. Illustrative Example

6.1. Application Prospect

The modern quality concept holds that product quality is a combination of characteristics that
meet the requirements of use, that is, applicability. Improving quality in the process of product
realization is an important way to improve product quality. Therefore, in the product reliability
analysis, it is important to determine the product probability distribution to further analyze the shape
characteristics of the function such as the failure rate.

For example, quality fluctuations common in product formation have unacceptable parts and
installation errors. In order to establish a reliability model under two quality fluctuations, it is first
necessary to determine the product probability distribution. When relevant research shows that the
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product may be the log-logistic distribution, the algorithm proposed in this paper can be used to test
the goodness of fit.

Because the failure rate function is not strictly monotonic under the log-logistic distribution,
there is flexibility in establishing a reliability model. Our proposed algorithm has practical value in
effectively controlling quality fluctuations and improving product reliability. Below, we will introduce
actual data for simulation studies.

6.2. Real Data Application

We have proven that the proposed goodness-of-fit tests are discriminative by analyzing the
power of hypothesis testing. In this part, we will introduce a set of real data to continue to illustrate
the applicability of the algorithm. The work in [9] proposed a progressive censored sample of the
logarithmic lifetime of the insulating fluid tested by 34 KV to the breakdown data. These data of size
m = 5 generated from n = 13 are listed in Table 5. We will use the two test statistics to test the collected
censored data and analyze whether the sample obeys the log-logistic distribution.

Table 5. A progressive censored sample of the logarithmic lifetime of the insulating fluid.

i 1 2 3 4 5

xi:5:13 0.2700 1.0224 1.5789 1.8718 1.9947
Ri 0 3 0 0 5

Firstly, calculate the value of the test statistics according to Equations (23) and (24). The value
of the unknown parameter β was replaced by β̂ obtained under the parameter estimation method
in the third section. The results of the calculations were ˆCRKL = 1.221995 and ˆCKL = 0.025522.
Referring to the algorithm for calculating the p-values by R in the Monte Carlo simulation in Section 5,
we obtained p-values corresponding to the two goodness-of-fit tests of 0.898 and 0.605, respectively.
From the results, there is sufficient evidence to show that the sample observed under progressive Type
II censoring obeyed the log-logistic distribution. Through the simulation of this set of data, we can get
the conclusion that the test statistic is applicable.

7. Conclusions

In this paper, the fitting test of the log-logistic distribution was discussed under progressive
Type II censoring. We established ˆCRKL and ˆCKL test statistics based on the cumulative residual
entropy and cumulative entropy. Among them, we used the maximum likelihood estimation and
EM algorithm for parameter estimation, and the Monte Carlo simulation was presented to analyze
the multiple alternative hypotheses. Trend analysis of the power study under different censorship
schemes demonstrated the feasibility of the test statistics.

We have come to the conclusion that the test statistic was chosen based on the monotonicity of
the risk function of the relevant distribution. When the hazard function monotonically decreased,
we selected the statistic ˆCKL. When the hazard function increased monotonically, it was necessary to
select the statistic according to the time when the censorship occurred. The power analysis showed
that the proposed goodness-of-fit test had the feasibility of discriminating whether the null hypothesis
was true. At the same time, the actual data case showed the combination of algorithm and practical
application. The idea of the fitting test in this paper can also be applied to more distributions in
subsequent studies, such as: Weibull, Rayleigh, Pareto, etc.
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Appendix A

### R code in Monte Carlo s imulat ion
### Randomly generate progress ive type−I I censored samples

n<−20
m<−10
aa<−1000
r<−c ( 0 , 0 , 0 , 0 , 0 , 0 , 1 0 , 0 , 0 , 0 )

xx<−matrix ( 1 : ( aa∗m) , aa ,m)
f o r ( j in 1 : aa ) {
s<−rexp (m, 1 )
y<−rep ( 0 ,m)
x<−rep ( 0 ,m)
y[1]<− s [1 ]/ n
rr <−rep ( 0 ,m)
f o r ( i in 1 : (m−1)) {
r r [1]<− r [ 1 ]
r r [ i +1]<− r r [ i ]+ r [ i +1]
y [ i +1]<−y [ i ]+ s [ i +1]/(n−r r [ i ]− i )
i <− i +1
}

### H0 : log−l o g i s t i c ( 2 )
x<−(exp ( y)−1)^1/2
xx [ j ,]<−x
j <− j +1
}

beta1<−rep ( 0 , aa )
f o r ( k in 1 : aa ) {
x1<−xx [ k , ]
log . l i k e <−func t ion ( x , beta ) {
AA<−m∗ log ( beta )+sum ( ( beta−1)∗ log ( x)−(2+ r )∗ log (1+ x^beta ) )
re turn(−AA)
}
res <−optim ( c ( 1 ) , log . l i k e , method="L−BFGS−B " , lower =0 .01 , x=x1 ,
hess ian=T , c o n t r o l = l i s t ( t r a c e =F , maxit =100) )
beta1 [ k]<− res$par
}

### c a l c u l a t e alpha
alpha<−rep ( 0 ,m)
f o r ( i in 1 :m) {
j j <−seq (m−i +1 ,m)
alpha [ i ]<−1−prod ( ( j j +sum( r [ j j ] ) ) / ( j j +sum( r [ j j ] ) + 1 ) )
i <− i +1
}
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#### Find the c r i t i c a l value
A<−rep ( 0 , aa )
B<−rep ( 0 , aa )
C<−rep ( 0 , aa )
D<−rep ( 0 , aa )
E<−rep ( 0 , aa )
crk l <−rep ( 0 , aa )
ckl <−rep ( 0 , aa )

f o r ( j in 1 : aa ) {
xxx<−xx [ j , ]
beta<−beta1 [ j ]
A[ j ]<−sum((1− alpha [ 1 : (m−1 ) ] )∗ ( xxx [ 1 : (m−1)+1]−xxx [ 1 : (m−1)] )
∗ log (1−alpha [ 1 : (m−1) ] ) )/sum((1− alpha [ 1 : (m−1 ) ] )∗ ( xxx [ 1 : (m−1)+1]−xxx [ 1 : (m−1 ) ] ) )
B [ j ]<−sum((1− alpha [ 1 :m−1])∗ ( log ( xxx [ 1 : (m−1)+1]+xxx [ 1 : (m−1)+1]^(1+ beta )
/(1+ beta ))− log ( xxx [ 1 : (m−1)]+ xxx [ 1 : (m−1)]^(1+ beta )/(1+ beta ) ) ) )
/(sum((1− alpha [ 1 : (m−1 ) ] )∗ ( xxx [ 1 : (m−1)+1]−xxx [ 1 : (m− 1 ) ] ) ) )
C[ j ]<−(xxx [m]−1/ beta ∗xxx [m]∗ log (1+ xxx [m]^ beta )+1/ beta ∗ log ( xxx [m]
+xxx [m]^(1+ beta )/(1+ beta ) ) ) / ( sum((1− alpha [ 1 : (m−1 ) ] )∗ ( xxx [ 1 : (m−1)+1]−
xxx [ 1 : (m− 1 ) ] ) ) )D[ j ]<−sum( alpha [ 1 : (m−1)]∗ ( xxx [ 1 : (m−1)+1]−xxx [ 1 : (m−1)] )
∗ log ( alpha [ 1 : (m−1 ) ] ) )
/sum((1− alpha [ 1 : (m−1 ) ] )∗ ( xxx [ 1 : (m−1)+1]−xxx [ 1 : (m−1 ) ] ) )
E [ j ]<−sum( alpha [ 1 :m−1]∗( log ( xxx [ 1 : (m−1)])− log ( xxx [ 1 : (m−1 ) + 1 ] ) ) )
/(sum((1− alpha [ 1 : (m−1 ) ] )∗ ( xxx [ 1 : (m−1)+1]−xxx [ 1 : (m− 1 ) ] ) ) )
j <− j +1
}
crk l <−A+B+C−1
ckl <−D−E−C+1
c r k l l <−s o r t ( c r k l )
c k l l <−s o r t ( c k l )
t1 <−c r k l l [ aa ∗0 . 9 5 ]
t2 <−c k l l [ aa ∗0 . 9 5 ]
t11 <−c r k l l [ aa ∗ 0 . 9 ]
t22 <−c k l l [ aa ∗ 0 . 9 ]

### c a l c u l a t e power

count1<−rep ( 0 , aa )
count2<−rep ( 0 , aa )

f o r ( j in 1 : aa ) {
z1<−c r k l [ j ]
z2<−c k l [ j ]

i f ( z1>=t1 ) count1 [ j ]<−1
e l s e count1 [ j ]<−0
i f ( z2>=t2 ) count2 [ j ]<−1
e l s e count2 [ j ]<−0
j <− j +1
}
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power1<−sum( count1 )/ aa
power2<−sum( count2 )/ aa
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