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Abstract: In chemical graph theory, a topological index is a numerical representation of a
chemical network, while a topological descriptor correlates certain physicochemical characteristics of
underlying chemical compounds besides its chemical representation. The graph plays a vital role in
modeling and designing any chemical network. Simonraj et al. derived a new type of graphs, which
is named a third type of hex-derived networks. In our work, we discuss the third type of hex-derived
networks HDN3(r), THDN3(r), RHDN3(r), CHDN3(r), and compute exact results for topological
indices which are based on degrees of end vertices.

Keywords: general randi¢ index; Harmonic index; augmented Zagreb index; atom-bond connectivity
(ABC) index; geometric—arithmetic (GA) index; third type of hex-derived networks; HDN3(r);
THDN?3(r); RHDN3(r); CHDN3(r)

1. Introduction and Preliminary Results

Graph theory has provided chemists with a variety of useful tools, such as topological indices.
Molecules and molecular compounds are often modeled by molecular graph. A molecular graph
is a representation of the structural formula of a chemical compound in terms of graph theory,
whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds.
Cheminformatics is new subject which is a combination of chemistry, mathematics, and information
science. It studies quantitative structure—activity (QSAR) and structure-property (QSPR) relationships
that are used to predict the biological activities and properties of chemical compounds. Biological
indicators such as the Randi¢ Index, Zagreb Index, Wiener Index, and Balaban index are used to
predict and study the physical and chemical properties of chemical structures. The topological index
is a numeric quantity associated with chemical constitutions purporting the correlation of chemical
structures with many physicochemical properties, chemical reactivity or biological activity. Topological
indices are made on the grounds of the transformation of a chemical network into a number that
characterizes the topology of the chemical network. Some of the major types of topological indices of
graphs are distance-based topological indices, degree-based topological indices, and counting-related
topological indices.

Recently, many researchers have found topological indices vital for the study of structural
properties of molecular graph or network or chemical tree. An acyclic connected graph is called
a tree graph. The degree 3 or greater of every vertex of a tree is called the branching point of the tree.
A chemical tree is a connected acyclic graph having maximum degree 4. The first and second Zagreb
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index of star-like trees and sun-like graphs and also caterpillar trees containing the hydrocarbons,
especially ethane, propane, and butane, was studied and computed in Reference [1]. Imran et al. [2]
also computed the topological indices of fractal and cayley tree type dendrimers.

For any graph, G = (V, E) where V is be the vertex set and E to be the edge set of G. The degree
K (x) of vertex x is the amount of edges of G episode with x. A graph can be spoken by a polynomial,
a numerical esteem or by network shape.

In the present paper, we consider the topological indices of hex-derived networks which
are derived from a hexagonal graph that include molecular graphs of unbranched benzenoid
hydrocarbons [3]. Graphs of hexagonal systems consist of mutually fused hexagons. Since this
class of chemical compounds is attracting the great attention of theoretical chemists, the theory of the
topological index of the respective molecular graphs have been intensively developed in the last 4
decades. Benzenoid hydrocarbons are important raw materials of the chemical industry (used, for
instance, for the production of dyes and plastics) but are also dangerous pollutants [3-5]. A hexagonal
mesh was derived by Chen et al. [6]. A set of triangles made a hexagonal mesh, as shown in Figure 1.
No hexagonal mesh with dimension 1 exists. A composition of six triangles made a 2-dimensional
hexagonal mesh HX(2) (see Figure 1 (1)). By adding a new layer of triangles around the boundary
of HX(2), we have a 3-dimensional hexagonal mesh HX(3) (see Figure 1 (2)). Similarly, we formed
HX(n) by adding n layers around the boundary of each proceeding hexagonal mesh.

Drawing algorithm of HDN3 networks

Step-1: First, we draw a hexagonal network of dimension 7.

Step-2: Replace all K3 subgraphs into a planar octahedron POH once. The resulting graph is called an
HDNB3 (see Figure 2) network.

Step-3: From the HDN3 network, we can easily form THDN?3 (see Figure 3), RHDN3 (see Figure 4),
and CHDNB3 (see Figure 5).

(1) 2 )

Figure 1. Hexagonal meshes: (1) HX(2) , (2) HX(3), and (3), all facing HX(2).
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Figure 2. Hex-derived network of type 3 (HDN3(4)).
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Figure 3. Triangular hex-derived network of type 3 (THDN3(7)).

g

Figure 4. Rectangular hex-derived network of type 3 (RHDN3(4,4)).

Figure 5. Chain hex-derived network of type 3 (CHDN3(5)).

In this article, we consider G as a network, with V(G) as the set of vertices and edge set E(G);
the degree of any vertex p € V(G) is denoted by x(p).
The Estrada index is a graph—spectrum-based topological index, which is defined as [7]:

e, 1)

™=

EE(G) =
1

In full analogy with the Estrada index, Fath-Tabar et al. [8] proposed the Laplacian Estrada index,

which is defined as: ;

LEE(G) = ) el )
i=1

The Randi¢ index [9] was denoted by Ri% (G) and acquainted by Milan Randi¢ and written as:

G = )

' 3
sicE(c) VK(P)x(4) @)

Nl—=

The general Randi¢ index R,(G) is the sum of (x(p)x(4))* over all edges e = pj € E(G),
defined as:
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Ro(G)= ¥ (e(px(@) for a=1,2,~1,—. @)
P4EE(G)

Gutman and Trinajsti¢ were acquainted with a substantial topological index, which is the Zagreb
index denoted by M;(G) and formalised as:

M(G) =} (x(p)+x(d)) ®)

PIEE(G)
The augmented Zagreb index was presented by Furtula et al. [10], and it is defined as:
N 3
x(p)x(4)
AZI(G)= ) ( : (6)
pI€E(G) K(p) + K(q) -2
The harmonic index was presented by Zhong [11], and it is defined as:

HO = T (s ) %

sl (P +x(9)

The Atom-bond connectivity (ABC) index is one of the famous degree-based topological indices
denoted by Estrada et al. in Reference [12] and formalised as:

ABCG)= Y ’W ®)
PIEE(G) P

The Geometric-arithmetic (GA) index is another famous connectivity topological descriptor, which
was introduced by Vukicevi¢ et al. in Reference [13] and written as:

25
GAG = b )+ rld) ©)

By taking & = 1, the general Randi¢ index is the second Zagreb index for any graph G.

2. Main Results for Third Type of Hex-Derived Networks

Simonraj et al. [14] derived a new third type of hex-derived networks and found the metric
dimension of HDN3 and PHDN3. In this work, we discuss the newly derived third type of hex-derived
networks and compute the exact results for degree-based topological indices. At present, there is
an extensive research activity on these topological indices and their variants, see [15-26]. For basic
definitions and notations, see [27-31].

2.1. Results for Third Type of Hex-Derived Network HDN3(r)

In this section, we discuss the newly derived third type of hex-derived network and compute
the exact results for Randi¢, Zagreb, Harmonic, augmented Zagreb, atom—bond connectivity and
geometric-arithmetic indices for the very first time.

Theorem 1. Consider the hex-derived network of type 3 HDN3(n), the general Randi¢ index is equal to:
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12(777 + r(—1237 + 483r)), =1
6(72 + 84v/2 — 24+/5 + 8v/7 — 241/10
+3v/14 +2/70 + r(—113 — 108+/2

+12v/5(1 + V2) + (39 + 36v/2)r)), w=1;
Ro(HDN3(1)) = 4 (50921-77( 15256 8925r)) | y— 2_1,
37800 =L

%+6\/;+\f—18\f+7f 44+1
+(H + \/;—9\f+ﬁ)r+(5+3\f) , w=—1

Proof. Let G; be the hex-derived network of type 3, HDN3(r) shown in Figure 2, where r > 4. The
hex-derived network G; has 21r2 — 397 + 19 vertices, and the edge set of G; is divided into nine
partitions based on the degree of end vertices. The first edge partition E1(G;) contains 1872 — 367 + 18
edges pqg, where x(p) = x(§) = 4. The second edge partition E;(Gp) contains 24 edges pj, where
k(p) = 4 and «x(4) = 7. The third edge partition E3(G;) contains 36r — 72 edges pj, where x(p) = 4
and «(4) = 10. The fourth edge partition E4(G;) contains 3672 — 108r + 84 edges pg, where «(p) = 4
and «(4) = 18. The fifth edge partition E5(Gy) contains 12 edges pg, where «(p) = 7 and «(4) = 10.
The sixth edge partition E¢(Gy) contains 6 edges pg, where «(p) = 7 and x(4) = 18. The seventh edge
partition E;(G1) contains 6r — 18 edges pg, where «(p) = x(§) = 10, the eighth edge partition Eg(Gy)
contains 12r — 24 edges p4, where «(p) = 10 and x(4§) = 18, and the ninth edge partition E9(G)
contains 9% — 33r + 30 edges pg, where x(p) = x(4) = 18. Table 1 shows such an edge partition of G;.
Thus, from Equation (3), it follows that:

Table 1. Edge partition of hex-derived network of type 3 HDN3(r) based on degrees of end vertices of
each edge.

(xx,%y) where pj € E(G1) Number of Edges (%, «,) where pj € E(G1) Number of Edges

(4,4) 18r2 — 367 + 18 (7,18) 6

(4,7) 24 (10,10) 6r — 18
(4,10) 36r — 72 (10,18) 12r — 24
(4,18) 36r% — 108r + 84 (18,18) 9r2 — 33r + 30
(7,10) 12

Ru(Gr) =} (x(p)e(d))".

PIEE(Gr)
Fora =1
The general Randi¢ index R, (G1) can be computed as follows:

9
=) X (x(p)-x(4)
=1 pieE;(Gr)
Using the edge partition given in Table 1, we get:

Ri(G1) = 16|E1(G1)|+ 28|E2(G1)| +40[E3(G1)| + 72|E4(G1)| + 70[Es(Gr)| + 126|E6(G1)| +
100|E7(G1)| 4 180 Eg(G1)| + 324|E9(G1)|

— Ry(Gy) = 12(777 + r(—1237 + 483r)).

_ 1
Forzx—j

We apply the formula of Ry (Gq):
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Using the edge partition given in Table 1, we get:

(G1) = 4|E1(G1)| +2V7|E2(G1)| + 2V10|E3(Gy)| + 6V2|E4(G1)| + V70|Es(Gy) | +
2V14|E¢(Gi)| + 10| E7(G1)| + 6V5|Es(G1) | + 18|Eo(G1)|

Ry
2

(G1) = 6(72+84v2—24V5+8V7 —24V10 +3v14 +2V70 +
r(—113 — 108v/2 + 12v/5(1 + V2) + (39 4 36V/2)1)).

— R

1
2

Fora = —1
We apply the formula of Ry (Gq):

9
1
R_1(Gy) = Z

J=1 pGeE;(Gy) x(p) - x(d)

1 1 1 1 1

R_1(G) = E\El(Gl)\ + *|E2(Gl)| + *|E3(G1)| + *\54 G1)| + *|E5(G1)| +
1
126| 6(G1)| + 100|E7(Gl)| + 180|158(G1)| + 324\E9(G1)\

50921 + 7r(—15256 -+ 89257
— R(Gr) = ¢ (37800 ),

—_1
For o = o

We apply the formula of Ry (Gq):

9 1
R 1(Gy) = _
S A SW SV R
R (G1) = —|Ei(G)] + —=|Ea(Gr)| + ——|E(G1)| + —=|E4(Gr)| + —=E5(G1)| +
-3 1 \/41 1 1 2\/? 2 1 \/» 3 1 \/E 4 1 \/% 5 1
g Es(G)l + 35l G + = Es(G)| + g5 Eo(G)
= R_1(G1) = 135;)1—1—6\/34—\/3—18\/54—7\/5—;54-\1;—1—(?874-9 %—
2 2
9\f2+%)r+(5+3\f2)r
O

In the following theorem, we compute the first Zagreb index of hex-derived network G;.

Theorem 2. For hex-derived network Gy, the first Zagreb index is equal to:

M;(Gy) = 6(275 — 482r +21072).
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Proof. Let G; be the hex-derived network HDN?3(r). Using the edge partition from Table 1, the result
follows. The Zagreb index can be calculated using Equation (5) as follows:

9
Mi(G) = ) (c(p)+x(@)=) Y (x(p)+x(4))
PGEE(Gy) j=1p4eE;(Gr)
My (G1) = 8[Ei(G1)| + 11|Ex(G1)| + 14[E3(G1)| + 22| E4(G1)| + 17|E5(G1)| + 25[E6(G1) | +

20[E7(G1)[ + 28|Es(G1)| + 36| Eo(G1) -
By doing some calculations, we get:

— M;(G;) = 6(275 — 482r + 210?).
O

Now, we compute H, AZI, ABC, and GA indices of the third type of hex-derived network Gj.
Theorem 3. Let Gy be the third type of hex-derived network, then:

H(Gy) = 5822 + 5357(—4637 + 2730r);

° AZI(G ) 8(9690243075343773626+85169r(— 163548617818123+574300718050417))
3989115543655125

o ABC(G)) 6\f+\f+36 SV2(-3+7) +18,/8(~24 1) +2/B(~24 1) +9,/3 (-1 + 1)

%\/;(—2+r)(—5+3r) +2v10(7 +3(=3 +1)r);

o GA(G) = 30 + 967 + 361 + 2410 4 %V/5(-2+ 1) + BVIO(-2+ 1) +2/B(~2+ 1) +
9\/§(—1+r)2+é\g(—z+r)(—5+3r)+2\F(7+3(—3+r)r).

Proof. Using the edge partition given in Table 1, The Harmonic index can be calculated using
Equation (7) as follows:

o= ¥ (oimm) "L T (o)

J=1p4eE;(G1)

1 2 2

H(G) = 1|El(G1)|+*|Ez(G1|+ \Es Gy)|+ 1|E4(Gl)|+ﬁ|E5(G1)|+£\E6(G1)\+
1
E|E7(G1)|+ﬁ|Es(G1)|+E|E9(G1)|-

By doing some calculations, we get:

15959 1
= H(G1) = g5 + 5357 (—4637 +2730r).

The augmented Zagreb index can be calculated from Equation (6) as follows:

AZI(Gy) = Z>(M)3=i y )((()?()q)f

PIEE(Gy
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21952 1000 5832 2744
729 |E2(G1)| + —5 |E3(G1)| 15 |E4(G1)| + —55- |E5(G1)|

2000376 125000 729000 4251528
167 |E6(G1)| + 779 |E7( 1)|+ 2197 |Eg(G1)| + 1913

512
AZI(Gy) = W|E1(G1)| + =5

|E9 (G1)l.
By doing some calculations, we get:

8(9690243075343773626 + 85169r(—163548617818123 + 57430071805041r))

— AZI(Gy) = 3989115543655125

The atom-bond conectivity index can be calculated from Equation (8) as follows:

Kk(p) +x(4) —2 K(p) +x(4) —2
ABC(Gy) = k() +x4) =2 k(p) +x(d) —2
) ﬁqe§61> x(p) - x(d) ]Z%pqegzécl) x(p) - x(4)

ABC@) = /IG5 S BG4 Bl 3y S EsG) s Es(Gol +
BB+ B Gl + 3y oGl + 4y T el

By doing some calculations, we get:

= ABC(Gy) \[ \/ +—+ \f 3+r)+18\/§( 2+r)+2\/25—6

(=2+7) +9\E(—1 +r)2+% g(—2+r)(—5+37) +2v10

(7+3(=3+7)r).
The geometric—arithmetic index can be calculated from Equation (9) as follows:

GA(Gy) = Z 2v 2 Z 2/x(p)x(4)

PIEE(Gy) (x(p) +K( ) j=1 p4eE;(Gy) (x(p) +x(4))

By doing some calculations, we get:

GAG) = [EG|+ 2 el + 20 sl + 2V s G+ 2 s

6\F 3
— 5 1E6(G1)| + |E7(G1)| + —— f

|Es(G1)| +

|Es(G1)| + [Eo(G1)|

AR S NP

2\/§(—2+r) +9\/;(—1 +r)2+% g(—2+r)(—5+3r) -

2V10(7 4 3(=3 +1)r).
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2.2. Results for Third Type of Triangular Hex-Derived Network THDN3(r)

In this section, we calculate certain degree-based topological indices of a triangular hex-derived
network of type 3, THDN3(r) of dimension r. We compute general Randi¢ index R,(THDN3(r))
witha = {1, -1, %, —%}, My, H, AZI ABC, and GA indices in the coming theorems of THDN?3(r).

Theorem 4. Consider the triangular hex-derived network of type 3, THDN3(r), the general Randi¢ index is
equal to:

6(588 + r(—593 + 161r)), w=1;
3(4(25 + 18v2 — 9v/5 — 5/10) +

r(—61 — 60v/2 + 12+/5(1 + v/2) + (13 + 12v/2)r)), =1
2

R (THDN3(r)) = 247+ r(—3356+2975r)) f=—1:
10800 ’ -

53 5_ 3 107 _ 5 1 9
Zg+3lﬁz—3\ﬁ—5+(—éo—2+5+m)r+ 1
(5 + %)7’ ’ N = _z

Proof. Let G be the third type of a triangular hex-derived network of type 3, THDN3(r) shown in
Figure 3, where v > 4. The triangular hex-derived network G, has (772;2”%) vertices and the edge
set of G, is divided into six partitions based on the degree of end vertices. The first edge partition
E1(Gy) contains 312 — 6r + 9 edges pg, where x(p) = «(4) = 4. The second edge partition E(G;)
contains 187 — 30 edges pj, where «(p) = 4 and x(§) = 10. The third edge partition E3(G;) contains
6r> — 30r + 36 edges pg, where x(p) = 4 and x(4) = 18. The fourth edge partition E4(G,) contains
3r — 6 edges pg, where «(p) = x(4) = 10. The fifth edge partition E5(G;) contains 6r — 18 edges p{,
where «(p) = 10 and x(§) = 18, and the sixth edge partition E¢(G;) contains 3’2*2# edges pq,
where x(p) = x(4) = 18. Table 2 shows such an edge partition of G,. Thus, from Equation (3), it

follows that:

Table 2. Edge partition of a hex-derived network of type 3 HDN3(r) based on degrees of end vertices
of each edge.

(xx,%y) where p§ € E(G1) Number of Edges  (,,«,) where pj € E(G1) Number of Edges

(4/ 4) 37’2 —6r+ 9 (10, 10) 3r—6
(4,10) 187 — 30 (10,18) 6r — 18
(4,18) 6r2 — 30r + 36 (18,18) 32-21r+36

Ru(G2) =} (x(p)e(d))".

PIEE(Gy)
Fora =1
The general Randi¢ index R, (G;) can be computed as follows:

6
Ri(G)) =Y, Y (x(p) -x(q)).
=1 p4eE;(Ga)

Using the edge partition given in Table 2, we get:

Ri(G2) = 16|E1(Gy)|+40|E2(Go)| + 72|E3(Ga)| + 100|E4(G2)| + 180|Es(G2)| +
324|E¢(Gy)|

— R1(Gy) = 6(588 + r(—593 + 161r)).
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_ 1
Forzx—i

We apply the formula of Ry (G;):

Using the edge partition given in Table 2, we get:

(G2) = A4[E1(G2)| +2V10|E2(Gy)| + 6V2|E3(Gy)| + 10| E4(G2)| + 6V/5|Es5(Ga)| +

R;
2

18|E6(G2)|
= R1(G2) = 3(4(25+18v2—9v5-5V10) +r(~61 - 60v2 +12V5(1 + v2) +
(134 12Vv2)r)).
Foroa = —1

We apply the formula of Ry (G;):

6
1
R4(Gy) =)
J=1pdeEj(Gy) w(p) - x(d)
R1(Ga) = 1¢lEa(Ga)l+ g5lEa(Ga)l + o [Es(Ga)l + 1o |Es(Ga)] +
1(Gy) = 1(Gy 22723210042
180|-755(Gz)| 324|E6(G2)|
(2247 + r(—3356 + 2975r))
— Ra(G) = 10800 :
Forzx:—%
We apply the formula of Ry (G;):
SR p—
R_1(Gy) = T
: j=1p4eE;(Gy) x(p) - x(4)
1
R G = —|E1(Gy) E>(Go)| + E3(Gy)| + Ei(Gy)| +
_%( 2) \/1| 1(G2)| + 2f| 2(G2)| f' 3(Gy)| O| 1(Go)|
1
——|E5(G —O—fE G
107 5 1 9 5
— R 1(Gy) = —+3\f 3 A R S M

\ﬁ)r .

O

In the following theorem, we compute the first Zagreb index of the third type of triangular

hex-derived network Gs.
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Theorem 5. For the third type of triangular hex-derived network Gy, the first Zagreb index is equal to:
M;(Gy) = 6(78 +r(—101 + 357)).

Proof. Let G, be the triangular hex-derived network THDN3(r). Using the edge partition from
Table 2, the result follows. The first Zagreb index can be calculated using Equation (5) as follows:

6
Mi(G) = ) (c(p)+x(d@) =), Y, (x(p)+x(4))

P4EE(Gy) J=1p4eE;(Gy)
Mi(Ga) = 8|E1(Go)| + 14|E2(Ga)| + 17|E5(Ga)| + 20| E4(Ga)| + 28|E5(Ga)| +
36|Es(Ga)|-

By doing some calculations, we get:

— M;(Gy) = 6(78 + r(—101 + 357)).
O

Now, we compute the H, AZI, ABC, and GA indices of the third type of triangular hex-derived
network Gj.

Theorem 6. Let Gy be the third type of a triangular hex-derived network, then:

o H(G,) 2(1623+7r51g29097+9107));

_ (4(763447224726824+7r(—86975188744735+19143357268347r))) .
* AZI(Gy) = 327863527875 ’

o ABC(Gy) = 12\/@(73+7)+5\/ﬁ(f4+r)(73;:)%54(72+r)+60\/§(73+r)(72+r) n
36v/15(—5+3r) +45v45(3+(=2+1)r) .
30v2 !

e GA(Gy) =3+ BV5(-3+71)+3(—4+7r(-3+7r)+XV2(-3+7r)(-2+7r) —3r+3?+
12./10(—5 +37)).

Proof. Using the edge partition given in Table 2, The Harmonic index can be calculated using
Equation (7) as follows:

2 6 2
)= ﬁée;:cz) <’W’<(’7)> B J; PIEE;(Ga) <M)

1 1 1 1 1
H(Gy) = ;IE(G)| + Z|E2(Co)l + 37 [Es(Go)l + 15 Ea(Ga) | + 5 [Es(Ga) | +
1
15/ Fs(G2)|.
By doing some calculations, we get:

(1623 + 7r(—997 4 910r))

= H(Gy) = 4620
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The augmented Zagreb index can be calculated from Equation (6) as follows:

_ )@\ _¢ k(p) x(@)
AZIG) =}, (<>+<)) gy )<K<p>+x(q>—2>

PIEE(Gy)

512 1000 5832 125000
|51(G2)| + — |E2(G2)| 15 |E3(G2)| +

729000 4251528

AZI(Gy) =

By doing some calculations, we get:

— AZI(Gy) =

327863527875

The atom-bond connectivity index can be calculated from Equation (8) as follows:

() + x(d) 2 <(p) +x(d) -2
G, = MP)TrE) — 2 MP) T RME) — 4
A80G) = T @ ,Elpqe,;(cz) <) <@

ABC(Ge) = 33IEG + | lEG) + Sy BEGl + B
B Gl + 5y Dt

By doing some calculations, we get:

12v/65(=3 +7) +5v17(—4 + ) (=3 +7) + 54(—2 + 1) N

— ABC(Gp) = NG

60v/5(—3 +1)(—2 +r) +36v/15(—5 + 3r) + 45v/45(3 + (=2 +1)r)

(4(763447224726824 + 7r(—86975188744735 + 19143357268347r)))

30v/2

The geometric—arithmetic index can be calculated from Equation (9) as follows:

GA(Gy) = Z 2v x(4) Z 2 2/x(p)x(4)

picEGy) (K(P) +K ) (3 pickicy K +x(@d)

By doing some calculations, we get:

AGY) = [E(Go)|+ 2L Es(Go)l + EX2 Es(G)| + Ea(Go)| + 2L Es(Ga) +
Eo(G)
— GA(Gy) = 3+ f( 3+1)+ i(—4+r)(—3+r)+§\/§(—3+r)(—2+r)—

3r +3r% + 7M(—5 +3r)).

12 of 22
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2.3. Results of the Third Type of Rectangular Hex-Derived Network RHDN?3(r, s)

In this section, we compute certain degree-based topological indices of the third type of
rectangular hex-derived network RHDN3(r,s) of dimension r = s. We compute general Randi¢
index Ry(RHDN3(r)) with the w = {1,—1,4,—1}, My, H, AZI ABC, and GA indices in the coming
theorems of RHDN3(r,s).

Theorem 7. Consider the rectangular hex-derived network of type 3, RHDN3(r), the general Randi¢ index is
equal to:

4816 + 4r(—1508 + 483r), a=1;
2(159 + 144+/2 — 60+/5 + 8+/7 — 44+/10 + 3/14+
24/70 + 4(—37 — 36v/2 4+ 6+/5(1 + V/2))r+

) (39+36v2)r2), a=3;
R(RHDN3(r)) = (45825-+7r(—126624-8925r)) X = 2_1,
113400 4 - 4

8 2 1 2 2 1 4
§+2\/@+g\ﬁ—11\@+4ﬁ—32\/5+\7+
(B +6,/3-4v2+ 2B)r+ (3 + VD), «=-1

Proof. Let G3 be the rectangular hex-derived network of type 3, RHDN3(r) shown in Figure 4, where
r = s > 4. The rectangular hex-derived network G has 7r? — 12r + 6 vertices and the edge set of G3
is divided into nine partitions based on the degree of end vertices. The first edge partition E;(G3)
contains 612 — 12r + 10 edges pg, where x(p) = x(4) = 4. The second edge partition E,(G3) contains 8
edges pg, where k(p) = 4 and «(§) = 7. The third edge partition E3(G3) contains 24r — 44 edges p4,
where x(p) = 4 and x(4) = 10. The fourth edge partition E4(G3) contains 12r> — 48 + 48 edges p4,
where «(p) = 4 and «(4§) = 18. The fifth edge partition E5(G3) contains 4 edges pg, where x(p) =7
and «(4) = 10. The sixth edge partition E¢(G3) contains 2 edges pq, where x(p) = 7 and «(4) = 18.
The seventh edge partition E;(G3) contains 4r — 10 edges pg, where «(p) = «(4) = 10, the eighth
edge partition Eg(G3) contains 8 — 20 edges pg, where x(p) = 10 and x(§) = 18, and the ninth edge
partition Eg(Gs) contains 3r2 — 16r + 21 edges pg, where «(p) = x(§) = 18, Table 3 shows such an
edge partition of G3. Thus, from Equation (3), it follows that:

Table 3. Edge partition of rectangular hex-derived network of type 3, RHDN3(r) based on degrees of
end vertices of each edge.

(%x,%y) where pg € E(G1) Number of Edges (#,,«,) where pj € E(G1) Number of Edges

(4,4) 6r> —12r + 10 (7,18) 2

(4,7) 8 (10,10) 4r —10
(4,10) 24r — 44 (10,18) 8r —20
(4,18) 12r% — 487 + 48 (18,18) 3r2 —16r +21
(7,10) 4

Ru(Gs) =}, (x(p)x(d)"

PIeE(G3)
Fora =1
The general Randi¢ index R, (G3) can be computed as follows:

9
Ri(Ga) =) Y. (x(p) x(d))

j=1pdeE;(Gs)



Mathematics 2019, 7, 368

Using the edge partition given in Table 3, we get:

Ri(Gs) = 16|E1(Gs)| + 28|Ea(Gs)| +40[E3(G3)| + 72|E4(G3)| + 70|Es(Gs)| +

126|E6(G3)| + 100|E7(G3)| + 180|Eg(Gs)| + 324|E9(G3)|

— R1(G3) = 4816 + 4r(—1508 + 483r).

1
Foroc—2

We apply the formula of R, (G3):

9
Ry (G Z Z K(p) - ().
=1 pgeEs(

]

Using the edge partition given in Table 3, we get:

(Gs) = 4[E1(G3)| +2V7|Ex(Gs)| + 2V10|E3(Gs)| + 6V2|E4(Gs)| +
V70|E5(Gs)| +2V14|E¢(Gs)| + 10|E7(G3)| + 6v/5|E(G3)| +

Ry
2

18|E9(Gs3)|
= R, (Gs) = 2(159 4 144v/2 — 60v/5 + 8v/7 — 44/10 + 3v/14 +2/70 +
4(=37 = 36V2 +6V5(1 + V2))r + (39 + 36v2)r?).
Fora = —1

We apply the formula of Ry (G3):

D=y ¥

1= paetrics) *(P) < ()

1 1 1 1 1
R_1(G3) = E|51(G3)| + *\Ez(GS)\ + *|Es(GS)| + *|E4(G3)| + *\ES(GS)\ +
1
E
1og | E6(Ga)l + 100|E7(Ga)| + 180|158(G3)| + 324| 9(G3)|
_ (45825 +7r(~12662 + 8925r))
= R(Gs) = 113400
Fora = —%
We apply the formula of Ry (G3):

(Gs) = jﬁmcm +

1
V70
1
E|E9(G3)|

|E2(Gs)| + E3(G3)| +

1
2\/ﬁ| 3
1
|E6(G3)| + E\E7(G3)\ +

1 1
2V/7 672

1 1
E5(G3)| + —= —
[E5(Gs)l 314 65

|E4(Gs)| +

|Es(Gs)| +

14 of 22
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= R_;(Gs) = +2\/7 \f 11\[+4f22\/+

ﬁ+(i557+6\[ 4V2+4 - f)r+( +V2)r%.

O

In the following theorem, we compute the first Zagreb index of rectangular hex-derived
network Gs.

Theorem 8. For the third type of rectangular hex-derived network Gs, the first Zagreb index is equal to:
M;(G3) = 722 4 4r(—272 4+ 105r).

Proof. Let G3 be the hex-derived network RHDN3(r). Using the edge partition from Table 3, the
result follows. The Zagreb index can be calculated using Equation (5) as follows:

9
Mi(Gs)= ) (c(p)+x(d@) =), Y, (x(p)+x(4))

P4<E(G3) J=1p4€E;(Gs)
Mi(Gs) = B8|E1(Gs)| + 11|Ea(Gs)| + 14|E5(Gs)| + 22|E4(Gs)| + 17|E5(Gs) | +
25|E(Gs)| + 20| E7(Gs)| + 28|Es(Gs)| + 36/Eg(G3)|-

By doing some calculations, we get:

— M (Gz) = 722 + 4n(—272 + 105n).
m

Now, we compute the H, AZI, ABC, and GA indices of the third type of rectangular hex-derived
network Gs.

Theorem 9. Let Gj be the third type of rectangular hex-derived network, then:

H(G3) = 758 1 1 r(—1907 + 1365r);

o« AZI(Gy) = (8(17348684863407195591+85169n (—212237092026164+574300718050411))) .
11967346630965375 ;

o ABC(G3) = 135(2160V7 + 360v42 + 60v/322 + 2520/10(—2 + n)? + 756v/2(—5 + 2r) +
168v/130(—5 + 2r) + 5041/30(—11 + 67) + 70+/34(21 — 167 + 3r2) 4 630v/6(5 — 61 + 31r2));

o GA(Gy) = 21 + G20 | (2014 | (970) | 72 /5(_p 4 u)2 — 247 + 92 + 2/5(—5 + 2r) +
8V10(—11 + 6r).

Proof. Using the edge partition given in Table 3, The Harmonic index can be calculated using Equation
(7) as follows:
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1 2 1 1 2

H(G3) = 1|E1(G3)| + ﬁ!Ez(Ges)! + §|E3(G3)| + ﬁ\E4(G3)\ + ﬁ|E5(G3)| +
2 1 1 1
g|E6(G3)| + E|E7(G3)| + ﬁ|Es(Ga)| + E|E9(G3)|-

By doing some calculations, we get:

137558 1
oai7s T qo5" (1907 +13657).

The augmented Zagreb index can be calculated from Equation (6) as follows:

= H(G3) =

AZI(Gs) = ) )(wf:i L )(()()?;1))3

P4EE(Gs J=1pdeE;(Gs

512 21952 1000 5832
AZI(G3) = 7|E1(G3)|+ 79 |E2(G3)| + |E3(G3)|Jr 125

2744 2000376 125000
|ES(G3)|+ 12167 |E6(G3)| + -9 |E7(G3)| +

729000| ( )|+4251528
2197 788 4913

|E4(Gs)| +

|Eo(G3)]-

By doing some calculations, we get:

16 of 22

AZI =
= (Gs) 11967346630965375

The atom-bond connectivity index can be calculated from Equation (8) as follows:

ABC(Gy) — (P Fx(@) =2 _y x(p) +x(q) —2
) MEEz(Gs) x(p) - x(9) ];ﬁquQ) x(p) - x(9)

ABC(Gs) = 3[3IEG) + 5 Ba(Go)l + o o Bs(Go) |+ 3 3 Eu(Ga) +

3 1 /23 3 1 /13
\/ﬁ|E5(G3)|+§\/E|E6(G3)|+5\7|E7(G3)|+§\/E|ES(G3)|+

1 /17
g\/7|E9(G3)|-

By doing some calculations, we get:

— ABC(G3) = 1260(2160f+360f+60\/32 +2520V/10(—2 4 n)? +

756V/2(—5 + 2r) + 168v/130(—5 + 2r) + 504+/30(—11 + 67) +
70v/34(21 — 167 + 3r) + 630V/6(5 — 67 + 31%)).

The geometric—-arithmetic index can be calculated from Equation (9) as follows:

GA(G?,) _ Z 2\/ q i Z 2 K(ﬁ)"(’?)

- PAEE(Gs) (x(p) +x(4)) + (4)) j=1 p4eE(Gs) (k(p) +x(4))

(8(17348684863407195591 + 851691 (—212237092026164 + 574300718050411)))
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By doing some calculations, we get:

+ 4\[|E2(G3)| £|E3(Ga)| 6I|E4(G3)|

+3\f

A(Gs) = [E1(Gs)]

2\F 6\/7

———1E5(G3)| + —z—|E6(Gs)| + |E7(G3)| |Es(G3)| + [Eo(G3)|

(32v/7)  (12014)  (8v70) = 72
T 25 BV, +ﬁf2
5(—542r) + = W( 11+ 6r).

— GA(G3) = 21+ (=24 n)* —24r + 97> +

12

O

2.4. Results of the Third Type of Chain Hex-Derived Network, CHDN3(r)

In this section, we compute certain degree-based topological indices of the third type of chain
hex-derived network CHDNG3(r) of dimension r. We compute general Randi¢ index R,(CHDN3(r))
with thea = {1,—1,4,—1}, My, H, AZI ABC, and GA indices in the coming theorems of CHDN3(r).

Theorem 10. Consider the chain hex-derived network of type 3, CHDN3(r), the general Randi¢ index is
equal to:

336r — 160, v=1;

42-4V2+ (7 +6V2)r), a=1

R, (CHDNS3(r)) = 2
« =Y Laa+3sn), €= —1;
(10— 4v2+ (114 6V2)r), a=—1.

Proof. Let G4 be the chain hex-derived network of type 3, CHDN3(r) shown in Figure 5, where r > 2.
The chain hex-derived network G4 has 5r + 1 vertices, and the edge set of G4 is divided into three
partitions based on the degree of end vertices. The first edge partition E;(G4) contains 57 + 6 edges pd,
where x(p) = x(§) = 4. The second edge partition E;(G4) contains 6r — 4 edges pj, where x(p) = 4
and x(§) = 8, and the third edge partition E3(G4) contains r — 2 edges pg, where x(p) = x(4) = 8.
Table 4 shows such an edge partition of G4. Thus, from Equation (3), it follows that:

Table 4. Edge partition of chain hex-derived network of type 3, CHDN3(r) based on degrees of end
vertices of each edge.

(%x,%y) where pj € E(G1) Number of Edges

(4,4) 6r> —12r + 10
(4,8) 8
(8,8) 24r — 44

Ra(Ga) =} (x(p)e(d))".

P4€E(Gye)

Fora =1

The general Randi¢ index R, (Gy) can be computed as follows:

3
G)=) Y. (x(p) «(d).

J=1p4eE;(Gy)
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Using the edge partition given in Table 4, we get:
Ri(Gs) = 16[E1(Gy)| +32|Ex(Ga)| + 64 E3(Gy)|
= R1(Gy4) = 336r — 160.

_1
Forzx—z

We apply the formula of Ry (Gy):

Using the edge partition given in Table 4, we get:

Ri(Gs) = 4|E1(Gs)|+4V2|Ex(Gy)| + 8|E3(Gy)l

[Nl

(Gy) = 4(2-4V2+ (7+6V2)r).

= R

1
2

Fora = —1

We apply the formula of Ry (Gy):

1 1 1
R_1(Gy) = 1IE1(Ga)| + 35| E2(Ga)| + [ E5(Ga)l

1
= R_1(Gy) = @(14 + 337).

—_1
Fora = 7

We apply the formula of Ry (Gy):

3 1
R_1(Gs) = Y )

i1 pges(cy) VE(P) -1 (4)

R 1
2

(Gy) = \}4|E1(G4)| + 4\1&!52((34)’ + é|E3(G4)|

= R

(Gy) = %(10 — 42+ (114 6V2)7).

_1
2
O

In the following theorem, we compute the first Zagreb index of chain hex-derived network Gy.
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Theorem 11. For the third type of chain hex-derived network Gy, the first Zagreb index is equal to:
M (G4) = 32(—1 +4n).

Proof. Let G4 be the hex-derived network CHDN3(r). Using the edge partition from Table 4, the
result follows. The Zagreb index can be calculated using Equation (5) as follows:

3
Mi(Gy) = ), k(P +x@) =) Y («(p)+x(d)
PFEE(Ga) J=1 p4EE;(Gy)
My (Gy) = 8|E1(Gy)|+12|Ex(Gy)| 4 16[E3(Gy)].
By doing some calculations, we get:

- Ml(G4) = 32(—1 —|—41’l).
O

Now, we compute the H, AZI, ABC and GA indices of the third type of chain hex-derived
network Gy.

Theorem 12. Let Gy be the third type of rectangular hex-derived network, then:
¢« H(Gy) =5+ Br;

_ 512(—471102+874903r) .
° AZI(Gy) = 1157625 ;

e ABC(Gy) = §(V14(—2+7) +4v/5(—2+3r) + 2V/6(6 + 57));
® GA(Gy) =4+ 6r + 3v2(-2+37).

Proof. Using the edge partition given in Table 4, the Harmonic index can be calculated using Equation
(7) as follows:

]

HG) = ¥ (o) -

3
sicEGy) \K(P) +x(4) L

L (o)

H(Gs) = 4IEiGa)l+ gIEa(Ga)l + glEs(Ga)l

By doing some calculations, we get:

7 19

The augmented Zagreb index can be calculated from Equation (6) as follows:

5) - % (4 3 3 N (s 3

PGEE(Gy) J=1p4eE;(Gs)

512 4096 32768
AZI(Gy) = —5|Ei(Gy)|+ E|E2(G4)| + W\Ea(@N
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By doing some calculations, we get:

512(—471102 + 874903r)

= AZI(Gy) = 1157625

The atom-bond connectivity index can be calculated from Equation (8) as follows:

. (D)2 ¢ K+ rld)—2
ARG = L N TR m D H e\ )@

ABCG)) = 3G+ VB + 3y DIEsGl

By doing some calculations, we get:

— ABC(G;) = %(\/ﬂ(—2+r)+4ﬁ(—2+3r)+2\/6(6+5r)).

The geometric—arithmetic index can be calculated from Equation (9) as follows:

v 2@ ¢ NGOG
CAG= L G o) B gy, W) )

By doing some calculations, we get:

GA(Gy) = |E1(G4)|+¥|52(G4)|+|53(G4)|
— GA(Gy) = 4+6r+§\6(—2+3r).

O

20 of 22

For the comparison of topological indices numerically for HDN3, THDN3, RHDN3, and
CHDN3, we computed all indices for different values of r. From Tables 5-8, we can easily see

that all indices are in increasing order as the values of r increases.

The Zagreb and augmented Zagreb indices were found to occur for the computation of the total
rt-electron energy of molecules [30]. Thus, the total 7r-electron energy is in increasing order in the case

of all networks.

Table 5. Numerical computation of all indices for HDN3(r).

[r] R4 R% R_4 R_% M, H AZI ABC GA
4 42,684 4470.75 1649 8998 10,242 8241 64,64258  305.8 514.21
5 80,004 8120.25 2854 156.78 18,690 142.81 124,991 539.17  904.86
6 128916 12,848.69 43.89 242.08 29,658 219.76 204,958 838.37  1405.05
7 189420 18,656.07 62.55 345.86 43,146 313.26 304,543 1203.39 2014.77
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Table 6. Numerical computation of all indices for THDN3(r).

[1’] R1 R% R_1 R_% M1 H AZI ABC GA

4 4752 639.95 337 1735 1404 1636  5760.91 54.36 91.95
5 9888 120594 554 2919 2688 2726 13,046.93 9425 159.48
6 16,956 1951.75 826 44.10 4392 4092 23,602.69 14512 245.26
7 25956 287738 1153 6210 6516 4992 37,4282 20695 349.30

Table 7. Numerical computation of all indices for RHDN3(r).

[r] R, R% R_4 R_1 M; H AZI ABC GA

4 11,600 137742  6.09 32.32 3090 30.11 1557892 105.26 177.94
5 22956 2551.65 10.27 55.29 5782 51.08 32,923 184.05 310.57
6 38,176 408554 1555 8443 9314 77.56  56,206.57 284.78 479.72
7 57260 5979.54 2193 11972 13,686 109.56 87,229.60 407.45 685.38

Table 8. Numerical computation of all indices for CHDN3(r).

[T] Rl R% R_1 R_% M1 H AZI ABC GA

1184 23314 228 10.28 480 10.08 1339.46 28.04 46.86
1520 295.08 279 1272 608 1246 1726.42 3492 5851
1856 357.02 331 1516 736 14.83 211338 41.80 70.17
2192 41896 3.83 1759 864 1721 250033 48.69 81.83

N O Q1 =~

3. Conclusions

In this paper, we studied a newly formed third type of hex-derived networks, HDN3, THDN3,
RHDN3, and CHDN3. The exact results were computed for Randié, Zagreb, Harmonic, augmented
Zagreb, atom-bond connectivity, and geometric-arithmetic indices for the very first time of the third
type of hex-derived networks, and we also found the numerical computation for all the networks. As
these important results are helpful from many chemical points of view as well as for pharmaceutical
sciences, these results also provide the basis to understand the deep underlying topologies of the
above networks. In future, we are interested in computing the distance-based and counting-related
topological indices and polynomials for these networks. We are looking to find Estrada and L-Estrada
indices of edge-independent random graphs [32]. We also put forward computing topological indices
for random graphs in future.
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