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Abstract: In this paper, we investigate a delayed SEIQRS-V epidemic model for propagation of malicious
codes in a wireless sensor network. The communication radius and distributed density of nodes is
considered in the proposed model. With this model, first we find a feasible region which is invariant and
where the solutions of our model are positive. To show that the system is locally asymptotically stable,
a Lyapunov function is constructed. After that, sufficient conditions for local stability and existence of
Hopf bifurcation are derived by analyzing the distribution of the roots of the corresponding characteristic
equation. Finally, numerical simulations are presented to verify the obtained theoretical results and to
analyze the effects of some parameters on the dynamical behavior of the proposed model in the paper.
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1. Introduction

Malicious codes are harmful programs which reproduce themselves from one computer to others
without any user interaction [1–3]. Specially, they have the ability to transmit directly from device to device
through wireless technology such as Bluetooth or Wi-Fi. With the increasing rapid advent of wireless
technology and the Internet of Things, the threat from malicious codes have become increasingly serious.
According to 2017 Cybercrime Report [4], hundreds of thousands—and possibly millions—of people can
be hacked via their wirelessly connected and ‘The Big Data Bang’ is an IoT (Internet of Things) world that
will explode from 2 billion objects (smart devices which communicate wirelessly) in 2006 to a projected
200 billion by 2020 according to Intel. Thus, there has been an urgent need to investigate the malicious
propagation dynamics in wireless sensor networks especially in the aftermath of the Yahoo hack and
Equifax breach. In the past decades, some mathematical models describing malicious codes propagation
are proposed to study viruses’ behavior. For example, the classic epidemic models [5–9], the models with
graded infection rate [10–18], the stochastic models [19–23] and some other models [2,24–26].
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The common problem of the above models is that the characteristics of networks like communication
radius, and distributed density of nodes are not considered in models. Thus, computer virus models
considering the characteristics of networks have drawn the attention of scholars both at home and abroad.
In [27], Feng et al. formulated an improved SIRS epidemic model considering communication radius and
distributed density of nodes in wireless sensor network. In [28], Srivastava et al. proposed an SIDR model
for worm propagation in wireless sensor network and they considered the dead nodes, the communication
radius and node density in the proposed model. Nwokoye et al. [29,30] investigated an SEIRS-V worm
model with different forms. Ojha et al. [31] proposed a modified SIQRS worm propagation model by
introducing quarantined compartment into the model proposed by Feng et al. in [27]. Very recently,
based on the model proposed in [29,30,32], Nwokoye and Umeh [33] formulated the following modified
SEIQRS-V epidemic model for propagation of malicious codes in wireless sensor network:

dS(t)
dt = A− βσπr2

L2 S(t)I(t)− (d1 + ρ)S(t)

+ϕR(t) + εV(t),

dE(t)
dt = βσπr2

L2 S(t)I(t)− d1E(t)− θE(t),

dI(t)
dt = θE(t)− (d1 + d2 + η1 + α)I(t),

dQ(t)
dt = αI(t)− (d1 + d2 + η2)Q(t),

dR(t)
dt = η1 I(t) + η2Q(t)− (d1 + ϕ)R(t),

dV(t)
dt = ρS(t)− (d1 + ε)V(t),

(1)

where S(t), E(t), I(t), Q(t), R(t) and V(t) denote the numbers of the susceptible, exposed, infectious,
quarantined, recovered, and vaccinated nodes at time t, respectively. A is the entering rate of nodes into
the sensor network; d1 is the death rate of the nodes due to hardware or software failure; d2 is the death
rate due to attack of of malicious codes; r is the communication radius of the nodes; L× L is the area in
which the nodes distributed; β is the contact rate of the infectious nodes; σ is the distribution density of
nodes; ρ, ϕ, ε, θ, η1 and η2 are the state transition rates.

When malicious codes spread in networks, there are different forms of delay, including immunity
period delay, latent period delay, cleaning-virus period delay etc. In [34], Keshri and Mishra considered a
dynamic model on the transmission of malicious signals in wireless sensor network with latent period
delay and the temporary immunity period delay. They showed that the two delays play a positive role
in controlling a malicious attack. In [35], Zhang and Bi investigated the Hopf bifurcation of a delayed
computer virus model with the effect of external computers by using the latent period delay as the
bifurcation parameter. Zhao and Bi studied a delayed SEIR computer virus spreading model with limited
anti-virus ability and analyzed the effect of the cleaning-virus period delay on the model [36]. In [37], Chai
and Wang analyzed the Hopf bifurcation of a delayed SEIRS epidemic model with vertical transmission in
network by taking the different combinations of the latent period delay and the temporary immunity period
delay as the bifurcation parameter. In [38], Dai et al. proposed a delayed computer virus propagation
model with saturation incidence rate and temporary immunity period delay and studied stability and
Hopf bifurcation.

Motivated by the work about delayed computer virus models in [34–38], we incorporate the latent
period delay into system (1) and obtain the following delayed SEIQRS-V epidemic model for propagation
of malicious codes in wireless sensor network:
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

dS(t)
dt = A− βσπr2

L2 S(t)I(t)− (d1 + ρ)S(t),

+ϕR(t) + εV(t),

dE(t)
dt = βσπr2

L2 S(t)I(t)− d1E(t)− θE(t− τ),

dI(t)
dt = θE(t− τ)− (d1 + d2 + η1 + α)I(t),

dQ(t)
dt = αI(t)− (d1 + d2 + η2)Q(t),

dR(t)
dt = η1 I(t) + η2Q(t)− (d1 + ϕ)R(t),

dV(t)
dt = ρS(t)− (d1 + ε)V(t),

(2)

subject to the initial conditions S(θ) = φ1(θ) > 0, E(θ) = φ2(θ) > 0, I(θ) = φ3(θ) > 0, Q(θ) = φ4(θ) > 0,
R(θ) = φ5(θ) > 0, V(θ) = φ6(θ) > 0, θ ∈ [−τ, 0), φi(0) > 0, i = 1, 2, 3, 4, 5, 6, and τ is the latent period
delay of malicious codes.

The structure of this paper is as follows. In the next section, it is shown that the solution of system (2)
is positive and bounded in a feasible region R̄, which is invariant. In Section 3, the condition for local
asymptotical stability is examined by constructing a suitable Lyapunov functional. Section 4 deals with
local stability and existence of Hopf bifurcation. Some numerical simulations are carried out to illustrate
the obtained theoretical results and effect of some parameters on behaviors of the model in Section 5.
The paper finally ends with conclusion in Section 6.

2. Positivity and Boundedness

In this section we shall discuss about the positivity and boundedness of solution of the system (2).
For this we assume the function V̄ as:

V̄(t) = S(t) + E(t) + I(t) + Q(t) + R(t) + V(t). (3)

Taking the derivative of (3) and using (2) we get,

˙̄V(t) = A− d1S(t)− d1E(t)− (d1 + d2)(I(t) + Q(t))− d1R(t)− d1V(t), (4)

where S(t), E(t), I(t), Q(t), R(t), V(t) ≥ 0.
If E(t) = 0, I(t) = 0, Q(t) = 0, R(t) = 0 and V(t) = 0 from (4) we get

lim
t→∞

sup V̄(t) ≤ A
d1

. (5)

Also, if V̄(t) > A
d1

then ˙̄V(t) < 0. Therefore, we get 0 < V̄ ≤ A
d1

, i.e., we get a feasible region R̄ as

R̄ = {(S(t), E(t), I(t), Q(t), R(t), V(t)) ∈ R6 : 0 < S(t) + E(t) + I(t) + Q(t) + R(t) + V(t) ≤ A
d1
}.

Thus we see that the solution of system (2) is bounded and independent of the initial condition. So
the feasible region R̄ is an invariant set. Also, as A > 0, d1 > 0, A

d1
> 0, i.e., the feasible region R̄ is positive.

Hence all solutions of system (2) will come to the field R̄ or will remain in R̄.
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3. Lyapunov Stability Analysis

In this section the linear stability of the system (2) has been discussed by constructing a suitable
Lyapunov functional given in Equation (7). By direct computation, it can be concluded that if the basic
reproduction number

R0 =
Aπr2βθσ(d1 + ε)

L2d1(d1 + θ)(d1 + ε + ρ)(d1 + d2 + α + η1)
> 1,

then, system (2) has a unique endemic equilibrium P∗(S∗, E∗, I∗, Q∗, R∗, V∗), where

S∗ =
L2(d1 + θ)(d1 + d2 + α + η1)

βθσπr2 ,

E∗ =
(d1 + ϕ)(d1 + d2 + η2)(d1 + d2 + α + η1)[A− S∗d1(d1 + ε + ρ)/(d1 + ε)]

αη2 ϕθ + (d1 + d2 + η2)[(d1 + θ)(d1 + ϕ)(d1 + d2 + α + η1)− θϕη1]
,

I∗ =
θE∗

d1 + d2 + α + η1
, Q∗ =

αI∗
d1 + d2 + η2

, R∗ =
η1 I∗ + η2Q∗

d1 + ϕ
, V∗ =

ρS∗
d1 + ε

.

For this let u1(t) = S(t) − S∗, u2(t) = E(t) − E∗, u3(t) = I(t) − I∗, u4(t) = Q(t) − Q∗, u5(t) =

R(t)− R∗ and u6(t) = V(t)−V∗, then the system (2) transform into

du1(t)
dt = −α11u1 − α12u3 + φu5 + εu6,

dp1(t)
dt = α21u1 − (d1 + θ)u2 + α12u3,

dp2(t)
dt = θu2 − (d1 + d2 + η1 + α)u3,

du4(t)
dt = αu3 − (d1 + d2 + η2)u4,

du5(t)
dt = η1u3 + η2u4 − (d1 + φ)u5,

du6(t)
dt = ρu1 − (d1 + ε)u6,

(6)

where p1(t) = u2 − θ
∫ t

t−τ u2(s)ds, p2(t) = u3 + θ
∫ t

t−τ u2(s)ds, α11 = d1 + ρ + α21, α12 = βσπr2S∗

L2 ,

α21 = βσπr2 I∗

L2 .
Now, following the steps as in [39], we shall check the stability of the system by assuming a suitable

Lyapunov function w(u)(t) as follows:

w(u)(t) = ∑(kiwj(u)(t)), (7)

where ki, i = 1, · · · , 21 are given in Appendix A and wj(u)(t), j = 1, · · · , 21 are given in Appendix B.
As all the parameters are assumed positive and chosen in such a way that ki > 0, i = 1, · · · , 21 and

w(u)(t) > 0. Taking the derivative of Equation (7), and using Equation (6) we get

d
dt

w(u)(t) ≤ (∑ Λiu2
j ), i = 1, · · · , 6; j = 1, · · · , 6. (8)

where expression for Λi, i = 1, · · · , 6 are given in Appendix C.
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Theorem 1. If the value of the delays τ satisfy the conditions Λi < 0, i = 1, · · · , 6 then the endemic equilibrium
point P∗(S∗, E∗, I∗, Q∗, R∗, V∗) of system (2) is locally asymptotically stable. Otherwise if any one of
Λ′is(i = 1, 2, · · · , 6.) becomes positive then the system will be unstable.

Proof of Theorem 1. Let Λ = max{Λi, i = 1, · · · , 6}. Then for t > T, from Equation (8) we get w(u)(t) +
Λ
∫ t

T(∑ u2
i (s))ds ≤ w(u)(T), i = 1, · · · , 6 for t ≥ T, implies ∑ u2

i ∈ L1[T, ∞], i = 1, · · · , 6. It is easy to
conclude from (6) and the boundedness of u(t) that ∑ u2

i (t)(i = 1, · · · , 6) is uniformly continuous. Using
Barbalat’s lemma in [38], we can say that

lim
t→∞
{∑ u2

i , i = 1, · · · , 6} = 0. (9)

So the internal solution of Equation (6) as well as solutions of system (2) is asymptotically stable,
i.e., the endemic equilibrium P∗ of system (2) is locally asymptotically stable. Hence, this completes
the proof.

We remark that as Λi, i = 1, · · · , 6 depends on the delay τ and the local stability condition for P∗ of
the system (2) is preserved for small τ satisfying Λi < 0, i = 1, · · · , 6.

4. Existence of Hopf Bifurcation

The characteristic equation at the endemic equilibrium P∗ can be obtained as follows

λ6 + U5λ5 + U4λ4 + U3λ3 + U2λ2 + U1λ + U0

+ (V5λ5 + V4λ4 + V3λ3 + V2λ2 + V1λ + V0)e−λτ = 0, (10)

with

U0 = α22α33α44α55(α11α66 + α16α61),

U1 = −[α16α61(α22α33(α44 + α55) + α44α55(α22 + α33))

+α11α22α33(α44α55 + α44α66 + α55α66)

+α44α55α66(α11α22 + α11α33 + α22α33)],

U2 = (α11α22 + α11α33 + α22α33)(α44α55 + α44α66 + α55α66)

+α11α22α33(α44 + α55 + α66) + α44α55α66(α11 + α22 + α33)

+α16α61(α22α33 + α44α55 + (α22 + α33)(α44 + α55)),

U3 = −[α16α61(α22 + α33 + α44 + α55) + α11α22α33 + α44α55α66

+(α11 + α22 + α33)(α44α55 + α44α66 + α55α66)

+(α44 + α55 + α66)(α11α22 + α11α33 + α22α33)],

U4 = α16α61 + α11α22 + α11α33 + α22α33

+α44α55 + α44α66 + α55α66

+(α11 + α22 + α33)(α44 + α55 + α66),

U5 = −(α11 + α22 + α33 + α44 + α55 + α66),

V0 = α21α66β32(α16 − α15)(α43α54 + α44α53)

+α44α55(α16α33α61β22 + α13α21α66β32 + α11α33α66β22),
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V1 = α21β32(α16 − α15)(α43α54 + α44α53)

−α21α53β32(α44 + α66)(α15 − α16)

−α16α61β22(α33α44 + α33α55 + α44α55)

−α13α21β32(α44α55 + α44α66 + α55α66),

−β22[α11α33α44(α55 + α66) + α11α55α66(α33 + α44) + α33α44α55α66],

V2 = (α16α61β22(α33 + α44 + α55) + α13α21β32(α44 + α55 + α66))

+α21α53β32(α16 − α15)

+β22[α33α44(α55 + α66) + α55α66(α33 + α44)]

+α11β22[α33α44 + α55α66 + (α33 + α44)(α55 + α66)],

V3 = −[α11β22(α33 + α44 + α55 + α66) + α13α21β32 + α16α61β22

+β22(α33α44 + α55α66 + (α33 + α44)(α55 + α66))],

V4 = β22(α11 + β22 + α33 + α44 + α55 + α66), V5 = −β22,

α11 = −( βσπr2

L2 I∗ + d1 + ρ),

α13 = − βσπr2

L2 S∗, α15 = ϕ, α16 = ε,

α21 =
βσπr2

L2 I∗, α22 = −d1,

α23 =
βσπr2

L2 S∗, β22 = −θ,

α33 = −(d1 + d2 + η1 + α), β32 = θ,

α43 = α, α44 = −(d1 + d2 + η2),

α53 = η1, α54 = η2,

α55 = −(d1 + ϕ), α61 = ρ,

α66 = −(d1 + ε).

To guarantee the existence of Hopf bifurcation of system (2), we need some assumptions and they are
listed in the following for clarity.

Assumption (H1):

D1 = U00 > 0, (11)

D2 =

∣∣∣∣∣ U05 1
U0 U04

∣∣∣∣∣ > 0 (12)

D3 =

∣∣∣∣∣∣∣
U05 1 0
U03 U04 U05

U01 U02 U03

∣∣∣∣∣∣∣ > 0, (13)

D4 =

∣∣∣∣∣∣∣∣∣
U05 1 0 0
U03 U04 U05 1
U01 U02 U03 U04

0 U00 U01 U02

∣∣∣∣∣∣∣∣∣ > 0, (14)
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D5 =

∣∣∣∣∣∣∣∣∣∣∣

U05 1 0 0 0
U03 U04 U05 1 0
U01 U02 U03 U04 U05

0 U00 U01 U02 U03

0 0 0 U00 U01

∣∣∣∣∣∣∣∣∣∣∣
> 0, (15)

where

U00 = U0 + V0, U01 = U1 + V1,

U02 = U2 + V2, U03 = U3 + V3,

U04 = U4 + V4, U05 = U5 + V5.

Assumption (H2):
Equation (16) has at least one positive root ν0,

ν6 + U15ν5 + U14ν4 + U13ν3 + U12ν2 + U11ν + U10 = 0, (16)

where

U10 = U2
0 −V2

0 ,

U11 = U2
1 − 2U0U2 + 2V0V2 −V2

1 ,

U12 = U2
2 + 2U0U4 + 2U1U3 + 2V1V3 −V2

2 − 2V0V4,

U13 = U2
3 + 2U1U5 − 2U0 − 2U2U4 + 2V1V5 + 2V2V4 −V2

3 ,

U14 = U2
4 + 2U2 − 2U3U5 + 2V3V5 −V2

4 ,

U15 = U2
5 − 2U4 −V2

5 .

Assumption (H3):
g′(ν0) 6= 0, where g(ν) = ν6 + U15ν5 + U14ν4 + U13ν3 + U12ν2 + U11ν + U10.

Theorem 2. For system (2), if the conditions (H1)-(H3) hold, then P∗(S∗, E∗, I∗, Q∗, R∗, V∗) is locally
asymptotically stable when τ ∈ [0, τ0); system (2) undergoes a Hopf bifurcation at P∗(S∗, E∗, I∗, Q∗, R∗, V∗)
when τ = τ0 and τ0 is defined as in Equation (21).

Proof of Theorem 2. When τ = 0, Equation (10) becomes

λ6 + U05λ4 + U04λ4 + U03λ3 + U02λ2 + U01λ + U00 = 0, (17)

Obviously, U05 = U5 + V5 = βσπr2

L2 I∗ + α + ϕ + ε + θ + ρ + η1 + η2 > 0. Thus, according to the
Hurwitz criterion, it can be concluded that system (2) is locally asymptotically stable when τ = 0, if the
following the condition (H1) holds.

For τ > 0, let λ = iω(ω > 0) be a root of Equation (10). Then,{
(V5ω5 −V3ω3 + V1ω) sin τω + (V4ω4 −V2ω2 + V0) cos τω = ω6 −U4ω4 + U2ω2 −U0,

(V5ω5 −V3ω3 + V1ω) cos τω− (V4ω4 −V2ω2 + V0) sin τω = U3ω3 −U5ω5 −U1ω.
(18)
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Thus, one can obtain

ω12 + U15ω10 + U14ω8 + U13ω6 + U12ω4 + U11ω2 + U10 = 0, (19)

Let ω2 = ν, then, Equation (19) becomes

ν6 + U15ν5 + U14ν4 + U13ν3 + U12ν2 + U11ν + U10 = 0. (20)

If the condition (H2) holds, then, Equation (19) has one positive root ω0 =
√

ν0 such that Equation (10)
has a pair of purely imaginary roots ±iω0. From Equation (21), we obtain

τ0 =
1

ω0
× arccos

{
G1(ω0)

G2(ω0)

}
, (21)

with

G1(ω0) = (V4 −U5V5)ω
10
0 + (U5V3 −U3V5 −U4V4 −V2)ω

8
0

+(U2V4 + U4V2 −U1V5 −U3V3 −U5V1 + V0)ω
6
0

+(U1V3 + U3V1 −U0V4 −U2V2 −U4V0)ω
4
0

+(U0V2 + U2V0 −U1V1)ω
2
0 −U0V0,

G2(ω0) = V5ω10
0 + (V2

4 − 2V3V5)ω
8
0 + (V2

3 + 2V1V5 − 2V2V4)ω
6
0

+(V2
2 + 2V0V4 + 2V1V3)ω

4
0 + (V2

1 − 2V0V2)ω
2
0 + V2

0 .

Differentiating both sides of Equation (10) with respect to τ yields[
dλ

dτ

]−1

= − (6λ5 + 5U5λ4 + 4U4λ3 + 3U3λ2 + 2U2λ + U1)

λ(λ6 + U5λ5 + U4λ4 + U3λ3 + U2λ2 + U1λ + U0)

+
5V5λ4 + 4V4λ3 + 3V3λ2 + 2V2λ + V1

λ(V5λ5 + V4λ4 + V3λ3 + V2λ2 + V1λ + V0)
− τ

λ
.

Further,

Re
[

dλ

dτ

]−1

τ=τ0

=
g′(ν0)

G2(ω0)
.

Obviously, if the condition (H3) is satisfied, then Re[ dλ
dτ ]
−1
τ=τ0

6= 0. Based on the discussion above and
the Hopf bifurcation theorem in [40], Theorem 2 can be proved.

5. Numerical Simulations

In this section, we present some numerical simulations to support our obtained theoretical results.
Choosing A = 1000, β = 0.009, σ = 0.5, r = 1, L = 10, d1 = 0.05, ρ = 0.65, ϕ = 0.05, ε = 0.55, θ = 0.45,
d2 = 0.035, η1 = 0.35, α = 0.1 and η2 = 0.07, then Equation (2) becomes
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

dS(t)
dt = 1000− 1.4130e− 004S(t)I(t)

−0.7S(t) + 0.05R(t) + 0.55V(t),

dE(t)
dt = 1.4130e− 004S(t)I(t)− 0.05E(t)− 0.45E(t− τ),

dI(t)
dt = 0.45E(t− τ)− 0.535I(t),

dQ(t)
dt = 0.1I(t)− 0.155Q(t),

dR(t)
dt = 0.35I(t) + 0.07Q(t)− 0.1R(t),

dV(t)
dt = 0.65S(t)− 0.6V(t),

(22)

from which one can obtain R0 = 2.2819 > 1 and the unique endemic equilibrium P∗(4207, 1663.8,
1399.5, 902.9032, 5530.3, 4557.6). It can be verified that system (22) is locally asymptotically stable
when τ = 0.

For τ = 0, by some computations with the aid of Matlab software package, we obtain ω0 = 0.0558,
τ0 = 13.1047 and g′(ν0) = 0.0029 > 0. Thus, the conditions for existence of Hopf bifurcation are
satisfied. Based on Theorem 1, we can see that P∗(4207, 1663.8, 1399.5, 902.9032, 5530.3, 4557.6) is locally
asymptotically stable when τ ∈ [0, τ0 = 13.1047). This can be shown as in Figure 1. However, P∗(4207,
1663.8, 1399.5, 902.9032, 5530.3, 4557.6) will lose its stability when the value of τ passes through the critical
threshold τ0, a Hopf bifurcation occurs, which can be seen from Figure 2. The bifurcation phenomenon
can be also illustrated by the bifurcation diagrams in Figure 3. In what follows, we are interested to study
the effect of some other parameters on the dynamics of system (22).

(i) Effect of η1 and η2: In Figure 4, we can see that the number of infectious nodes decreases when the
values of η1 and η2 increase. And the system changes its behavior from limit cycle to stable focus as we
increase the value of η1 and η2, which can be shown as in Figure 5.

(ii) Effect of ϕ and ε: In the same manner, we can see from Figures 6 and 7 that the number of infectious
nodes increases when the values of ϕ and ε increase. Also, we observe that system changes its behavior
from stale focus to limit cycle as we increase the value of ϕ and ε.

(iii) Effect of r and L: As is shown in Figures 8 and 9, the number of infectious nodes increases
when the value of r increases and the value of L decreases. In other words, as the density of sensor node
increases, the number of infectious nodes increases. In addition, r and L effect the dynamic behavior of
system (22) when their value changes. That is, system changes its behavior from stable focus to limit cycle
as we increase the value of r and decrease the value of L.

In addition, in the presence of delay, the Lyapunov exponents (LE) have been derived numerically.
For a non zero value of τ, LE for different species have been plotted in Figure 10. As all LEs are negative,
then the system is stable.
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Figure 1. Time plots of S, E, I, Q, R and V with τ = 12.85 < τ0 = 13.1047.
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Figure 2. Time plots of S, E, I, Q, R and V with τ = 13.75 > τ0 = 13.1047.
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(c) (d)

(e) (f)

Figure 3. Bifurcation diagram with respect to time delay of system (22): (a) S − τ, (b) E − τ, (c) I − τ,
(d) Q− τ, (e) R− τ, (f) V − τ.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
600

800

1000

1200

1400

1600

1800

2000

2200

Time t

I(
t)

η
1
=0.35,η

2
=0.07

η
1
=0.36,η

2
=0.08

η
1
=0.38,η

2
=0.1

Figure 4. Time plots of I for different η1 and η2 at τ = 12.85.
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Figure 5. Dynamic behavior of system (22): projection on I-Q-R for different η1 and η2 at τ = 13.75.
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6. Discussion and Conclusions

In this paper, we present a delayed SEIQRS-V epidemic model for propagation of malicious codes in
wireless sensor network based on the work in [32] by incorporating the latent period delay of malicious
codes. As stated in [41], one of the significant features of malicious codes is their latent characteristics,
which implies that the nodes are infected at time t− τ and they are surviving in the latent period τ and
then become infective at time t. In addition, too large time delay may lead to large number of infected
nodes, because of which malicious codes propagation persists in the system. Therefore, compared with the
model proposed in [33], the delayed model in our paper is more general. It should be also pointed out that
there are some proposed epidemic models for propagation of malicious code in a wireless sensor network
such as the models in [5,6,9,42,43], but the authors did not consider the characteristics of networks like
communication radius and distributed density of nodes in wireless sensor network.

We first find a feasible region which is invariant and where the solutions of our model are positive
and the Lyapunov exponent stability is analyzed by constructing a Lyapunov functional. Then, the critical
value of time delay τ0 at which a Hopf bifurcation occurs is obtained by choosing the delay as the
bifurcating parameter. It is found that when the time delay is suitably small (τ ∈ [0, τ0)), system (2) is
locally asymptotically stable. In this case, the propagation of malicious codes can be controlled easily.
However, once the value of the time delay passes through the critical value τ0, system (2) loses its stability
and a family of periodic solutions bifurcate from the endemic equilibrium of system (2). In this case,
the propagation of malicious codes will be out of control.

Also, the effects of some crucial parameters on dynamics of system (2) are studied by numerical
simulations. As the values of η1 and η2 increase, the number of infectious nodes decreases and system (22)
changes its behavior from limit cycle to stable focus as we increase the value of η1 and η2, it is strongly
recommended that users of the wireless sensor network should periodically run antivirus software of the
newest version, so that the propagation of malicious codes can be controlled. This phenomenon can also
be illustrated by the effects of ϕ and ε on dynamics of the system. In addition, the number of infectious
nodes increases when the density of the sensor node increases. Thus, it can be concluded that the manager
of the wireless sensor network should control the number of nodes connected to the network properly.
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Appendix A

k1 = k4 = 2k5 = 3k6 =
τ

2
(−α12 + 4α21 − 2α11 − 3d1 − 2d2 + α12 + 2ρ) ,

k2 = k3 = 2k8 = k7 = k10 =
3τ

2
(φ + ε + α12 + 3ρ− 3α11 − 6d1 + α− d2 − α21 + η1 − θ) ,

k9 = k11 = 2k12 = τ (2α + 2ε− α12 − 4d1 − d2 − 2η2) ,

k13 = 3k14 = 2k15 = k19 = 2k20 = 2η1 + φ + ε− 2α12 − d1

k16 = k17 = 2k18 = k21 = 2η2 + 2ε + 3φ.
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Appendix B

w1(u)(t) = u2
1(t),

w2(u)(t) = p2
1(t) + θ(d1 + θ − 2α12)

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w3(u)(t) = p2
2(t) + θ(θ − d1 − d2 − η1 − α)

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w4(u)(t) = u2
4(t), w5(u)(t) = u2

5(t), w6(u)(t) = u2
6(t),

w7(u)(t) = u1(t)p1(t) +
θ(α11 + α12 − φ− ε)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w8(u)(t) = u1(t)p2(t) +
θ(ε + φ− α12 − α11)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w9(u)(t) = u1(t)u4(t), w10(u)(t) = u1(t)u5(t), w11(u)(t) = u1(t)u6(t),

w12(u)(t) = p1(t)p2(t) +
θ(α12 + α21 + α− 2θ + d2 + η1)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w13(u)(t) = p1(t)u4(t) +
θ(d1 + d2 + η2 − α)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w14(u)(t) = p1(t)u5(t) +
θ(d1 + φ− η2 − η1)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w15(u)(t) = p1(t)u6(t) +
θ(d1 + ε− ρ)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w16(u)(t) = p2(t)u4 +
θ(α− d1 − d2 − η2)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w17(u)(t) = p2(t)u5 +
θ(η1 + η2 − d1 − φ)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w18(u)(t) = p2(t)u6 +
θ(ρ− d1 − ε)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w19(u)(t) = u4(t)u5(t), w20(u)(t) = u4(t)u6(t), w21(u)(t) = u5(t)u6(t).

Appendix C

Λ1 = −2α11k1 − θα21τk2 + k7

(
α21 +

θα11τ

2

)
− α11θτ

2
k8 + ρk11 +

α21θτ

2
k12 −

ρθτ

2
k15 +

ρθτ

2
k18,

Λ2 = k2(2θ(d1 + θ)τ − 2d1 − 2θ − 2θα12τ) + k3(2θ2τ − θτ(d1 + d2 + η1 + α))

+k7
τθ(α11 + α12 − φ− ε)

2
+ k8

τθ(−α11 − α12 + φ + ε)

2

+k12{θ +
τθ(α12 + α21 + α− 4θ + d2 + η1 − d1)

2
}+ k13

τθ(d1 + d2 + η2 − α)

2

+k14
τθ(d1 + φ− η1 − η2)

2
+ k15

τθ(d1 + ε− ρ)

2
+ k16

τθ(α− d1 − d2 − η2)

2

+k17
τθ(η1 + η2 − d1 − φ)

2
+ k18

τθ(ρ− d1 − ε)

2
,
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Λ3 = −θτα12k2 − (2 + τθ)(d1 + d2 + α + η1)k3 + k7
τθα12

2
− k8

(
α12 +

α12τθ

2

)
+k12

(
α12 +

τθ(d1 + d2 + η1 + α + α12)

2

)
− αθτk13 −

η1θτ

2
k14

+k16

(
α +

αθτ

2

)
+ k17

(
η1 +

η1θτ

2

)
,

Λ4 = −2(d1 + d2 + η2)k4 −
τθη2

2
k14 −

(d1 + d2 + η2)τθ

2
k16 +

τθη2

2
k17 + η2k19,

Λ5 = −2(d1 + φ)k5 −
τθφ

2
k7 +

τθφ

2
k8 +

τθ(d1 + φ)

2
k14 −

τθ(d1 + φ)

2
k17,

Λ6 = −2(d1 + ε)k6 −
τθφ

2
k7 +

τθε

2
k8 + εk11 + k15

(
ε +

τθ(d1 + ε)

2

)
− τθ(d1 + ε)

2
k18.
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