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Abstract: This paper addresses the modelling of Ambartsumian equation using the conformable
derivative as an application of the theory of surface brightness in astronomy. The homotopy
perturbationmethod is applied to solve this model, where the approximate solution is given in
terms of the conformable derivative order and the exponential functions. The present solution
reduces to the corresponding one in the relevant literature as a special case. Moreover, a rapid rate of
convergence has been achieved for the obtained approximate solutions. Furthermore, the accuracy
of the obtained numerical results is validated via calculating the residual against the impeded
parameters. It is shown graphically that the obtained residual approaches zero in various cases,
which proves the efficiency of the current analysis.

Keywords: Ambartsumian equation; conformable derivative; homotopy perturbation method;
series solution

1. Introduction

In this paper, we consider a generalized model of Ambartsumian equation (AE), a delay
differential equation, in the form:

Dα
t z(t) = −z(t) +

1
q

z
(

t
q

)
, 0 < α ≤ 1, q > 1, (1)

where q is a constant for the given model and α is the order of conformable derivative (CD). Equation (1)
is subjectedto the initial condition:

z(0) = λ, (2)

where λ is also a constant. When α→ 1, Equations (1) and (2) describe the surface brightness in the
Milky Way, given by [1]:

z′(t) = −z(t) +
1
q

z
(

t
q

)
. (3)

Moreover, Equation (3) was derived more than 25 years earlier by Ambartsumian [1] to describe
the absorption of light by the interstellar matter. The existence and uniqueness of the standard model
(Equations (2) and (3)) was analyzed by Kato and McLeod [2]. In the literature [3–6], the standard
model Equations (2) and (3)) was solved via several analytical methods. Patade and Bhalekar [3]

Mathematics 2019, 7, 425; doi:10.3390/math7050425 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-7266-1893
https://orcid.org/0000-0002-1122-6297
http://www.mdpi.com/2227-7390/7/5/425?type=check_update&version=1
http://dx.doi.org/10.3390/math7050425
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 425 2 of 10

applied the Daftardar–Gejji and Jafari Method to obtain a power series solution and provided a
theoretical analysis for convergence. Later, Bakodah and Ebaid [4] obtained the exact solution of the
standard model (Equations (2) and (3)), i.e., as α → 1, by means of Laplace transform. In addition,
Ebaid et al. [5] implemented the Adomian decomposition method (ADM) to derive an accurate
approximate solution. Very recently, Alharbi and Ebaid [6] introduced a closed-form analytical solution
in terms of exponential functions for the standard model (Equations (2) and (3)). They demonstrated
that their new closed-form solution has many advantages over the published one by Patade and
Bhalekar [3].

However, the present model (Equations (1) and (2)) is a generalized form of the standard
AE (Equations (2) and (3)). In fractional calculus, Kumar et al. [7] solved the fractional model
(Equations (1) and (2)) by means of the homotopy transform analysis method considering the Caputo’s
fractional derivative definition.

However, the conformable derivative (CD) is one of the most prominent operators in this
context. To solve the generalized model (Equations (1) and (2)) using the CD, several analytical
approaches can be implemented such as the Adomian decomposition method (ADM) [8–20], the
homotopy perturbation method (HPM) [21–23], the differential transform method (DTM)/Taylor
expansion [24,25], and the the homotopy analysis method (HAM) [6]. In addition, many applications
of the CD have been recently discussed by several authors [26–29]. Recent applications and advances
of fractional operators in various fields can be also found in Refs. [30–33]. Therefore, the present paper
extends the application of the CD to analyze the fractional model (Equations (1) and (2)). The objective
of this paper is to investigate the system (Equations (1) and (2)) in view of the CD using the HPM.
It will be declared that the HPM is an effective tool to deal with the current model. Moreover, it is
shown that a few terms of the series is sufficient to obtain accurate numerical results, where a very
small residual error is obtained.

2. Analysis of the HPM

The HPM assumes the solution as an infinite series using an artificial parameter p. To implement
this method to deal with the system (Equations (1) and (2)), we rewrite Equation (1) in the form:

Dα
t z(t) = −z(t) + p

(
1
q

z
(

t
q

))
, (4)

where p is an embedding parameter, which is used to construct the homotopy series solution as

z(t) =
∞

∑
n=0

pnzn(t). (5)

Inserting Equation (5) into Equation (4), we have

Dα
t z0(t) + z0(t) +

∞

∑
n=0

pn+1
(

Dα
t zn+1(t) + zn+1(t)−

1
q

zn

(
t
q

))
= 0, (6)

which leads to the following systems of initial value problems:

Dα
t z0(t) + z0(t) = 0, z0(0) = λ, (7)

Dα
t zn+1(t) + zn+1(t) =

1
q

zn

(
t
q

)
, zn+1(0) = 0, n ≥ 0. (8)

The conformable derivative of arbitrary order α, 0 < α ≤ 1, of a function z(t) : [0, ∞) → R is
defined by [26–29]

Dα
t z(t) = t1−α

(
dz
dt

)
. (9)
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Accordingly, the systems in Equations (7) and (8) become

t1−αz′0(t) + z0(t) = 0, z0(0) = λ, (10)

t1−αz′n+1(t) + zn+1(t) =
1
q

zn

(
t
q

)
, zn+1(0) = 0, n ≥ 0. (11)

Equation (11) is defined as nth-order systems. The solution of the zeroth-order system (i.e., the
system of order zero) in Equation (10) is obtained as

z0(t) = λ Exp
(
− tα

α

)
. (12)

From Equations (11) and (12), the first-order system becomes

t1−αz′1(t) + z1(t) =
λ

q
Exp

(
− q−αtα

α

)
, z1(0) = 0. (13)

To solve the first-order ordinary differential equation in Equation (13), we rewrite such equation
in the form:

z′1(t) + tα−1z1(t) =
λ

q
tα−1Exp

(
− q−αtα

α

)
. (14)

The solution of Equation (14) subject to the initial condition z1(0) = 0 is given in terms of the
integrating factor Exp

(
tα

α

)
as

[
Exp

(
τα

α

)
z1(τ)

]t

τ=0
=

λ

q

∫ t

0
τα−1Exp

(
τα

α

)
Exp

(
− q−ατα

α

)
dτ, (15)

or

Exp
(

tα

α

)
z1(t) =

λ

q (1− q−α)

(
Exp

(
tα

α

(
1− q−α

))
− 1
)

. (16)

Therefore, z1(t) is finally given by

z1(t) =
λ

q (1− q−α)

(
Exp

(
− q−αtα

α

)
− Exp

(
− tα

α

))
. (17)

The second-order system takes the from of Equation (11):

t1−αz′2(t) + z2(t) =
1
q

z1

(
t
q

)
,

=
λ

q2 (1− q−α)

(
Exp

(
− q−2αtα

α

)
− Exp

(
− q−αtα

α

))
, z2(0) = 0. (18)

Proceeding as above, the solution of the system in Equation (18) can be solved as follows:

[
Exp

(
τα

α

)
z2(τ)

]t

τ=0
= λ

q2(1−q−α)

∫ t
0 τα−1[

(
Exp

(
− q−ατα

α

)
− Exp

(
− τα

α

))
Exp

(
τα

α

)
] dτ,

= λ
q2(1−q−α)

∫ t
0 τα−1

(
Exp

(
τα

α (1− q−2α)
)
− Exp

(
τα

α (1− q−α)
))

dτ,

= λ
q2(1−q−α)

(I1 − I2) ,

(19)

where I1 and I2 are defined, respectively, by

I1 =
∫ t

0
τα−1Exp

(
τα

α
(1− q−2α)

)
dτ, (20)
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and

I2 =
∫ t

0
τα−1Exp

(
τα

α
(1− q−α)

)
dτ. (21)

The two integrals above can be explicitly calculated as

I1 =
1

1− q−2α

(
Exp

(
tα

α
(1− q−2α)

)
− 1
)

, (22)

and

I2 =
1

1− q−α

(
Exp

(
tα

α
(1− q−α)

)
− 1
)

. (23)

From Equation (19), we obtain z2(t) in the form:

z2(t) =
λ

q2 (1− q−α)
Exp

(
− tα

α

)
(I1 − I2) . (24)

Implementing Equations (22) and (23), the expression
(

Exp
(
− tα

α

)
(I1 − I2)

)
in

Equation (24) reads

Exp
(
− tα

α

)
(I1 − I2) =

1
1− q−2α

Exp
(
− q−2αtα

α

)
+

(
1

1− q−α
− 1

1− q−2α

)
×

Exp
(
− tα

α

)
− 1

1− q−α
Exp

(
− q−αtα

α

)
,

=
1

1− q−2α
Exp

(
− q−2αtα

α

)
+

(
q−α

1− q−2α

)
Exp

(
− tα

α

)
−

1
1− q−α

Exp
(
− q−αtα

α

)
, (25)

where the following identity: (
1

1− q−α
− 1

1− q−2α

)
=

q−α

1− q−2α
, (26)

is used to obtain Equation (25). From Equations (24) and (25), we finally get z2(t) as

z2(t) = λ
q2(1−q−α)(1−q−2α)

[
Exp

(
− q−2αtα

α

)
+ q−αExp

(
− tα

α

)
− (1 + q−α)Exp

(
− q−αtα

α

)]
. (27)

In the same manner, the solutions of higher-order systems can be provided. Now, the HPM gives
the n-term approximate analytic solution ρn(t) when p→ 1 as

ρn(t) =
n−1

∑
i=0

zi(t). (28)

Accordingly, we have the following three-term approximate analytic solution:

ρ3(t) = λ Exp
(
− tα

α

)
+

λ

q (1− q−α)

(
Exp

(
− q−αtα

α

)
− Exp

(
− tα

α

))
+[

Exp
(
− q−2αtα

α

)
+ q−αExp

(
− tα

α

)
−
(
1 + q−α

)
Exp

(
− q−αtα

α

)]
× (29)

λ

q2 (1− q−α) (1− q−2α)
.
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At this point, the approximate solution in Equation (29) can be validated as α→ 1. In that case,
the approximate solution in Equation (29) reduces to

ρ3(t) = λ Exp (−t) +
λ

q− 1
(Exp (−t/q)− Exp (−t)) +

λ

(q− 1) (q2 − 1)
×[

q Exp
(
−t/q2

)
+ Exp (−t)− (q + 1)Exp (−t/q)

]
, (30)

which agrees with the third-order approximate solution in [5] for the model in Equations (1)–(3). Hence,
the present results are applicable for 0 < α ≤ 1 and more general than those in relevant literature [3–6]
when α→ 1. The applicability and validity of the obtained results are illustrated in the next section,
where the convergence of the approximate solutions in Equation (28) is valid in the whole domain
t ≥ 0 for all values of q > 1. Moreover, the present approximate numerical results are validated by
calculating the residual |REn(t)| defined by

|REn(t)| =
∣∣∣∣t1−αρ′n(t) + ρn(t)−

1
q

ρn

(
t
q

)∣∣∣∣ , n ≥ 1, (31)

by using the n-term approximate solution to estimate z(t).

3. Results

This section is devoted to the domain of applicability and validity of the obtained approximate
solutions in the previous section for the conformable form of the AE. The convergence of the Homotopy
perturbation method (HPM) was discussed in detail for ODEs (ordinary differential equations) by
Ayati and Biazar [23]. For FPDEs (fractional partial differential equations), the convergence of the HPM
was recently analyzed by Touchent et al. [34] and Sene and Fall [33]. Ayati and Biazar [23] proved that
the series in Equation (28) is convergent in the limit if ∃ (0 ≤ εi < 1) such that εi =

‖zi+1‖
‖zi‖

, ∀ i ∈ N,
where ‖ f (t)‖ = max

0≤t≤1
| f (t)|. For illustration of convergence, we consider α = 0.8, λ = 1, and q = 1.4.

Accordingly, we have ε1 = 0.2988, ε2 = 0.3853, ε3 = 0.1932, ε4 = 0.1089, ε5 = 0.0657, ε6 = 0.0414,
ε7 = 0.0268, ε8 = 0.0175, and ε9 = 0.0120, which proves the convergence of the present approximate
solutions, even if the domain 0 ≤ t ≤ 1 is extended. If the domain is enlarged to be 0 ≤ t ≤ τ, τ > 1,
we still have 0 ≤ εi < 1, ∀ i ∈ N.

The convergence of the sequence ρn(t) in Equation (28) is demonstrated in Figure 1, where the
approximate solutions ρ6(t), ρ8(t) and ρ10(t) are depicted at α = 0.8, λ = 1, and q = 1.6. This figure
shows that the approximate solutions using a few terms approach to a certain curve as the number
of terms increases, even for large values of the independent variable. This may explain how the
convergence of approximate solution is estimated, in addition to the above analysis of convergence.
Furthermore, it is shown below that the approximate solution ρ10(t) leads to highly accurate numerical
results, especially, when q ≥ 2.

The variation of ρ10(t) versus t is displayed in Figure 2 at various values of the arbitrary order α

of the CD. To validate the current results, the residual |RE10| is plotted versus t in Figures 3 and 4 at
two particular values of the delay parameter q, q = 1.6 and q = 2, respectively, for various values of
α. The obtained results in these two figures reveal that |RE10| is small when q = 1.6, while it rapidly
decreases as q increases as observed from Figure 4 when q = 2. In addition, the profile of |RE10| against
two sub-domains of the parameter q (> 1) is introduced through Figure 5 (1.1 ≤ q ≤ 1.6) and Figure 6
(5 ≤ q ≤ 10) in the domain t ∈ [0, 50] at λ = 1 and α = 0.8. It is noticed from these figures that the
maximum values of |RE10| in these sub-domains are, respectively, 6× 10−2 and 2× 10−16. In addition,
it can be concluded that the residual becomes very small and rapidly decreases (approaches zero) for
relatively higher values of q, i.e., when q ≥ 2.

At α = 0.8 and q = 2, the impact of the initial condition λ (0 ≤ λ ≤ 5) on the variation of |RE10| is
depicted in Figure 7. Figure 8 shows the profile of |RE10| verses the arbitrary order α (0.5 ≤ α ≤ 1).
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Finally, at a particular value of the independent variable t = 100, the behavior of the residual |RE10|
is presented in Figure 9 versus both λ (0 ≤ λ ≤ 5) and q (2 ≤ q ≤ 10). The obtained results in
Figures 7–9 confirm that the present 10-term approximate solution ρ10(t) is highly accurate. Therefore,
the preceding discussion shows the effectiveness of the HPM in accurately and quickly solving the
generalized form of AE in view of the CD.

 

Figure 1. Logarithmic plot of the approximate solutions.

 
Figure 2. The variation of the approximate solution versus the conformable derivative order α.

 

Figure 3. Effect of the conformable derivative order α on the residual at λ = 1, q = 1.6.
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Figure 4. Effect of the conformable derivative order α on the residual at λ = 1, q = 2.

 

Figure 5. Residual at α = 0.8, λ = 1, 1.1 ≤ q ≤ 1.6.

 

Figure 6. Residual at α = 0.8, λ = 1, 5 ≤ q ≤ 10.
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Figure 7. Residual at α = 0.8, q = 2, 0 ≤ λ ≤ 5.

 

Figure 8. Residual at λ = 1, q = 2, 0.5 ≤ α ≤ 1.

 

Figure 9. Residual at α = 0.8, 2 ≤ q ≤ 10, 0 ≤ λ ≤ 5, t = 100.
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4. Conclusions

The homotopy perturbation method is applied in this paper to solve the fractional form of the
Ambartsumian equation in view of the conformable derivative. The obtained approximate solution is
expressed in terms of the exponential functions and the arbitrary order of the conformable derivative.
The present approximate solution reduces to the corresponding one in the literature when the order
of the conformable derivative tends to unity. Moreover, the impacts of the initial condition, the
delay parameter, and the arbitrary order of the conformable derivative on the residual error are
discussed in detail. It is also declared that the residual achieved by using only ten terms is very small
for moderate values of the delay parameter while such residual approaches zero as the the delay
parameter increases.The obtained results are applicable for 0 < α ≤ 1 and more general than those
in relevant literature [3–6] in which α→ 1. The obtained residual errors in Figures 7–9 are less than
3× 10−6, which confirms the accuracy of the approximate solution. In addition, the obtained residual
error in Figure 6 is less than 2× 10−16 which is highly accurate.
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