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Abstract: We introduce the concept of interval (h1, hp)-convex functions. Under the new concept,
we establish some new interval Hermite-Hadamard type inequalities, which generalize those in the
literature. Also, we give some interesting examples.
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1. Introduction

Interval analysis was introduced in numerical analysis by Moore in the celebrated book [1].
Over the past 50 years, it has attracted considerable interest and has been applied in various fields,
such as interval differential equations [2], aeroelasticity [3], aerodynamic load analysis [4], and so on.
For more profound results and applications, see [5-9].

It is known that inequalities play an important role in almost all branches of mathematics as
well as in other areas of science. Among the many types of inequalities, those carrying the names of
Jensen, Hermite-Hadamard, Hardy, Ostrowski, Minkowski and Opial et al. have a deep significance
and have made a great impact in substantial fields of research. Recently, some of these inequalities
have been extended to interval-valued functions by Chalco-Cano et al.; see, e.g., [10-16]. Surprisingly
enough, interval Hermite-Hadamard type inequalities has perhaps not received enough attention [17].
For convenience, we recall the classical Hermite-Hadamard inequality. Let f be convex, then

) = 1 [ = TS0

This inequality has been developed for different classes of convexity [18-26]. Especially, since the
h-convex concept was proposed by Varosanec in 2007 [27], a number of authors have already studied
more refined Hermite-Hadamard inequalities involving h-convex functions [28-33].

In 2018, Awan et al. introduced (h1, hp)-convex functions and proved the following inequality [34]:

Theorem 1. Let f : [u,v] — R. If f is (hy, hy)-convex, and hy (1)ha (L) # 0. Then

1 u+o
i’ (2

) < 2 [ Fwin < (£ +£0)] [ (a1 - v

Motivated by Awan et al., our main objective is to generalize the results above by constructing
interval Hermite-Hadamard type inequalities for (hy, h;)-convex functions. Also, we present some
examples to illustrate our theorems. Our results generalize some known inequalities presented
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in [17,32,34,35]. Furthermore, the present results can be considered as tools for further research
in interval convex analysis, interval nonlinear programming, inequalities for fuzzy-interval-valued
functions, among others.

We give preliminaries in Section 2. In Section 3, we introduce interval (hy, h;)-convex concept,
and obtain some interval Hermite-Hadamard type inequalities. Moreover, some interesting examples
are given. In Section 4, we give conclusions and future work.

2. Preliminaries

For the basic notations and definitions on interval analysis, see [17]. The family of all intervals
and positive intervals of R are denoted by Rz and R}r , respectively. For interval [u, 7] and [v, 7],
the Hausdorff distance is defined by

([ 7], [o,7]) = max { ju— o, |7~ 3] }.

Then, (Rz,d) is complete.
A set of numbers {t;_1,¢;,t;}" ; is said to be a tagged partition P of [u, v] if

U=ty<h1 <---<tp=v0v
andift; | < ¢ < tjforalli =1,2,...,m. Moreover, if we let At; = t; — t;_1, then the partition is

called é-fine if At; < § for each i. We denote by P (4, [u,v]) the family of all J-fine partitions of [u, v].
Given P € P(J, [u,v]), we define a integral sum of f : [u,v] — Ry as follows:

S(f,P,6,[u,o]) =, f(Gi)(ti = tia)-

L=

Definition 1. Let f : [u,v] — Ry. f is called IR-integrable on [u,v] with IR-integral A = (IR) [ f(t)dt,
if there exists an A € Rz such that for any € > 0 there exists a 6 > 0 such that

d(S(f,P,6,[u,v]),A) <e
for each P € P (6, [u,v]). Let TR, denote the set of all IR-integrable functions on [u,v)].

Definition 2. Let hy,hy : [0,1] C ] — R™ such that hi,hy # 0 (Awan et al. [34]). f: ] — R is called
(hy, hy)-convex, or that f € SX((hy,h2),],R), if forany s, t € ] and x € (0,1) one has

flxs+ (1 —x)t) < hy(x)ha(1—x)f(s) + h1 (1 — x)ha(x) f(¢). 1)

Remark 1. If hy =1, then Definition 2 reduces to h-convex in [27].
If hy = hy =1, then Definition 2 reduces to P-function in [18].
If hy(t) = t°, hy = 1, then Definition 2 reduces to s-convex in [36].

We end this section of preliminaries by introducing the new concept of interval (hy, hy)-convexity.

”

This idea is inspired by Costa [12]. Note that for interval [u, ] and [v, 7], the inclusion “ C ” is
defined by
[wu] C ool <= ov<u U<

Definition 3. Let hy,hy : [0,1] € ] — R* such that hy,hy # 0. f : ] — R} is called interval
(hy, hy)-convex, if for all s, t € J and x € (0,1) one has

hi(x)ha (1 —x)f(s) + hy (1 — x)ha(x) f(#) € f(xs+ (1 — x)t). )
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The set of all interval (hy, hy)-convex function is denoted by SX((h1,ha), |, RY).
3. Interval Hermite-Hadamard Type Inequality

In what follows, let H(x,y) = hy(x)hy(y) for x,y € [0,1].

Theorem 2. Let f : [u,0] — RF, by, hy : [0,1] — RY and H(,%) # 0. If f € SX((h1,h2), [u, 0], RT)
and f € IR (), then

1 1 v 1
2H(§,§_)f(w2“v) ) U—u/u f(t)dt 2 [f(u)+f(v)]/0 H(x,1— x)dx. (3)

Proof. By hypothesis, we have

H(%,%)f(xu%— (1—x)v) +H(%,%)f((1 —X)u + x0) gf(u;v).
Then

! 1
/0 i(xu—k(l—x)v)dx—i—/o f((1—x)u+xv)dx > =

o\
i
I~
—
=
|+
s}
~——
2
Ryl

—~
[SCTTEN R TSN N
N
NI—
S—

1_ .
/0 f(xM+(1—x)v)dx+/0 F((1—x)u+xv)dx <

o\
AN
|
VN
<
|+
s
N——
2
=

H(33)
It follows that
v L ru+vo u+ov
viu/ f(t)dt>H(%l,%)/0 i( ; )dx:H(;,%)f( ; )’
0 1 v —/u+vo
70 < gy IO = gy ()
This implies
A ) A(EY)] 2 25 [ o [ T,
Thus,

S [ foar.

In the same way as above, we have

viu/uvf(t)dtQ [f(u) + f(v)] /OlH(x,l—x)dx,

and the result follows. [

Remark 2. If H(x,y) = hy(x), then Theorem 2 reduces to ([17], Theorem 4.1).
If hy(x) = x5, hy = 1, then Theorem 2 reduces to ([37], Theorem 4).
If hy = hy =1, then inequality (3) in Theorem 2 reduces to inequality for P-function.

If i = 7, then Theorem 2 reduces to ([34], Theorem 1). Furthermore, If hy = 1, then we get ([32],
Theorem 6).
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Example 1. Suppose that hy(x) = x, hp(x) = 1 for x € [0,1], [u,0] = [=1,1], and f : [u,v] — R} be
defined by f(t) = [t?,4 — é']. Then

Then, we obtain that

0,312 [%’4_ 6_26_1] = [%’4_ e+26_1}‘

Consequently, Theorem 2 is verified.

The next result generalizes Theorem 3.1 of [35] and Theorem 4.3 of [17].

Theorem 3. Let f : [u,0] — R¥, hy, hy : [0,1] — R* and H(%,%) # 0. If f € SX((h1,h2), [u, 0], R})
and f € IR (), then

4H2(1%/%>f(u—2'_v) DA D z)iu/uvf(t)dt‘

28,2 [f(u) + f@)] [2 + (3, 2)] [ HOo1 )

where

Proof. For [u, 32|, one has

H(g g )f (e =0 77) ()£ (0w 5 25)

gf(xu—i-(lz—x)% N (1—x)uz+x%> :f(SuIv)‘

Consequently, we get

3u+v 2
41—1(%,%)](( 4 ) v—U /u flbyt
In the same way as above, for [”er”, v], we have
1 u+3v 1 v
D .
4H(%,%)f( 4 )_ZJ—M %ﬂt)dt
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Hence,

A= 4H(1;,;) [f(Bu:U) +f<u230)] 2 viu /jf(t)dt.

Thanks to Theorem 2, one has

1

(1.3)]
P )

(G ) () () ()

u+v)

4[H zf( 2

N|—=
—_

U

0O—uJu

2 f[f(u) + f(v) +2f<u;v)} /Ol H(x,1—x)dx

Il
> N
N

U

UESINEY

H(35) )+ f@)] [ Bt - x)dx

[Fw)+ @] [2 + 1 (3 D] [ At -2,

V)

and the result follows. [

Example 2. Furthermore, by Example 1, we have

(-2 A3 = [ha- 25,

;
s (-2 o) - -2

50+ 7015+ (g )] ) #eet wie= [ 5]

Then, we obtain that

14 e%—i—e%} [1 6—6_1]3{1 7 e+4e!

0.3] 2 {1’ 2

3’ 2

2"2 4

|2 -5

Consequently, Theorem 3 is verified.

Similarly, we get the following result, which generalizes Theorem 3 of [34] and Theorem 4.5
of [17].

Theorem4. Let f,g: [u,v] — R, hy,hp : [0,1] = RY and H(%,3) # 0. If f, g € SX((h, ha), [u, 0], RY)
and fg € TR (], then

1
v_

; /uvf(t)g(t)dt > M(u, ) /O1 H2(x,1 — x)dx + N(u,0) /01 H(x,x)H(1 — x,1— x)dx,
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where

M(u,v) = f(u)g(u) + f(v)g(v), N(u,0) = f(u)g(v) + f(v)g(u).

Example 3. Suppose that hi(x) = x, hp(x) =1, [u,v] = [0,1] and

f(8) = 117,4—e],g(t) = [t,3 - £].

Then
v_u/ £(1) / 3, (4 —et)(3 — )]dt = E %—24,
M(u,v)/o H%(x,1—x)dx =M (0,1)A x2dx = {%,g—ge},
N(u,) /01 H(x,x)H(1 - x,1— x)dx = N(0,1) /01 dx = [0,3- 2],

It follows that

Consequently, Theorem 4 is verified.
The next result generalizes Theorem 2 of [34] and Theorem 4.6 of [17].

Theorem 5. Let f,¢ : [u,0] — RF, hy,hpy : [0,1] — R, and H(%,%) # 0. If f,g €
SX((h1,h), [u,0),RY) and fg € IR (0], then

1 u+v u+v 1,
ZHZ(%,%)f< > _vfu/f dt+NMU)/ H*(x,1—x)dx

+ M(u, v)/0 H(x,x)H(1—x,1— x)dx.

Proof. By hypothesis, one has

f(”i”)g(”f’)

> H2( ) £+ (1= x)o)g(xu + (1= x)o), Flau + (1 - x)o)g(xu+ (1 - x)o)]
+H2(;’ ){J:WJF (1= x)v)g((1 = x)u +xv), f(xu + (1 — x)0)3((1 - x)u + xv)
+H2(%, V£ = x)u+ x0)g(eu+ (1= x)0), F((1 = x)u + x0)g(xu + (1 - x)o)
+H2(%, V£ = x)u + x0)g((1 = %) + x0), F((1 = x)u + x0)3((1 - x)u + x0)|

5 H2(5,5) [Flxu+ (1= 0)o)gleu + (1= x)0) + F((1 — x)u + x0)g((1 — 0)u +x0)|
+ 023 D) [0 - 0 0) + HOL - x,2)£(0) (HO - x,2)8(0) + H(x,1 - 0)3(0))
+ (H( =) f(0) + H(x,1 = x)f(0) ) (H(x,1 = x)g(u) + H(1 = x,%)3(0) )

— HZ(% %) [Fxu+ (1= x)0)g(xu+ (1= x)0) + £((1 = x)u + x0)g((1 - x)u + x0)

+ 2H2<f, 7) {H(x,x)H(l —x,1—x)M(u,v) + H*(x,1— x)N(u, v)]
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Integrating over [0, 1], and the result follows. [J

Example 4. Furthermore, by Example 3, we get

iy (OO 5 G)()

It follows that

{1 11 117 e} {1 35 }: [%,%_1306}

- _ = D) _ - _Z -
P2 Ve 2 s+ o 5]+ |3 5 -2
Consequently, Theorem 5 is verified.

4. Conclusions

We introduced interval (hy, hy)-convex and presented some new interval Hermite-Hadamard
type inequalities. Our results generalize some known Hermite-Hadamard type inequalities and will
be useful in developing the theory of interval differential (or integral) inequalities and interval convex
analysis. As a future research direction, we intend to investigate inequalities for fuzzy-interval-valued
functions, and some applications in interval nonlinear programming.
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