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Abstract: In high-dimensional gene expression data analysis, the accuracy and reliability of cancer
classification and selection of important genes play a very crucial role. To identify these important
genes and predict future outcomes (tumor vs. non-tumor), various methods have been proposed
in the literature. But only few of them take into account correlation patterns and grouping effects
among the genes. In this article, we propose a rank-based modification of the popular penalized
logistic regression procedure based on a combination of `1 and `2 penalties capable of handling
possible correlation among genes in different groups. While the `1 penalty maintains sparsity, the `2

penalty induces smoothness based on the information from the Laplacian matrix, which represents
the correlation pattern among genes. We combined logistic regression with the BH-FDR (Benjamini
and Hochberg false discovery rate) screening procedure and a newly developed rank-based selection
method to come up with an optimal model retaining the important genes. Through simulation studies
and real-world application to high-dimensional colon cancer gene expression data, we demonstrated
that the proposed rank-based method outperforms such currently popular methods as lasso, adaptive
lasso and elastic net when applied both to gene selection and classification.

Keywords: gene-expression data; `2 ridge; `1 lasso; adapative lasso; elastic net; BH-FDR; Laplacian
matrix

MSC: 62F03; 62F07; 62P10

1. Introduction

Microarrays are an advanced and widely used technology in genomic research. Tens of thousands
of genes can be analyzed simultaneously with this approach [1]. Identifying the genes related to
cancer and building high-performance prediction models of maximal accuracy (tumor vs. non-tumor)
based on gene expression levels are among central problems in genomic research [2–4]. Typically, in
high-dimensional gene expression data analysis, the number of genes is significantly larger than the
sample size, i.e., m� n. Hence, it is particularly challenging to identify those genes that are relevant to
cancer disease and put forth prediction models. The main problem associated with high-dimensional
data (m� n) is that of overfitting or overparametrization which leads to poor generalizability from
training to test data.

Therefore, various researchers apply different types of regularization methods to overcome
this “curse of dimensionality” in regression and other statistical and machine learning frameworks.
These regularization approaches include, for example, the `1-penalty or lasso [5], which performs
continuous shrinkage and feature selection simultaneously; smoothly clipped `1-penalty or SCAD [6],
which is symmetric, non-concave and has singularities at the origin to produce sparse solutions;
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fussed lasso [7], which imposes the `1-penalty on the absolute difference of regression coefficients
in order to enforce some smoothness of coefficients; or the adaptive lasso [8], etc. Unfortunately,
`1-regularization sometimes perform inconsistently when used for variable selection [8]. In some
situations, it introduces a major bias in estimated parameters in the logistic regression [9,10]. In contrast,
the elastic net regularization procedure [11] as a combination of `1- and `2-penalties can successfully
handle the highly correlated variables which are grouped together. Among the procedures mentioned
above, elastic net and fussed lasso penalized methods are appropriate for gene expression data analysis.
Unfortunately, when some prior knowledge needs to be utilized, e.g., when studying complex diseases
such as cancer, those methods are not appropriate [4]. To account for a regulatory relationship between
the genes and a priori knowledge about these genes, network-constrained regularization [4] is known
to perform very well by incorporating a Laplacian matrix into the `2-penalty from the enet procedure.
This Laplacian matrix represents a graph-structure of genes which are linked with each other. To select
significant genes in high-dimensional gene expression data for classification, the graph-constrained
regularization method is extended to logistic regression model [12].

Using penalized logistic regression methods [12,13] and graph-constrained procedures [4,12], we
would build rank-based logistic regression method with variable screening procedure to improve the
power of detecting most promising variables as well as classification capability.

The rest of this article is organized as follows. In Section 2, we describe variable screening
procedure with adjusted p-values and regularization procedure for grouped and correlated predictors
and present the computational algorithm. Further, we state the ranking criteria of four models and
summarize the result of ranking procedure. In Section 3, we compare the proposed procedure with
existing cutting edge regularization methods on simulation studies. Next, we apply four penalized
logistic regression methods to the high dimensional gene expression data of colon cancer carcinoma to
evaluation and comparison of the performance. Finally, we present a brief discussion of results and
future research direction.

2. Materials and Methods

2.1. Adjusted p-Values: Benjamini and Hochberg False Discovery Rate (BH-FDR)

Multiple hypohtesis testing methods have been playing an important role in selecting most
promising features while controlling type I error in high-dimensional settings. One of the most
popular methods is BH-FDR [14,15] which is concerned with the expected proportion of incorrect
number of rejections among a total number of rejections. The formula is mathematically expressed

as E
(

V
R

∣∣∣R > 0
)

, where V is the number of false positives and R is the total number of rejections.
In this paper, the FDR method is used both for the purpose of prelimary variable screening both in
the simulation studies and real data analysis to be presented later. The procedure of the method is
as follows:

(1) Let p1, p2, . . . , pm be the p-values of m hypothesis tests and sort them with the increasing oder:
p(1), p(2), . . . , p(m).

(2) Let î = max{i | p(i) ≤
iq
m , i = 1, . . . , m} for a given threshold q. If î > 1, then reject the null

hypotheses associated with p(1), p(2), . . . , p(i). Otherwise, no hypotheses are rejected.

2.2. Regularized Logistic Regression

In the following, we present the regularized logistic regression model used in this paper (cf. [12]).
Since this model is an integral part of our computational algorithm to be outlined in the section to
follow, presenting the formula with all appropriate notations is necessary for our purposes.
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Let the n× (m + 1) matrix

X =



1 x11 x12 · · · x1j · · · x1m
1 x21 x22 · · · x2j · · · x2m
...

...
...

. . .
...

. . .
...

1 xi1 xi2 · · · xij · · · x2m
...

...
...

. . .
...

. . .
...

1 xn1 xn2 · · · xnj · · · xnm


denote the design matrix, where n is the sample size and m is the total number of predictor variables.
Without loss of generality, we assume the data are standardized with respect to each variable. This step
is also performed by the pclogit R-package used in the present paper. Define the parameter vector
η = (β0, β) comprised of an intercept β0 and m “slopes”, β1, . . . , βm. The objective function then is
written as

f (η) = −L(η) + p(β) (1)

with the log-likelihood function

L(η) =
1
n

n

∑
i=1

[
yi log π(xi) + (1− yi) log(1− π(xi))

]
and resulting probabilities

π(xi) =
exp(β0 + xT

i β)

1 + exp(β0 + xT
i β)

.

Here, p(β) is the penalty function and the response variable yi takes the value 1 for cases and 0
for controls. The i-th individual is deemed case or control based on the probability πi. Following [4],
statistical dependence among the m explanatory variables can be modeled by a graph, which, in turn,
can be described by its m-dimensional Laplacian matrix L =

(
L(u, v) | u, v vertices

)
with the entries

L(u, v) =


1, if u = v and du 6= 0,

−(dudv)
− 1

2 , if u and v are adjacent,

0, otherwise.

Here, dv is the degree of a vertex v, i.e., the number of edges through this vertex. If there is no link
in v (i.e., v is isolated), then dv = 0. The martix L is symmetric, positive semi-definite and has 0 as the
smallest eigenvalue and 2 as the largest eigenvalue. In the following, we will write u ∼ v to refer to
adjecent vertices. The penalty term in equation (1) can is defined as

p(β) = λ1‖β‖1 + λ2βT Lβ = λ1

m

∑
j=1
|β j|+ λ2

m

∑
u=1

∑
u∼v

( βu√
du
− βv√

dv

)2
. (2)

Here, λ1 and λ2 are tuning parameters meant to control the sparsity and smoothness, ‖β‖1 is the
`1-norm and ∑u∼v(. . . ) denotes the summation over all adjacent vertex pairs. When λ2 = 0, the penalty
reduces to that of lasso [5], and if L is replaced by the m×m-identity matrix I, the penalty corresponds
to that of an elastic net [11]. If λ1 = 0 and L = I, we arrive at ridge regression. In Equation (2), the
penalty consists of `1- and `2-components. The `2-penalty is a degree-scaled difference of coefficients
between linked predictors. According to [4], the predictor variables with more connections have
larger coefficients. That is why small change of expression in the variables can lead to large change
in response. Thus, this imposes sparsity and smoothness as well as correlation and grouping effects
among variables. In case-control DNA methylation data analysis, ring networks and fully connected



Mathematics 2019, 7, 457 4 of 16

networks (cf. Figure 1) are typically used to describe correlation pattern of CpG sites within genes [12].
The Laplacian matrix is sparse and tri-diagonal (except for two corner elements) for ring networks
and has all non-zero elements for fully connected networks. Those variables with more links produce
strong grouping effects and are more likely to be selected in both networks [12].

Figure 1. The ring network (left) and F.con network (right) are shown for the case there are two genes
consisting of 6 and 9 CpG sites, respectively.

2.3. Computational Algorithm

Li & Li (2010) [16] developed an algorithm for graph-constrained regularization motivated by a
coordinate descent algorithm from [17] for solving the unconstrained minimization problem for the
objective in Equation (1). The algorithm implementation from the pclogit R-package [12,13] replaced
the identity matrix by Laplacian matrix in the elastic net algorithm from the glmnet R-package [18].
According to Equation (1), the objective function is

f (η) = −L(η) + p(β),

where

p(β) = λα
m

∑
i=1
|βi|+

1
2

λ(1− α)
m

∑
u=1

∑
u∼v

( βu√
du
− βv√

dv

)2
(3)

with λ = λ1 + 2λ2 and α = λ1
λ1+2λ2

for some λ1, λ2 > 0.
Following [18], we perform a second-order Taylor expansion of L(·) around the current estimate

(β∗0, β∗) to approximate the objective L(·) in Equation (1) via

f ∗(x) = − 1
2n

n

∑
i=1

qi(ti − β0 − xT
i β)2 + p(β),

where

ti = β∗0 + xT
i β∗ + q−1

i
(
yi − π∗(xi)

)
,

qi = π∗(xi)
(
1− π∗(xi)

)
,

π∗(xi) = 1−
(
1 + exp(β0 + xT

i β∗)
)−1.

Now, if all other estimates for all v = u are fixed, βu = β∗u can be computed. To update the
estimate from β∗u, we have to set the gradient of f ∗(·) equal zero (strictly speaking, zero has to be
included in the subgradient of f ∗(·)) and then solve for βu to obtain

β∗u =
s( 1

n ∑n
i=1 qixiu(ti − t(ũ)i ) + λ(1− α)g(u), λα)

1
n ∑n

i=1 qix2
iu + λ(1− α)

,
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where

t(ũ)i = β∗0 + ∑
j 6=u

xijβ
∗
j ,

g(u) = ∑
u∼v

β∗v√
dudv

(4)

and s(z, r) denotes the “soft threshholding” operator given by

s(z, r) = sign(z)(|z| − r)+ =


z− r, if z > 0 and r < |z|,
z + r, if z < 0 and r < |z|,
0, otherwise.

If the u-th predictor has no links to other predictors, then g(u) in Equation (4) becomes zero, while
Equation (3) takes the form

p(β) = λα
m

∑
i=1
|βi|+

1
2

λ(1− α)
m

∑
u=1

β2
u.

Thus, the regularization reduces to that of the elastic net (enet) procedure. In general, when the
linkage is nontrivial, the term λ(1− α)g(u) is added to the elastic net to get the desired grouping effect.

2.4. Adaptive Link-Constrained Regularization

When there is a link between two predictors but their regression coefficients have different signs,
the coefficients cannot be expected to be smooth [16]—even locally. To resolve this problem, we first
need to estimate the sign of the coefficients and then refit the model with estimated signs. When
the number of predictor variables is smaller than that of sample points, ordinary least squares are
performed, while ridge estimates are computed, otherwise. We have to modify the Laplacian matrix in
the penalty function:

L∗(u, v) =


1, if u = v and du 6= 0,

−susv(dudv)
− 1

2 , if u and v are adjacent,

0, otherwise

and then update the g(·)-function in Equation (4) via

g∗(u) = ∑
u∼v

susvβ∗v√
dudv

.

2.5. Accuracy, Sensitivity, Specificity and Area under the Receiver Operating Curve (AUROC)

We evaluated four metrics of binary classification for each of lasso, adaptive lasso, elastic net and
the proposed rank based logistic regression methods to compare the performance. These metrics are
accuracy, sensitivity, specificity and AUROC.

Based on the notations in Table 1, we define

Accuracy =
a + b

a + b + c + d
, Specificity =

d
n−m

, Sensitivity =
a
m

as well as

TPR (true positive rate) =
a
k

, FPR (false positive rate) =
b

n−m
.
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The last metric AUROC is related to the probability that the classifier under consideration will
rank a randomly selected positive case higher than a randomly selected negative case [19]. The values
of all these fours metrics—accuracy, sensitivity, specificity and AUROC—range from 0 to 1. The value
of 1 represents a perfect model whereas the value of 0.5 corresponds to “coin tossing”. The class
prediction for each individual in binary classification is made based on a continuous random variable
z. Given a threshold k as a tuning parameter, an individual is classified as “positive” if z > k and
“negative”, otherwise. The random variable z follows a probability density f1(z) if the individual
belongs to “positives” and f0(z), otherwise. So, the true positive and true negative rates are given by

TPR(k) =
∫ ∞

k
f1(z)dz and FPR(k) =

∫ ∞

k
f0(z)dz, respectively.

Now, the AUROC statistic can be expressed as

A =
∫ 1

0
TPR

(
FPR−1(z)

)
dz =

∫ ∞

−∞

∫ ∞

−∞
1{k′ > k} f1(k′) f0(k)dk′dk = P(z1 > z0),

where z1 and z0 are the values of positive or negative instances, respectively.

Table 1. Confusion table: a is the number of true positives, b the number of false positives, c the number
of false negatives and d the number of true negatives.

Predicted Condition True Condition

Positive Negative Total

Positive a b k
Nnegative c d n− k

Total m n−m n = a + b + c + d

2.6. Ranking and Best Model Selection

The penalty function in Equation (3) has two tuning parameters, namely, α ∈ [0, 1] and λ > 0.
The "limiting” cases α = 0 and α = 1 correspond to ridge and lasso regression, respectively. For a
fixed value of α, the model selects more variables for smaller λ’s and fewer variables for larger λ’s.
Theoretically, the result continuosly depends on α and should not significantly change under small
perturbations of the latter [12,13]. Empirically, however, we discovered that the results produced by
pclogit significantly vary with α. In pclogit, the Laplacian matrix determines the group effects of
predictors and is calculated from adjacency matrix via

L = D− A,

where D is the degree matrix and A is the adjacency matrix. The degree-scaled difference of predictors
in Equation (3) is computed from the normalized Laplacian matrix

L = I − D−
1
2 AD−

1
2 .

We computed the adjacency matrix by using the information from the correlation matrix obtaining

A(u, v) =

{
1, if u 6= v and |cor(u, v)| ≥ ε,

0, if u = v or |cor(u, v)| < ε.

Here, ε ∈ (0, 1) is a specific cut-off value for correlation. So, ε is another tuning parameter in
our model which needs to be optimally selected. In summary, to find an optimal combination of
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parameters α and ε, we make the combination of tuning parameter α and ε, where the total number of
combinations is given by

C = K× L

with K and L being the number of ε and α values, respectively. We compared the performance
for each of different combinations with T resamplings. The (negative) measure of performance
for each combination is the misclassification or error rate. The pair (α, ε) producing the smallest
misclassification rate is declared optimal and used in the next step. The sparse coefficient matrix with
dimensions m× nlam (nlam = number of λ’s) is used in pclogit (cf. [12,13]). By default, nlam = 100.
We extracted all predictors with non-zero coefficients for each of λ values. Then we built 100 logistic
regression models. Given estimated parameter values β, we have the estimated class probability for a
predictor vector x at each of λ values.

π(x) =
exp(xT β)

1 + exp(xT β)

Using the “naïve” Bayesian approach, we infer y = 1 if π ≥ 0.5 and y = 0, otherwise. The values
of accuracy, sensitivity, specificity and AUROC statistics are computed for each of 100 models and
ranked in an increasing order by their values. Note that AUROC method does not use a fixed cut-off
value, e.g., c = 0.5, but rather describes the overall performance with all possible cut-off values in
the decision rule. Let Rij, i = 1, 2, 3, 4, j = 1, 2, . . . , 100, comprise the ranking matrix R. The first row,
i.e., i = 1, displays the ranking of models with respect to their accuracy. Similarly, i = 2 ranks the
models with respect to their sensitivity, i = 3, in terms of specificity and i = 4 by AUROC. Suppose,
R1,5 > R1,8. Then in the 1st row (i.e., in terms of accuracy), model 5 outperforms model 8. We calculate
the column means (R̄.j) of the R matrix. The column with the highest overall mean value of accuracy,
sensitivity, specificity and AUROC will be chosen as the resulting optimal model. Note that there is a
one-to-one correspondence between columns and the 100 competing models. In (the unlikely) case of
two or more columns producing the same mean, the column with a smaller index j is selected since
the model represented by such column is more parsimonious. Formally, suppose p and q, p > q, are
two column indices in the R matrix. If R̄.p = R̄.q = maxr R̄.r, the q-th column will be selected and the
associated model becomes our proposed rank-based penalized logistic regression model.

3. Results

3.1. Analysis of Simulated Data

We conducted extensive simulation studies to compare the performance in terms of accuracy,
sensitivity, specificity and AUROC as well as the power of detecting true important variables by
the proposed method with the performance of such three prominent regularized logistic regression
methods as lasso, adaptive lasso and elastic net. We decided to focus on these (meanwhile) classical
methods due to their popularity both in the literature and applications. Some of their very recently
developed comptetitors such as [20] (R-package SelectiveInference) and [21] (R-package islasso)
are currently gaining attention from the community and will be used as benchmarks in our future
research.

Continuing with the description of our simulation study, all predictors x were generated from a
multivariate normal distribution with the following probability density function

f (x) =
( 1

2π

)m
2 1√

det(Σ)
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
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with an m-dimensional mean vector µ and an (m×m)-dimensional covariance matrix Σ. Writing out
the covariance matrix

Σ = (σij) =


σ11 σ12 σ13 · · · σ1m
σ21 σ22 σ23 · · · σ2m

...
...

...
. . .

...
σm1 σm2 σm3 · · · σmm

 with σii = σ2
i ,

the correlation matrix M can be expressed as

M = (ρij) =


ρ11 ρ12 ρ13 · · · ρ1m
ρ21 ρ22 ρ23 · · · ρ2m

...
...

...
. . .

...
ρm1 ρm2 ρm3 · · · ρmm

 with ρij =
σij√
σ2

iiσ
2
jj

.

The binary response variable is generated using Bernoulli distribution with individual probability
(π) defined as

π(x) =
1

1 + exp(−xT β)
,

x is the matrix of true important variables and β is the associated preassigned regression coefficients.
Next, we present the details of the three different simulation scenarios considered.

• Under scenario 1, each of the simulated datasets has 200 observations and 1000 predictors. Here,
for all x vectors, we let µ = 0 and Var(xj) = 0.3. Pairwise correlation of ρ = 0.4 was applied to
the first eight variables, while the remaining 992 variables were left uncorrelated. The β-vector
was chosen as

β =
(

2, 2, 2, 2, 2︸ ︷︷ ︸
5 entries

, 3, 3, 3︸ ︷︷ ︸
3 entries

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
992 entries

)
.

Each of the datasets was split into training and test sets with equal proportions.

• The datasets under scenario 2 also have 200 observations and 1000 predictors. Again, µ = 0 and
Var(xj) = 0.3. Now, the first five variables were assumed to have a correlation of ρ = 0.4. The
remaining 995 variables were independent. The β-vector was selected as

β =
(

2.0, 2.0, 2.0, 2.7, 2.0, 2.0, 2.5, 2.7,−2.8, 3.0, 2.6, 3.0, 3.0, 3.0, 3.0︸ ︷︷ ︸
15 entries

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
985 entries

)
.

Each of the datasets was split into training and test sets with equal proportions.

• Under the last scenario 3, each of the datasets has 150 observations and 1000 predictors. We let
µ = 0 and Var(xj) = 0.4. The first five variables were assigned into a correlation value of ρ = 0.3,
while the variables with indices from 11 to 30 were chosen to have the correlation value of ρ = 0.6.
Outside of these two blocks, the variables were assumed uncorrelated. The β-vector was chosen

β =
(

2.0, 2.0, 2.0, 2.0, 2.0, 2.5,−2.6, 2.7, 3.0,−2.9, 2.0, 2.0, 2.0, 2.0, 2.0︸ ︷︷ ︸
15 entries

,

2.5,−2.0, 2.7, 3.0,−2.5, 2.0, 2.0, 2.0, 2.0, 2.0, 2.5,−2.0, 2.7, 3.0,−2.5︸ ︷︷ ︸
15 entries

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
970 entries

)
.

The dataset was split into training and test sets with ratio of 70 to 30.
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We compared the proposed rank-based penalized logistic regression method with lasso, adaptive
lasso and elastic net methods from the glmnet R-package [11]. Algorithm 1 summarizes the procedure
to calculate the average value of accuracy, sensitivity, specificity and AUROC based on a given number
of iterations for each of the three simulation scenarios.

Algorithm 1 Calculation of overall mean and standard deviation on simulation studies

Step 1: Generate the data on each of the three simulation scenarios.
Step 2: Split the data into training and test sets randomly with the ratio of 70 to 30.
Step 3: Screen the variables using BH-FDR based on the training dataset.
Step 4: Plug the screened variables to each of the four methods.
Step 5: Calculate the values of Accuracy, Sensitivity, Specificity and AUROC for each of the methods.
Step 6: Repeats Step 1–5 to achieve a given number of replications.
Step 7: Calculate the means and standard deviations for each of the methods.

In Table 2, we compare the estimated mean and standard deviation of accuracy, sensitivity,
specificity and AUROC values based on 200 iterations under correlation structure of ρ = 0.4 in the
simulation of scenario 1. The proposed rank-based penalized method shows the highest accuracy of
0.963 with the standard deviation of 0.02, sensitivity of 0.961 with standard deviation of 0.03, specificity
of 0.965 with standard deviation of 0.03. In addition, it yields the same AUROC of 0.995 with standard
deviation of 0.01 as elastic net and adaptive lasso.

Table 2. Comparison of the performance among the four methods over 200 replications under
simulation scenario 1. The values in parentheseses are the standard deviations.

Method Accuracy Sensitivity Specificity AUROC

rank-based 0.963 (0.02) 0.961 (0.03) 0.965 (0.03) 0.995 (0.01)
lasso 0.953 (0.03) 0.952 (0.04) 0.955 (0.03) 0.993 (0.01)
alasso 0.957 (0.03) 0.955 (0.04) 0.960 (0.03) 0.995 (0.01)
enet 0.961 (0.02) 0.959 (0.04) 0.962 (0.03) 0.995 (0.01)

In Table 3, we compare estimated mean and standard deviation of accuracy, sensitivity, specificity
and AUROC values using 200 iterations under correlation structure of ρ = 0.4 in the simulation of
scenario 2. The proposed rank-based method also shows highest accuracy of 0.831 with standard
deviation 0.04, sensitivity of 0.833 with standard deviation of 0.06, specificity of 0.829 with standard
deviation of 0.05. In addition, the proposed method produces AUROC of 0.913 with standard deviation
of 0.03. This is the second highest value which is slightly lower than the AUROC value of the elastic net.

Table 3. Comparison of the performance among the four methods over 200 replications under
simulation scenario 2. The values in parentheseses are the standard deviations.

Method Accuracy Sensitivity Specificity AUROC

rank-based 0.831 (0.04) 0.833 (0.03) 0.829 (0.05) 0.913 (0.03)
lasso 0.826 (0.05) 0.827 (0.07) 0.825 (0.09) 0.910 (0.04)
alasso 0.815 (0.04) 0.814 (0.07) 0.815 (0.07) 0.902 (0.04)
enet 0.826 (0.04) 0.828 (0.07) 0.825 (0.07) 0.915 (0.03)

In Table 4, we compare estimated mean and standard deviation of accuracy, sensitivity, specificity
and AUROC values with 150 iterations under correlation structure of ρ = 0.3 and ρ = 0.6 in simulation
of scenario 3. The proposed method shows highest accuracy of 0.916 with standard deviation of 0.04,
sensitivity of 0.919 with standard deviation of 0.06, specificity of 0.912 with standard deviation of 0.06
and AUROC of 0.977 with standard deviation of 0.02.
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Table 4. Comparison of the performance among the four methods over 150 replications under
simulation scenario 3. The values in parentheseses are the standard deviations.

Method Accuracy Sensitivity Specificity AUROC

rank-based 0.916 (0.04) 0.919 (0.06) 0.912 (0.06) 0.977 (0.02)
lasso 0.888 (0.04) 0.898 (0.06) 0.880 (0.07) 0.963 (0.02)
alasso 0.866 (0.04) 0.877 (0.07) 0.855 (0.07) 0.949 (0.03)
enet 0.909 (0.04) 0.916 (0.06) 0.903 (0.06) 0.975 (0.02)

Furthermore, we compared the performance in terms of selecting the number of true important
variables by each of the four methods under three different simulation scenarios. First, we performed
multiple hypothesis testing with BH-FDR [15] to reduce the dimensionality of the data. After
performing a screening step to retain the relevant variables, we used them as input for the proposed
rank-based penalized method with the regularization step outlined in Section 2.3. We illustrate the
performance of variable selection with boxplots in Figures 2–4 for simulation scenarios 1, 2, and 3.
Each figure displays two boxplots, which, in turn, depict the distribution of the number of variables
selected (NVS) and the number of true important variables (NTIV) within the number of variables
selected (NVS) with each of the four methods computed based on the given number of iterations in
each of the three simulation scenarios.
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Figure 2. Boxplots of total number of variables (NVS) selected and the number of true important
variables (NTIV) within the number of variables selected with four different models under scenario 1
based on 200 replications.

Figure 2 reports that the proposed rank-based method has a slightly higher median number of
variables selected (displayed as a thick line in the upper boxplots) than lasso, adaptive lasso and
elastic net under scenario 1. The lower boxplots show that all four methods performed head-to-head
for selection of true important variables under scenario 1 with 200 replications. Table 5 compares
the mean and the standard deviation (in parentheseses) of the number of variables (NVS) selected
and the number of true important variables (NTIV) in NVS for each of the four methods over 200
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replications. The proposed rank-based method and elastic net performed head-to-head while slightly
outperforming lasso and adaptive lasso.

Table 5. Estimated mean and standard deviation of number of variables (NVS) selected and the number
of true important variables (NTIV) among NVS with four different models under simulated scenario 1
with 200 replications. The values in parentheseses are standard deviations.

Method NVS NTIV

rank-based 10.465 (2.24) 7.975 (0.19)
lasso 9.885 (1.98) 7.880 (0.37)
alasso 9.475 (1.47) 7.970 (0.20)
enet 10.805 (2.37) 7.975 (0.16)

Figure 3 suggests the proposed method has a marginally higher median number of variable
selected compared to the other three methods in the upper boxplot. It is also clear that the proposed
method has a slightly higher median number of true important variables in the lower boxplot on
scenarios 2 computed with 200 replications. Table 6 confirms that the rank-based penalized method
has the highest mean both for selecting the number of variables and important variables.
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Figure 3. Boxplots of total number of variables (NVS) selected and the number of true important
variables (NTIV) within the number of variables selected with four different models on scenario 2
based on 200 replications.
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Table 6. Estimated mean and standard deviation of number of variables (NVS) selected and the number
of true important variables (NTIV) among NVS in four different models under simulation scenario 2
with 200 replications. The values in parentheseses are standard deviations.

Method NVS NTIV

rank-based 13.675 (3.95) 9.345 (1.62)
lasso 12.750 (3.50) 8.905 (1.81)
alasso 11.965 (3.18) 8.720 (1.73)
enet 13.115 (3.92) 9.105 (1.73)

In Figure 4, the upper boxplot demonstrates that the proposed rank-based method has the highest
median number of variables selected, elastic net has second highest median, lasso has third largest
median and adaptive lasso has the smallest median under scenario 3 based on 150 replications. The
lower boxplots also show that the proposed rank-based method has the highest median number
of true important variables selected. However, adaptive lasso has a higher median number of true
important variables than lasso unlike the upper boxplots. Thus, the proposed rank based-method
clearly outperforms other three methods under high-correlation settings among variables.
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Figure 4. Boxplots of total number of variables (NVS) selected and the number of true important
variables (NTIV) within the number of variables selected with four different models under scenario 3
based on 150 replications.

Table 7 summarizes the number of variables selected and true important variables selected across
the four methods under the high-correlation setting among variables computed from 150 replications.
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The proposed rank-based method has the highest mean number of overall variables selected and true
important variables selected.

Table 7. Estimated mean and standard deviation of number of variables (NVS) selected and the number
of true important variables (NTIV) among NVS in four different models under simulation scenario 3
with 150 replications. The values in parentheseses are standard deviations.

Method NVS NTIV

rank-based 37.830 (7.14) 20.770 (1.88)
lasso 22.010 (4.96) 11.780 (2.21)
alasso 16.430 (4.39) 11.920 (2.28)
enet 32.270 (8.55) 17.600 (3.15)

3.2. Real Data Example

We applied four logistic regression methods to select differentially expressed genes and assess
their discrimination capability between colon cancer cases and healthy controls using high-dimensional
gene expression data [22]. The colon cancer gene expression dataset is available at [23]. It contains
2000 genes with the highest minimal intensity across 62 tissues. The data were measured on 40 colon
tumor samples and 22 normal colon tissue samples. We split the data set into training and testing
sets with proportions 70% and 30%, respectively. To detect significantly differentially expressed genes
for high-dimensional colon cancer carcinoma and measure classification prediction, we adapted two
step procedures of filtering and variable selection. First, we applied BH-FDR [15] to select most
promising candidates of genes as a preprocessing step and then used the screened genes as input to
the proposed rank-based method and three other popular methods—lasso, adaptive lasso and elastic
net. The performance in terms of accuracy, sensitivity, specificity and AUROC as well as the selection
probabilities for the four methods are reported in Tables 8 and 9, respectively.

Algorithm 2 outlines above protocols the procedure of calculating the average values of accuracy,
sensitivity, specificity and AUROC through 100 bootstrap iterations applied to the colon cancer gene
expression data. In Table 8, the performance of all four metrics are computed based on 100 iterations
of resampled subsets of individuals.

Algorithm 2 Calculation of mean with standard deviation on colon cancer data

Step 1: Split the data into training and test sets randomly with the ratio of 70 to 30.
Step 2: Screen genes with the BH-FDR method based on the training data.
Step 3: Plug the screened genes as the input to each of four methods.
Step 4: Calculate the values of Accuracy, Sensitivity, Specificity and AUROC across each of the
methods on the test data.
Step 5: Repeat Steps 1 through 4 for 100 times.
Step 6: Calculate means and standard deviations for each of the methods.

Table 8. Estimated mean values and standard deviations for the four metrics across the four competing
penalized logistic regression models computed from 100 resamplings. The values in parentheseses are
standard deviations.

Colon Cancer Data Analysis Based on 100 Times Resmpling

Method Accuracy Sensitivity Specificity AUROC

rank-based 0.853 (0.08) 0.860 (0.13) 0.840 (0.13) 0.917 (0.06)
lasso 0.801 (0.09) 0.911 (0.07) 0.637 (0.21) 0.897 (0.08)

adaptive lasso 0.804 (0.09) 0.869 (0.09) 0.719 (0.21) 0.877 (0.08)
elastic net 0.802 (0.09) 0.917 (0.07) 0.640 (0.22) 0.903 (0.07)
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The average AUROC of 0.853 with standard deviation of 0.06 in the proposed rank-based method
has the highest value compared to other three methods. Also the accuracy of 0.853 with standard
deviation of 0.08 are optimal among the four methods. The values of sensitivity (0.860) and specificity
(0.840) are also better than those of the other three methods. In summary, it is fair to conclude that
the proposed rank-based method outperforms the other three popular penalized logistic regression
methods. Table 9 shows top 5 ranked genes with highest selection probabilities for the proposed
rank-based method, lasso, adaptive lasso and elastic net. An expressed sequence tag (EST) of Hsa.1660
associated with colon cancer carcinoma is found by all four methods. Hsa.36689 [24,25] is shown and
top ranked by the proposed method, lasso and elastic net. Hsa692 also appeared and is second ranked
by the proposed method, lasso and elastic net. In addition, Hsa.37937 is shown and is third and second
ranked by the proposed method and elastic net, respectively.

Table 9. List of top 5 ranked genes across rank-based, lasso, adaptive and elastic net. An extra asterix
(*) sign is put next to a gene each time the gene is selected by one of four methods.

EST Name Gene ID Gene Description Selection Probability

Rank-Based

***Hsa.36689 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor 1.00
***Hsa.692.2 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.99
**Hsa.37937 R87126 Myosin heavy chain,nonmuscle(Gallus gallus) 0.97
****Hsa.1660 H55916 Peptidyl-prolyl cis-trans isomerase, mitrochondrial precursor(human) 0.91

Hsa.1832 R44887 nedd5 protein (Mus musculus) 0.90

Lasso

***Hsa.36689 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor 0.87
Hsa.692.2 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.82

*****Hsa.1660 H55916 Peptidyl-prolyl cis-trans isomerase, mitrochondrial precursor(human) 0.66
Hsa.6814 H08393 Collagen alpha 2(XI) chain(Homo sapiens) 0.52
Hsa.8147 M63391 Human desmin gene, complete cds 0.50

Adaptive Lasso

Hsa.1454 M82919 H. gamma amino butyric acid(GABAA)receptor beta3 subunit mRNA,cds 0.83
Hsa.6814 H08393 Collagen alpha 2(XI) chain(Homo sapiens) 0.77

****Hsa.1660 H55916 Peptidyl-prolyl cis-trans isomerase, mitrochondrial precursor(human) 0.77
Hsa.14069 T67077 Sodium/Potasssium-transporting atpase gamma chain(Ovis aries) 0.69
Hsa.2456 U25138 Human MaxiK potassium channel beta subunit mRNA, complete cds 0.55

Elastic Net

***Hsa.36689 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor 0.98
**Hsa.37937 R87126 Myosin heavy chain,nonmuscle(Gallus gallus) 0.94
***Hsa.692.2 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.94

Hsa.8147 M63391 Human desmin gene, complete cds 0.91
****Hsa.1660 H55916 Peptidyl-prolyl cis-trans isomerase, mitrochondrial precursor(human) 0.84

4. Discussion

In this paper, we proposed a new rank-based penalized logistic regression method to improve
classification performance and the power of variable selection in high-dimensional data with strong
correlation structure.

Our simulation studies demonstrated that the proposed method improves not only the
performance of classification or class prediction but also the detection of true important variables
under various correlation settings among features when compared to existing popular regularization
methods such as lasso, adaptive lasso, and elastic net. As demonstrated by simulation studies, if the
true important variables are not passed through the filtering method such as BH-FDR, their chance of
being selected in the final model decreases signficantly, thus, leading to reduction in variable selection
and classification performance. Therefore, effective filtering methods which are likely to retain as
many most promising variables as possible are indispensable.
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Applied to high-dimensional colon gene expression data, the proposed rank-based logistic
regresson method with BH-FDR screening produced the highest average AUROC value of 0.917
with standard deviation of 0.06 and accuracy of 0.853 with standard deviation of 0.08 using 100
resampling steps. The proposed method produced a good balance between sensitivity and specificity
in contrast to other methods. Elastic net demonstrated the second best peformance with an average
AUROC value of 0.903 with standard deviation of 0.07. A probable reason is that elastic net accounts
for group correlation effects. In addition, we compared top 5 ranked ESTs across the proposed method,
lasso, adaptive lasso and elastic net [12]. They had a common EST of Hsa.1660 associated to colon
cancer data. We also found that Hsa.36689 was both deemed important and top ranked by the proposed
method, lasso and elastic net. This also applied to Hsa.692, which was deemed important and second
top ranked by the proposed method and lasso, whereas it was only third-ranked by the elastic net.
Hsa.37937 was detected by both the proposed method and the elastic net. Hence, the four ESTs
mentioned appear to be promising candidate biomarkers associated with colon cancer carcinoma. The
function of the genes corresponding to ESTs is summarized in Table 9.

5. Conclusions

In this study the proposed rank-based classifier demonstrated the superiority in not only
classification prediction but also the power of detecting true important variables when compared
to lasso, adaptive lasso, and elastic net through the extensive simulation studies. Besides, in the
application of high-dimensional colon cancer gene expression data, the proposed classifier showed
the best performance in terms of accuracy and AUROC among the four classifiers considered in the
paper. As a future research, we would develop the methodology of variable selection and compare the
performance with those of most recent competitors such as [20,21,26,27], etc.
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