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Abstract: We consider a multidimensional inhomogeneous birth-death process. In this paper,
a general situation is studied in which the intensity of birth and death for each coordinate (“each type
of particle”) depends on the state vector of the whole process. A one-dimensional projection of
this process on one of the coordinate axes is considered. In this case, a non-Markov process
is obtained, in which the transitions to neighboring states are possible in small periods of time.
For this one-dimensional process, by modifying the method previously developed by the authors of
the note, estimates of the rate of convergence in weakly ergodic and null-ergodic cases are obtained.
The simplest example of a two-dimensional process of this type is considered.

Keywords: multidimensional birth-death process; inhomogeneous continuous-time Markov chain;
rate of convergence; one dimensional projection

1. Introduction and Preliminaries

Multidimensional birth-death processes (BDP) were objects of a number of studies in queueing
theory and other applied fields. The authors of these papers studied different special classes of
homogeneous multidimensional BDPs under some restrictions and considered fluid approximations [1],
simulations [2–6], large deviations [7], stability [8,9], and other features. The problem of the product
from solutions for such models was considered, for instance, in [10,11] (also, see the references
therein). If the process is inhomogeneous and the transition intensities have a more general form,
then the problem of computation of any probabilistic characteristics of the queueing model is much
more difficult.

In the general case, it is impossible to obtain explicit solutions and their characteristics, as well
as to construct any significant characteristics of the processes, as can be seen from the above list of
works. This paper fills this gap and proposes a method of research and evaluation allowing one to
estimate the rate of convergence for a one-dimensional projection of the multidimensional birth-death
process. The approach also makes it possible to evaluate the main characteristics of the projection, as is
demonstrated by the simplest example of an inhomogeneous two-dimensional process.

The background of our approach is the method of investigation of inhomogeneous BDP, see the
detailed discussion and some preliminary results in [12–15]. Estimates for the state probabilities of
one-dimensional projections of a multidimensional BDP were studied in [16,17]. However, within that
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methodology, it was impossible to obtain estimates of the rate of convergence, since the logarithmic
norm of the operator cannot be applied to the corresponding nonlinear systems.

Here, we substantially modify that approach so that it can be used for estimation and
construction of some explicit bounds on the rate of convergence for one-dimensional projection
of a multidimensional BDP. Namely, in Section 2, we develop a simple but efficient method for
bounding the rate of convergence for an arbitrary (which may be nonlinear, depending on the number
of parameters and so on) differential equation in the space of sequences l1, and in Section 3, we apply
this method to bounding the rate of convergence for one-dimensional projections of BDP.

Let X(t) = (X1(t), ..., Xd(t)) be a d-dimensional BDP such that in the interval (t, t + h),
the following transitions are possible with order h: birth of a particle of type j, death of a particle of
type j.

Let λj,m(t) be the corresponding birth rate (from the state m = (m1, ..., md) = ∑d
i=1 miei to the

state m + ej) and let µj,m(t) be the corresponding death intensity (from the state m = (m1, ..., md) =

∑d
i=1 miei to the state m− ej). Denote pm(t) = Pr (X(t) = m).

To consider the existence and uniqueness, we renumber the states (only in this section),
transforming the process into a one-dimensional one. Now, let the (finite or countable) state space
of the vector process under consideration be arranged in a special order, say 0, 1, . . . . Denote by
pi(t), the corresponding state probabilities, and by p(t), the corresponding column vector of state
probabilities. Applying our standard approach (see details in [12,14,15]), we suppose in addition that all
intensities are nonnegative functions locally integrable on [0, ∞), and, moreover, in new enumeration,

Pr (X(t + h) = j/X(t) = i) =


qij(t)h + αij(t, h), j 6= i,

1− ∑
k 6=i

qik(t)h + αi(t, h), j = i,
(1)

where qij(t) are the corresponding transition intensities and all αi(t, h) are o(h) uniformly in i, that is,
limh→0

1
h supi |αi(t, h)| = 0, for any t ≥ 0.

We suppose that λj,m(t) ≤ L < ∞, µj,m(t) ≤ M < ∞, for any j, m and almost all t ≥ 0.
The probabilistic dynamics of the process is represented by the forward Kolmogorov system:

dp
dt

= A(t)p(t), (2)

where A(t) is the corresponding infinitesimal (intensity) matrix.
Throughout the paper, we denote the l1-norm by ‖ · ‖, i.e., ‖x‖ = ∑ |xi|, and ‖B‖ = supj ∑i |bij|

for B = (bij)
∞
i,j=0.

Let Ω be the set all stochastic vectors, i.e., l1-vectors with nonnegative coordinates and unit norm.
We have the inequality ‖A(t)‖ ≤ 2d (L + M) < ∞, for almost all t ≥ 0. Hence, the operator function
A(t) from l1 into itself is bounded for almost all t ≥ 0 and is locally integrable on [0; ∞). Therefore, we
can consider (2) as a differential equation in the space l1 with bounded operator.

It is well known, see [18], that the Cauchy problem for differential Equation (2) has unique
solution for an arbitrary initial condition, and p(s) ∈ Ω implies p(t) ∈ Ω for t ≥ s ≥ 0.

We recall that a Markov chain X(t) is called null-ergodic, if all pi(t)→ 0 as t→ ∞ for any initial
condition, and it is called weakly ergodic, if ‖p∗(t)− p∗∗(t)‖ → 0 as t→ ∞ for any initial condition
p∗(0), p∗∗(0), see for instance [12,14].

2. Bounds on the Rate of Convergence for a Differential Equation

Consider a general (linear or nonlinear) differential equation

dy
dt

= Hy(t), (3)
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in the space of sequences l1 under the assumption of existence and uniqueness of a solution for any
initial condition y(0).

Let H = (hij), where all hij depend on some parameters (for instance, on y, t, . . .).
We have

dyi
dt

= hiiyi + ∑
j 6=i

hijyj.

Now, if yi > 0, then

d|yi|
dt

=
dyi
dt

= hii|yi|+ ∑
j 6=i

hijyj ≤ hii|yi|+ ∑
j 6=i
|hij||yj|,

and if yi < 0, then we also have

d|yi|
dt

= −dyi
dt

= −hiiyi −∑
j 6=i

hijyj ≤ hii|yi|+ ∑
j 6=i
|hij||yj|.

Finally, using the continuity of all coordinates of the solution and the absolute convergence of all
series, we obtain the estimate

d‖y‖
dt

= ∑
i

d|yi|
dt
≤∑

i

(
hii|yi|+ ∑

j 6=i
|hij||yj|

)
≤ β∗‖y‖, (4)

where

β∗ = sup
i

(
hii + ∑

j 6=i
|hji|

)
. (5)

Remark 1. One can see that inequality (4) implies the bound

‖y(t)‖ ≤ e
∫ t

0 β∗ du‖y(0)‖. (6)

Moreover, if H is bounded for any t linear operator function from l1 to itself, then β∗(t) = γ(H(t)) is the
corresponding logarithmic norm of H(t), see [12–15].

On the other hand, in a nonlinear situation, β∗(t) yields a generalization of this notion.

3. Bounds on the Rate of Convergence for a Projection of Multidimensional BDP

Again, consider the forward Kolmogorov system (2) in the original vector form. Then, we have

dpm

dt
= ∑

l
λl,m−el

(t)pm−el + (7)

∑
l

µl,m+el
(t)pm+el −∑

l
(λl,m + µl,m) (t)pm,

for any m.

In this section, we consider the one-dimensional process Xj(t) for a fixed j. Denote
xk(t) = Pr

(
Xj(t) = k

)
. Then, xk(t) = ∑m,mj=k pm(t). The process Xj(t) has nonzero jump rates only

for unit jumps (±1), namely, if Xj(t) = k, then for small positive h only the jumps Xj(t + h) = k± 1
are possible with positive intensities, say λ̃k and µ̃k, respectively. Moreover, (7) implies the equalities

λ̃kxk(t) = ∑
m,mj=k

λj,m(t)pm(t), (8)
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µ̃kxk(t) = ∑
m,mj=k

µj,m(t)pm(t), (9)

and hence

λ̃k =
∑m,mj=k λj,m(t)pm(t)

∑m,mj=k pm(t)
, (10)

and

µ̃k =
∑m,mj=k µj,m(t)pm(t)

∑m,mj=k pm(t)
. (11)

Then, Xj(t) is a (in general, non-Markovian) birth and death process with birth and death
intensities λ̃k and µ̃k, respectively, (that is, it is a process with possible infinitesimal jumps ±1,
the intensities of which depend on t and on the initial condition for the original multidimensional
process X(t).)

For any fixed initial distribution p(0) and any t > 0, the probability distribution p(t) is unique.
Hence, λ̃k = λk (p(0), t) and µ̃k = µk (p(0), t) uniquely define the system

dx
dt

= Ãx(t), (12)

for the vector x(t) of state probabilities of the projection Xj(t) under the given initial condition.
Obviously, different initial conditions specify different systems.

Here, Ã is the corresponding three-diagonal “birth-death” transposed intensity matrix such that
all off-diagonal elements are nonnegative and all column-wise sums are equal to zero.

Let for all m and any t ≥ 0

lj ≤ λj,m(t) ≤ Lj, mj ≤ µj,m(t) ≤ Mj. (13)

Then, from (10) and (11), we obtain the two-sided bounds

lj ≤ λ̃k ≤ Lj, mj ≤ µ̃k ≤ Mj, (14)

for any k, any t, and any initial conditions.

1. Let the state space of Xj(t) be countable and

Mj < lj. (15)

Put σ =
√

Mj/lj < 1, δn = σn, n ≥ 0, x̃n = δnxn, and x̃ = (x̃0, x̃1, . . . ). Let Λ be a diagonal

matrix, Λ = diag (δ0, δ1, . . . ).
Note that in this situation, ‖x̃(t)‖ = ∑∞

i=0 δkxk(t), and ‖x̃(t)‖ → 0 as t → ∞ implying null
ergodicity of Xj(t), that is pk(t) = Pr

(
Xj(t) = k

)
→ 0 as t→ ∞ for any k.

Then,
dx̃
dt

= ΛÃΛ−1x̃(t). (16)

Then, we have

λ̃k + µ̃k −
δk+1

δk
λ̃k −

δk−1
δk

µ̃k ≥ λ̃k (1− σ)− µ̃k (1/σ− 1) ≥ (17)

lj (1− σ)−Mj (1/σ− 1) =
(√

lj −
√

Mj

)2
= α∗,
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implying the estimate

d‖x̃‖
dt
≤ sup

k

(
δk+1

δk
λ̃k +

δk−1
δk

µ̃k − λ̃k − µ̃k

)
‖x̃‖ =

− inf
k

(
λ̃k + µ̃k −

δk+1
δk

λ̃k −
δk−1

δk
µ̃k

)
‖x̃‖ ≤ −α∗‖x̃‖, (18)

and the following statement.

Theorem 1. Let (15) hold for some j. Then, Xj(t) is null-ergodic and the following bounds hold:

‖x̃(t)‖ ≤ e−α∗t‖x̃(0)‖, (19)

and
Pr
(
Xj(t) ≤ n/Xj(0) = k

)
≤ σk−n · e−α∗t. (20)

Hence,
Pr
(
Xj(t) > n/Xj(0) = k

)
> 1− σk−n · e−α∗t, (21)

and Pr
(
Xj(t) > n/Xj(0) = k

)
→ 1 as t→ ∞, for any n, k.

Remark 2. It should be noted that the above requirements are imposed only on this one coordinate.

2. Let
Lj < mj, α∗ = lj + mj − 2

√
Lj Mj > 0. (22)

We have x(t) ∈ Ω for any t ≥ 0. Set x0(t) = 1−∑i≥1 xi(t). Then, from (12), we obtain the system

dz
dt

= B̃z + f̃, (23)

where z = (x1, x2, . . . )>, f̃ =
(
λ̃0, 0, 0, . . .

)>, and the corresponding matrix B̃ =
(
b̃ij
)∞

i,j=1, where

b̃ij = ãij − ãi0 for the corresponding elements of the matrix Ã.
For the solutions of system (23), the rate of convergence is determined by the system

dw
dt

= B̃w, (24)

where all elements of B̃ depend on t and the initial condition of the original process.

Now, let β =

√
Mj
Lj

> 1 in accordance with (22). Let dk+1 = βk, k ≥ 0. Denote by D, the upper

triangular matrix

D =


d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·

. . . . . . . . .

 . (25)

Let w̃ = Dw. Then, the following bound holds:

d‖w̃‖
dt
≤ sup

i≥0

(
di+1

di
λ̃i+1 +

di−1

di
µ̃i −

(
λ̃i + µ̃i+1

))
‖w̃‖ =

− inf
i≥0

((
λ̃i + µ̃i+1 − βλ̃i+1 − µ̃i/β

))
‖w̃‖ ≤ −α∗‖w̃‖. (26)
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Note that ‖w̃‖ = ‖Dw‖ ≥ 1
2‖w‖, see detailed discussion in [15], therefore, if ‖w̃(t)‖ → 0 as

t→ ∞, then Xj(t) is weakly ergodic.
Thus, we obtain the following statement.

Theorem 2. Let (22) hold for some j. Then, Xj(t) is weakly ergodic and the following bound holds:

‖Dw(t)‖ ≤ e−α∗t‖Dw(0)‖, (27)

for any t ≥ 0 and any corresponding initial conditions.

4. Example

Consider a simple two-dimensional BDP with finite state space {i, j}, 0 ≤ i ≤ 10, 0 ≤ j ≤ 10 and
the following transition intensities:

(i) λ1,i,0(t) = i+1
11 λ1(t) from (i, 0) to (i + 1, 0);

(ii) λ1,i,j(t) = λ1(t) from (i, j) to (i + 1, j) if j 6= 0;
(iii) λ2,i,j(t) = λ2(t) from (i, j) to (i + 1, j);
(iv) µ1,i,j(t) = µ1(t) from (i, j) to (i− 1, j);
(v) µ2,i,j(t) = µ2(t) from (i, j) to (i, j− 1);

where λ1(t) = 1 + cos(2πt), λ2(t) = 5 + sin(2πt), µ1(t) = 11 + sin(2πt), µ2 = 3.

Then, β =
√

M1
L1

=
√

6, and Theorem 2 gives bound (27) with α∗ = 10− 4
√

6.
We computed some important characteristics for the original process and its projection

X1(t), namely:
Figures 1–3 show the behaviour of the state probabilities for X1(t), namely Pr(X1(t) = 0),

Pr(X1(t) = 1), and Pr(X1(t) = 2) under two initial conditions for the original BDP:

(i) pi,j(0) = 1
121 , for any i, j (blue); and

(i) p0,0(0) = 109
121 , pi,j(0) = 1

1210 , for any i, j such that i + j > 0 (green).

Note that the corresponding initial conditions for the projection are x(0) =
(

1
11 , . . . , 1

11

)T
,

and x(0) = (10/11, 1/110, . . . , 1/110)T .
These Figures illustrate the rate of convergence in a weak ergodic situation.
Figures 4 and 5 show the ’birth intensities’ λ̃0 and λ̃1 for X1(t) under the same initial conditions.
Note that all the quantities are found by numerically solving the Cauchy problem for the

forward Kolmogorov system (2) and the corresponding system (12) for its projection on the
corresponding interval.

As can be seen from Theorem 2 and the figures below, to construct all the characteristics of interest
with good accuracy, it suffices to carry out the numerical solution on the interval [0, 5].

As was already noted, the projection of the original process is not a Markov process, and all
probabilistic characteristics depend on the initial conditions of the original process.
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Figure 1. Pr(X1(t) = 0) under initial conditions (i) and (ii).
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Figure 2. Pr(X1(t) = 1) under initial conditions (i) and (ii).
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Figure 3. Pr(X1(t) = 2) under initial conditions (i) and (ii).
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Figure 4. λ̃0 under initial conditions (i) and (ii).
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Figure 5. λ̃1 under initial conditions (i) and (ii).

It can be seen that these characteristics present comprehensive information concerning the
behavior of the projection of the original process.

5. Conclusions

In the paper, some estimates of the rate of convergence were discussed for one-dimensional
projections of multidimensional inhomogeneous birth and death processes. Some specific queueing
models were considered. The applied approach allows one to use an analogue of the logarithmic norm
of an operator function for a nonlinear system of differential equations, as was shown in Section 2.
In addition, similar estimates can be obtained for other one-dimensional processes related to the
original one. For example, the total number of “particles” of all types can be studied. Moreover, it is
possible to study multidimensional processes with possible transformations of particles from one
type to another. Such processes play a very important role in stochastic models of epidemics, see,
for example, References [19,20] and the references therein.
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