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Abstract: In this paper, we present the concept of Θ− (σ, ξ)Ω-contraction mappings and we nominate
some related fixed point results in ordered p-metric spaces. Our results extend several famous ones
in the literature. Some examples and an application are given in order to validate our results.
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1. Introduction

The Banach contraction principle (BCP) [1] is an applicable instrumentation to solve problems in
nonlinear analysis. The BCP has been modified in variant procedures (see e.g., [2–11]).

Definition 1. [12] The function ξ : [0,+∞)→ [0,+∞) verifying:

1. ξ is non-decreasing and continuous;
2. ξ(t) = 0 iff t = 0,

is said to be an altering distance function.

Heretofore, many authors have concentrated on fixed point theorems depended on altering
distance functions (see, e.g., [2,12–19]).

The concept of a b-metric space was nominated by Czerwik in [20]. Later, many interesting results
about the existence of fixed points in b-metric spaces have been acquired (see, [2,21–33]).

Definition 2. ([20]) Let X be a (nonempty) set and ς ≥ 1 be a real number. A function d : X× X → R+ is a
b-metric if for all ζ, ν, µ ∈ X,

(b1) d(ζ, ν) = 0 iff ζ = ν;
(b2) d(ζ, ν) = d(ν, ζ);
(b3) d(ζ, µ) ≤ ς[d(ζ, ν) + d(ν, µ)].

If ς = 1, the b-metric is a metric.

Let→ be the set of strictly increasing continuous functions Ω : [0, ∞)→ [0, ∞) such that Ω(0) = 0
and t ≤ Ω(t) for t ≥ 0. Motivated by [20], we state the following.
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Definition 3. [34] Let X be a (nonempty) set. A function ρ : X× X → R+ is a p-metric iff there is Ω ∈ →
so that

(p1) ρ(ζ, ν) = 0 iff ζ = ν,
(p2) ρ(ζ, ν) = ρ(ν, ζ),
(p3) ρ(ζ, µ) ≤ Ω(ρ(ζ, ν) + ρ(ν, µ)),

for all ζ, ν, µ ∈ X. (X, d) is said to be a p.m.s. (or an extended b-metric space).

It should be mentioned that, the class of p-metric spaces is considerably comprehensive than the
class of b-metric spaces. Note that a b-metric (with a coefficient ς ≥ 1) is a p-metric, when Ω(t) = ςt.
If Ω(t) = t, a p-metric is a metric.

Example 1. [34] Let (X, d) be a metric space. Take ρ(ζ, ν) = ed(ζ,ν) − 1. Then ρ is a p-metric with Ω(t) =
et − 1.

The following example shows that a p-metric need not be a b-metric.

Example 2. [34] Let (X, d) be a b-metric space (with a coefficient ς ≥ 1). Consider ρ(ζ, ν) = sinh[d(ζ, ν)].
Then ρ is a p-metric with Ω(t) = sinh(ςt), t ≥ 0.

For ς = 1, ζ = 2, ν = −3, µ = 0 and d(ζ, ν) = |ζ − ν|, we have

ρ(ζ, ν) = sinh(5) > sinh(2) + sinh(3) = ρ(ζ, µ) + ρ(µ, ν).

Definition 4. [34] Let (X, ρ) be a p.m.s. A sequence {µn} in X
(a) p-converges iff there is µ ∈ X so that ρ(µn, µ)→ 0, as n→ +∞. In this case, we write lim

n→∞
µn = µ;

(b) is p-Cauchy iff ρ(µn, µm)→ 0 as n, m→ +∞.
Note that a p.m.s (X, ρ) is p-complete if every p-Cauchy sequence in X is p-convergent.

Lemma 1. Let (X, ρ) be a p.m.s. Suppose that {µn} and {νn} p-converge to µ, ν, respectively. Then

(Ω2)−1(ρ(µ, ν)) ≤ lim inf
n−→∞

ρ(µn, νn) ≤ lim sup
n−→∞

ρ(µn, νn) ≤ Ω2(ρ(µ, ν)).

Additionally, if µ = ν, then lim
n−→∞

ρ(µn, νn) = 0. Also, for any z ∈ X,

Ω−1(ρ(µ, z)) ≤ lim inf
n−→∞

ρ(µn, z) ≤ lim sup
n−→∞

ρ(µn, z) ≤ Ω(ρ(µ, z)).

The idea of Θ-contraction has been introduced by Jleli and Samet in [35] which provides an
interesting generalization of BCP. Zhang and Song generalized the BCP using two altering distance
functions [36]. Our approach provides a generalization of Zhang-Song result using the idea of
Θ-contraction. In fact, we present the notion of generalized Θ− (σ, ξ)Ω-contractive mappings (where
σ and ξ are altering distance functions) and we inaugurate some related fixed point results in complete
ordered p-metric spaces. We also give some examples and an application.

2. Main Results

We first provide the notion of Θ− (σ, ξ)Ω-contractions.
Let Υ be a self-map on the ordered p.m.s (X,�, ρ). Consider

P(x, y) = max
{

ρ(x, y), ρ(x, Υx), ρ(y, Υy),
Ω−1[ρ(x, Υy) + ρ(y, Υx)]

2

}
.

Motivated by [35], denote by ∆ the set of functions Θ : [0, ∞)→ [1, ∞) so that
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(Θ1) Θ is continuous and non-decreasing;
(Θ2) for any {tn} ⊆ (0, ∞), lim

n→∞
Θ(tn) = 1 iff lim

n→∞
tn = 0.

Definition 5. Let (X,�, ρ) be an ordered p.m.s. The mapping Υ : X → X is an ordered Θ −
(σ, ξ)Ω-contraction if there are Θ ∈ ∆, Ω ∈ ω and two altering distance functions σ and ξ, so that

Θ(σ(Ω2(ρ(Υx, Υy)))) ≤ Θ(σ(P(x, y)))
Θ(ξ(P(x, y)))

(1)

for all comparable elements x, y ∈ X.

Our first result is

Theorem 1. Let (X,�, ρ) be an ordered p-complete p.m.s. Suppose that Υ : X → X is an ordered
non-decreasing continuous Θ− (σ, ξ)Ω-contractive mapping. If there is r0 ∈ X such that r0 � Υr0, then Υ
admits a fixed point.

Proof. Let r0 ∈ X satisfy r0 � Υr0. Consider a sequence (rn) in X so that rn+1 = Υrn for each n ≥ 0.
Since r0 � Υr0 = r1 and Υ is non-decreasing, we have r1 = Υr0 � r2 = Υr1. Inductively, we have

r0 � r1 � · · · � rn � rn+1 � · · · .

If rk = rk+1 for some k ∈ N, so rk is a fixed point of Υ. Suppose that rn 6= rn+1 for each n ≥ 0.
According to (1) and the fact Ω ∈ →, we have

Θ(σ(ρ(rn, rn+1))) ≤ Θ(σ(Ω2(ρ(rn, rn+1))))

= Θ(σ(Ω2(ρ(Υrn−1, Υrn))))

≤ Θ(σ(P(rn−1,rn)))
Θ(ξ(P(rn−1,rn)))

,
(2)

where

P(rn−1, rn) = max
{

ρ(rn−1, rn), ρ(rn−1, Υrn−1), ρ(rn, Υrn),
Ω−1[ρ(rn−1,Υrn)+ρ(rn ,Υrn−1)]

2

}
≤ max

{
ρ(rn−1, rn), ρ(rn, rn+1)

}
.

(3)

From (2) to (3) and the assumptions on σ and ξ, we deduce that

Θ(σ(ρ(rn, rn+1))) ≤
Θ(σ

(
max

{
ρ(rn−1,rn),ρ(rn ,rn+1)

})
)

Θ(ξ

(
P(rn−1,rn)

)
)

< Θ(σ

(
max

{
ρ(rn−1, rn), ρ(rn, rn+1)

})
).

(4)

If for some n,

max
{

ρ(rn−1, rn), ρ(rn, rn+1)

}
= ρ(rn, rn+1),

then by (4) we have

Θ(σ(ρ(rn, rn+1))) ≤
Θ(σ(ρ(rn, rn+1)))

Θ(ξ(P(rn−1, rn)))

< Θ(σ(ρ(rn, rn+1))),
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which gives a contradiction. Thus,

max
{

ρ(rn−1, rn), ρ(rn, rn+1)

}
= ρ(rn−1, rn), for each n ≥ 0.

Therefore, (4) yields that

Θ(σ(ρ(rn, rn+1))) ≤
Θ(σ(ρ(rn, rn−1)))

Θ(ξ(P(rn−1, rn)))
< Θ(σ(ρ(rn, rn−1))), for each n ≥ 0. (5)

Since Θ ∈ ∆ and σ is non-decreasing, the positive sequence {ρ(rn, rn+1)} is non-increasing. Thus,
there is r ≥ 0 so that

lim
n→∞

ρ(rn, rn+1) = r.

Taking n→ ∞ in (5), we get

Θ(σ(r)) ≤ Θ(σ(r))
Θ(ξ(limn→∞ P(rn−1, rn)))

≤ Θ(σ(r)).

Therefore, Θ(ξ(limn→∞ P(rn−1, rn))) = 1 which supplies that ξ(limn→∞ P(rn−1, rn)) = 0, and so r = 0,
that is,

lim
n→∞

ρ(rn, rn+1) = 0. (6)

Next, we demonstrate that {rn} is a p-Cauchy sequence in X. By contradiction, there is ε > 0 for
which we can gain {rmi} and {rni} of {rn} so that

ni > mi > i, ρ(rmi , rni ) ≥ ε (7)

and
ρ(rmi , rni−1) < ε. (8)

The p-triangular inequality leads to

ε ≤ ρ(rmi , rni )

≤ Ω(ρ(rmi , rmi−1) + ρ(rmi−1, rni ))

≤ Ω(ρ(rmi , rmi−1) + Ω(ρ(rmi−1, rni−1) + ρ(rni−1, rni ))).

Exploiting (6), (7) and (8), we have

(Ω2)−1(ε) ≤ lim inf
i−→∞

ρ(rmi−1, rni−1).

Likewise,
ρ(rmi−1, rni−1) ≤ Ω(ρ(rmi−1, rmi ) + ρ(rmi , rni−1)).

Handling (6) and (8), we have
lim sup

i−→∞
ρ(rmi−1, rni−1) ≤ Ω(ε), (9)

Moreover,
ρ(rmi , rni ) ≤ Ω(ρ(rmi , rni−1) + ρ(rni−1, rni )).

Appling (5) and (8), we have
lim sup

i−→∞
ρ(rmi , rni−1) ≥ Ω−1(ε),
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In addition,

ρ(rmi−1, rni ) ≤ Ω(ρ(rmi−1, rmi ) + Ω[ρ(rmi , rni−1) + ρ(rni−1, rni )]).

Using (6) and (8), we have
lim sup

i−→∞
ρ(rmi , rni−1) ≤ Ω2(ε).

Moreover,
ρ(rmi , rni ) ≤ Ω(ρ(rmi , rmi−1) + ρ(rmi−1, rni )).

Appling (6) and (8), we get
lim sup

i−→∞
ρ(rmi−1, rni ) ≥ Ω−1(ε).

From (1),

Θ(σ(Ω2(ρ(rmi , rni )))) = Θ(σ(Ω2(ρ(Υrmi−1, Υrni−1))))

≤ Θ(σ(P(rmi−1,rni−1)))

Θ(ξ(P(rmi−1,rni−1)))
,

(10)

where

P(rmi−1, rni−1)]

= max
{

ρ(rmi−1, rni−1), ρ(rmi−1, Υrmi−1), ρ(rni−1, Υrni−1),
Ω−1[ρ(rmi−1,Υrni−1)+ρ(rni−1,Υrmi−1)]

2

}
= max

{
ρ(rmi−1, rni−1), ρ(rmi−1, rmi ), ρ(rni−1, rni ),

Ω−1[ρ(rmi−1,rni )+ρ(rni−1,rmi )]

2

}
.

(11)

Taking i→ ∞ in (11) and using (6), we achieve that,

lim sup
i−→∞

P(rmi−1, rni−1) (12)

= max{lim sup
i−→∞

ρ(rmi−1, rni−1), 0, 0, lim sup
i−→∞

ρ(rmi , rni−1)} ≤ Ω2(ε).

Similarly,
(Ω2)−1(ε) ≤ lim inf

i−→∞
P(rmi−1, rni−1). (13)

Now, taking i→ ∞ in (10) and using (7) and (12),

Θ(σ(Ω2(ε))) ≤ Θ(σ(Ω2(lim sup
i−→∞

ρ(rmi , rni ))))

≤
Θ(σ(lim sup

i−→∞
P(rmi−1, rni−1)))

Θ(lim inf
i−→∞

ξ(P(rmi−1, rni−1)))

≤ Θ(σ(Ω2(ε)))

Θ(ξ(lim inf
i−→∞

P(rmi−1, rni−1)))
.

It yields that
ξ(lim inf

i−→∞
P(rmi−1, rni−1)) = 0,

so, lim inf
i−→∞

P(rmi−1, rni−1) = 0, a contradiction to (13). Thus, {rn+1 = Υrn} is a p-Cauchy sequence in

the p-complete space X, so there is u ∈ X so that rn → u. According to the continuity of Υ,

lim
n→∞

rn+1 = lim
n→∞

Υrn = Υu. (14)
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The p-triangular inequality leads to

ρ(u, Υu) ≤Ω(ρ(u, Υrn) + ρ(Υrn, Υu))

=Ω(ρ(u, rn+1) + ρ(Υrn, Υu))

≤Ω[Ω(ρ(u, rn) + ρ(rn, rn+1)) + ρ(Υrn, Υu)].

The continuity of Ω together with and (14) imply that

ρ(u, Υu) ≤ Ω[Ω( lim
n→∞

ρ(u, rn) + lim
n→∞

ρ(rn, rn+1)) + lim
n→∞

ρ(Υrn, Υu)] = 0.

We find that Υu = u.

The continuity of Υ in Theorem 1 can be substituted by the following reservation:
An ordered p.m.s (X,�, p) possesses the sequential limit comparison property (s.l.c.p) if for each

nondecreasing sequence {rn} in X, converging to some x ∈ X, we have rn � x for each n ∈ N.

Theorem 2. Having the same assumptions of Theorem 1, by replacing the continuity of Υ with the s.l.c.p.
property of (X,�, ρ), Υ encompasses a fixed point.

Proof. Reviewing the lines of the proof of Theorem 1, we have that {rn} is an increasing sequence in
X so that rn → u, for u ∈ X. Using the s.l.c.p. obligation on X, we have rn � u, for any n ∈ N. We
claim that Υu = u. By (1),

Θ(σ(Ω2(ρ(rn+1, Υu)))) = Θ(σ(Ω2(ρ(Υrn, Υu))))
≤ Θ(σ(P(rn ,u)))

Θ(ξ(P(rn ,u))) ,
(15)

where

P(rn, u)

= max
{

ρ(rn, u), ρ(rn, Υrn), ρ(u, Υu), Ω−1[ρ(rn ,Υu)+ρ(u,Υrn)]
2

}
= max

{
ρ(rn, u), ρ(rn, rn+1), ρ(u, Υu), Ω−1[ρ(rn ,Υu)+ρ(u,rn+1)]

2
}

.

(16)

Making n→ ∞ in (16) and using Lemma 1, we get

lim sup
n−→∞

P(rn, u) = ρ(u, Υu). (17)

Likely, we can obtain
lim inf
n−→∞

P(rn, u) = ρ(u, Υu). (18)

The the upper limit as n→ ∞ in (15) together with Lemma 1 and (17) imply that

Θ(σ(ρ(u, Υu))) = Θ(σ(Ω(Ω−1(ρ(u, Υu))))

≤ Θ(σ(Ω2(lim sup
n−→∞

ρ(rn+1, Υu))))

≤
Θ(σ(lim sup

n−→∞
P(rn, u)))

Θ(lim inf
n−→∞

ξ(P(rn, u)))

≤ Θ(σ(ρ(u, Υu)))
Θ(ξ(lim inf

n−→∞
P(rn, u)))

.

Therefore, ξ(lim inf
n−→∞

P(rn, u))→ 0, equivalently, lim inf
n−→∞

P(rn, u) = 0. Thus, from (18) we get u = Υu and

hereupon u is a fixed point of Υ.
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Remark 1. Substituting Θ(t) = et in (1), we obtain the following contractive condition:

σ(Ω2(ρ(Υx, Υy))) ≤ σ(P(x, y))− ξ(P(x, y))

which is the Zhang-Song contractive condition in a p-metric space.

Corollary 1. Let (X,�, ρ) be an ordered p-complete p.m.s. Let Υ : X → X be an ordered non-decreasing
mapping. Assume there is k ∈ [0, 1) so that

Ω2(ρ(Υx, Υy)) ≤ k max
{

ρ(x, y), ρ(x, Υx), ρ(y, Υy), Ω−1[ρ(x,Υy)+ρ(y,Υx)]
2

}
,

for all comparable elements x, y ∈ X. If there is r0 ∈ X so that r0 � Υr0, then Υ admits a fixed point provided
that either Υ is continuous, or (X,�, p) enjoys the s.l.c.p.

Proof. It follows using Theorems 1 and 2 by taking Θ(t) = et, σ(t) = t and ξ(t) = (1− k)t.

Corollary 2. Let (X,�, ρ) be an ordered p-complete p.m.s. Let Υ : X → X be an ordered non-decreasing
mapping. Assume that there are α, β, γ, δ ∈ [0, 1) with α + β + γ + δ ∈ [0, 1) so that

Ω2(ρ(Υx, Υy)) ≤ αρ(x, y) + βρ(x, Υx) + γρ(y, Υy) + δ
Ω−1[ρ(x,Υy)+ρ(y,Υx)]

2 ,

for all comparable elements x, y ∈ X. If there is r0 ∈ X such that r0 � Υr0, then Υ has a fixed point provided
that either Υ is continuous, or (X,�, p) possesses the s.l.c.p.

The following corollary is an enlargement of BCP in a p.m.s., where ρ(x, y) = ed(x,y) − 1.

Corollary 3. Let Υ be a non-decreasing self-mapping on an ordered p-complete p.m.s (X,�, ρ). Assume that
there is α ∈ [0, 1) such that

eρ(Υx,Υy) − 1 ≤ αρ(x, y),

for all comparable elements x, y ∈ X. If there is r0 ∈ X such that r0 � Υr0, then Υ has a fixed point provided
that either Υ is continuous, or (X,�, p) enjoys the s.l.c.p.

Remark 2. A subset W in an ordered set X is well ordered if each two elements of W are comparable.
In Theorems 1 and 2, Υ admits a unique fixed point whenever the fixed points of Υ are comparable.

Remark 3. For any p-metric space (X, ρ), the conclusion of Theorems 1 and 2 remains true if σ, ξ are only
non-decreasing on diam(X) = supx,y∈X ρ(x, y).

Corollary 4. Let (X,�, ρ) be a partially ordered p-complete p-metric space. Let Υ : X → X be an ordered
non-decreasing mapping. Suppose that there exists k ∈ [0, 1) such that

Ω2(ρ(Υx, Υy)) ≤ k max
{

ρ(x, y), ρ(x, Υx), ρ(y, Υy), Ω−1[ρ(x,Υy)+ρ(y,Υx)]
2

}
,

for all comparable elements x, y ∈ X. If there is r0 ∈ X such that r0 � Υr0, then Υ has a fixed point provided
that either Υ is continuous, or (X,�, p) enjoys the s.l.c.p.

Proof. It follows from Theorems 1 and 2, by taking Θ(t) = et, σ(t) = t and ξ(t) = (1− k)t for each
t ∈ [0,+∞).
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Corollary 5. Let (X,�, ρ) be a partially ordered p-complete p-metric space. Let Υ : X → X be an ordered
non-decreasing mapping. Suppose that there are α, β, γ, δ ∈ [0, 1) with α + β + γ + δ ∈ [0, 1) such that

Ω2(ρ(Υx, Υy)) ≤ αρ(x, y) + βρ(x, Υx) + γρ(y, Υy) + δ
Ω−1[ρ(x,Υy)+ρ(y,Υx)]

2 ,

for all comparable elements x, y ∈ X. If there is r0 ∈ X such that r0 � Υr0, then Υ has a fixed point provided
that either Υ is continuous, or (X,�, p) enjoys the s.l.c.p.

Example 3. Take X = {0, 1, 2, 3}. Define on X the partial order �:

�:= {(0, 0), (1, 1), (2, 2), (3, 3), (1, 2), (0, 1), (0, 2)}.

Define the metric

d(x, y) =

{
0, if x = y,

x + y, if x 6= y

and let ρ(x, y) = sinh[d(x, y)]. Note that (X, ρ) is a p-complete p-metric space [Here, Ω(t) = sinh(t) for
t ≥ 0].

Define the self-map Υ by

Υ =

(
0 1 2 3
0 0 1 2

)
.

We see that Υ is an ordered increasing mapping and (X,�, ρ) enjoys the s.l.c.p. Define σ(t) =
√

t and

ξ(t) =
t2

15 + t2 and Θ(t) = 1 + t2. We show that Υ is an ordered non-decreasing Θ− (σ, ξ)Ω-contractive

mapping. Indeed, let x, y ∈ X with x � y. If (x, y) ∈ {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1)}, then we have nothing
to prove. Thus, we need to only check the following cases:
Case 1. (x, y) = (1, 2). Here,

σ(Ω2(ρ(Υx, Υy))) =
√

sinh3(Υ1 + Υ2)

=
√

sinh3(0 + 1)

= 1.623,

σ(P(x, y)) =
√

P(x, y) =
√

sinh 3 = 3.16,

ξ(P(x, y)) =
P(x, y)2

15 + P(x, y)2 =
(sinh 3)2

15 + (sinh 3)2 = 0.86,

Θ(σ(Ω2(ρ(Υx, Υy)))) = Θ(1.623)

= 3.63 ≤ 6.31 =
3.162 + 1
0.862 + 1

=
Θ(σ(P(x, y)))
Θ(ξ(P(x, y)))

Case 2. (x, y) = (0, 2). We have

σ(Ω2(ρ(Υx, Υy))) =
√

sinh3(Υ0 + Υ2)

=
√

sinh3(0 + 1)

= 1.623,
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σ(P(x, y)) =
√

P(x, y) =
√

sinh 2 = 1.904,

ξ(P(x, y)) =
P(x, y)2

15 + P(x, y)2 =
(sinh 2)2

15 + (sinh 2)2 = 0.467,

Θ(σ(Ω2(ρ(Υx, Υy)))) = Θ(1.623) = 3.634 ≤ 3.797 =
1.9042 + 1
0.4672 + 1

=
Θ(σ(P(x, y)))
Θ(ξ(P(x, y)))

.

Also, any two fixed points of Υ are comparable. Thus, all of the conditions of Theorem 2 are satisfied, and so
Υ has a unique fixed point, which is, 0.

Remark 4. Taking (x, y) = (0, 2) in Example 3, we have

σ(Ω2(ρ(Υx, Υy))) = 1.623 > 1.437 = 1.904− 0.467 = σ(P(x, y))− ξ(P(x, y)).

Thus, we can not apply the main result of Roshan et al. [30]. Also, we have |Υ1− Υ2| = |0− 1| = |1− 2| and
1 � 2. Thus, Υ is neither a Banach contraction, nor an ordered Banach contraction, with the usual metric. This
example shows that our result is a real generalization of the similar results in literature in the setting of b-metric
spaces and metric spaces.

Corollary 6. Let (X,�, ρ) be an ordered p-complete p-metric space. Let Υ : X → X be an ordered
non-decreasing continuous ordered mapping and suppose that there exist altering distance functions σ, ξ

satisfying

1 + ln(1 + (σ(Ω2(ρ(Υx, Υy)))) ≤ 1 + ln(1 + (σ(P(x, y)))
1 + ln(1 + (ξ(P(x, y)))

. (19)

If there is r0 ∈ X such that r0 � Υr0, then Υ has a fixed point. Moreover if any two fixed points of Υ are
comparable, then the fixed point of Υ is unique and for any r0 ∈ X, the iterated sequence {Υn(r0)}n∈N converges
to the fixed point.

In much the same way as in Theorem 2 we can prove:

Theorem 3. Let (X,�, ρ) be an ordered p-complete p-metric space. Let Υ : X → X be an ordered continuous
non-decreasing mapping satisfying

Θ(σ(Ω(ρ(Υx, Υy)))) ≤ Θ(σ(ρ(x, y)))
Θ(ξ(ρ(x, y)))

(20)

for all x, y ∈ X with x � y. If there is r0 ∈ X such that r0 � Υr0, then Υ has a fixed point. Moreover, if any two
fixed points of Υ are comparable, then the fixed point of Υ is unique and for any r0 ∈ X, the iterated sequence
{Υn(r0)}n∈N converges to the fixed point.

Theorem 4. Let (X,�, ρ) be an ordered p-complete p-metric space. Let Υ : X → X be a non-decreasing
mapping satisfying

Θ(σ(Ω(ρ(Υx, Υy)))) ≤ Θ(σ(ρ(x, y)))
Θ(ξ(ρ(x, y)))

(21)

for all x, y ∈ X with x � y. Assume that (X,�, p) enjoys the s.l.c.p. If there is r0 ∈ X so that r0 � Υr0, then
Υ has a fixed point. Moreover, if any two fixed points of Υ are comparable, then the fixed point of Υ is unique
and for any r0 ∈ X, {Υn(r0)}n∈N converges to the fixed point.

Example 4. Let X = [5, 6]. Given the p-metric ρ(ζ, ν) = e|ζ−ν| − 1 (Here, Ω(t) = et − 1).
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Consider on X: ζ � ν iff ν ≤ ζ. Given Υ : X → X as

Υζ = 3 ln(1 + ζ)

Take σ(t) = 2 ln(1 + t) and ξ(t) = 2 ln(1 + t)− 0.9t for each t ≥ 0. Now, we show that Υ is an ordered
Θ− (σ, ξ)Ω-contractive mapping with Θ(t) = 1 + [ln(t + 1)]2.

Let ζ � ν, that is ν ≤ ζ. The mean value theorem for s 7−→ 3 ln(1 + s) yields that

σ(Ω(ρ(Υζ, Υν))) = 2 ln(Ω(ρ(Υζ, Υν)) + 1))

= 2ρ(Υζ, Υν)

= 2(e
|Υζ−Υν|

2 − 1)

= 2(e
3 ln(1+ζ)−3 ln(1+ν)

2 − 1)

= 2(e
3

(1+c(ζ,ν)) (ζ−ν) − 1)

≤ 2(e
1
2 (ζ−ν) − 1)

≤ (e(ζ−ν) − 1).

Therefore,

Θ(σ(Ω(ρ(Fζ, Fν)))) ≤ Θ(e|ζ−ν| − 1)

= 1 + |ζ − ν|2 ≤ 1 + [ln(2|ζ − ν|+ 1)]2

1 + [ln(2|ζ − ν| − 0.9(e|ζ−ν| − 1) + 1)]2

=
Θ(σ(ρ(ζ, ν))

Θ(ξ(ρ(ζ, ν)))

where c(ζ, ν) is a constant dependent on ζ, ν, obtained from mean value theorem such that 3 ln(1+ ζ)− 3 ln(1+
ν) = 3

1+c(ζ,ν) (ζ − ν). So, we conclude that Υ is a Θ− (σ, ξ)Ω-contractive mapping. Thus, all of the hypotheses
of Theorem 3 are verified and hence Υ has a fixed point in [5, 7]. Moreover, since any two elements of [5, 7] are
comparable, the fixed point of Υ is unique and for any r0 ∈ X, the iterated sequence {Υn(r0)}n∈N is convergent
to the fixed point.

Note that we can not apply the main result of Roshan et al. [30]. Indeed, for ζ = 5 and ν = 6,
we get

σ(Ω(ρ(Υζ, Υν))) = 2 ln(Ω(ρ(Υζ, Υν)) + 1))

= 2ρ(Υζ, Υν)

= 2(e|Υζ−Υν| − 1)

= 2(e|3 ln(6)−3 ln(7)| − 1)

= 2(
73

63 − 1)

= 1.175

> 1.546

= 0.9(e− 1)

= 2 ln(e− 1 + 1)− (2 ln(e− 1 + 1)− 0.9(e− 1))

= 2 ln(e|ζ−ν| − 1 + 1)− (2 ln(e|ζ−ν| − 1 + 1)− 0.9(e|ζ−ν| − 1))

= σ(ρ(ζ, ν))− ξ(ρ(ζ, ν)).
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3. Application

For T > 0, consider

ζ(s) = p(s) +
∫ T

0
λ(s, r) f (r, ζ(r))dr, s ∈ I = [0, T] (22)

Here, we give an existence theorem for a solution of (22) in X = C(I, [0, ln( 20
9 )]) using Theorem 2. Take

ρ(ζ, ν) = e||ζ−ν||∞ − 1

for all ζ, ν ∈ X. Note that X is a p-complete p-metric space with Ω(s) = es − 1, where ||ζ||∞ =

supq∈I |ζ(q)|.
X is endowed with the partial order �:

ζ � ν⇐⇒ ζ(s) ≤ ν(s),

for each s ∈ I. Note that (X,�, ρ) is regular. Assume that

(i) f : I × [0, ln( 20
9 )]→ [0, ln( 20

9 )] and p : I → [0, ln( 20
9 )] are continuous;

(ii) λ : I × I → [0, ∞) is continuous;
(iii) For all ζ, ν with ζ � ν

0 ≤ f (r, ν)− f (r, ζ) ≤ ν− ζ.

(iv) maxs∈I
∫ T

0 | λ(s, r) | dr ≤ 1
2 ;

(v) There exists a continuous function α : [0, T]→ [0, ln( 20
9 )] so that

α(s) ≤ p(s) +
∫ T

0
λ(s, r) f (r, α(r))dr.

Theorem 5. Under the conditions (i)-(v), (22) has a solution in X = C([0, T], ln( 20
9 )].

Proof. Take F : X → X as

F(ζ(s)) = p(s) +
∫ T

0
λ(s, r) f (r, η(r))dr.

For ζ � ν,
f (s, ζ) ≤ f (s, ν),

the operator F is ordered increasing. Having that λ(s, r) > 0, so

F(ζ(s)) = p(s) +
∫ T

0
λ(s, r) f (r, ζ(r))dr ≤ p(s) +

∫ T

0
λ(s, r) f (r, ν(r))dr = F(ν(s)).

Now, take Θ(s) = 1 + [ln(s + 1)]2, σ(s) = 2 ln(1 + s) and ξ(s) = 2 ln(1 + s)− 0.9s. Note that ξ is
increasing iff 0 ≤ s ≤ 11

9 . For ζ, ν ∈ X, we have 0 ≤ ||ζ − ν||∞ ≤ ln(20/9), hence 0 ≤ ρ(ζ, ν) =

e||ζ−ν||∞ − 1 ≤ 11/9. Thus, diam(X) = supζ,ν∈X ρ(ζ, ν) = 11
9 .
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Now,

σ(Ω(ρ(Fζ, Fν))) = 2 ln(Ω(e||Fζ−Fν||∞ − 1) + 1)

= 2 ln(ee||Fζ−Fν||∞−1 − 1 + 1)

= 2(e||Fζ−Fν||∞ − 1)

≤ 2(emaxs∈I |
∫ T

0 λ(s,r)[ f (r,ζ(r))− f (r,ν(r))]dr| − 1)

≤ 2(e(maxs∈I
∫ T

0 |λ(s,r)|dr)||ζ−ν||∞ − 1)

≤ 2(e
||ζ−ν||∞

2 − 1)

≤ e||ζ−ν||∞ − 1.

Therefore,

Θ(σ(Ω(ρ(Fζ, Fν)))) ≤ Θ(e||ζ−ν||∞ − 1)

= 1 + ||ζ − ν||2 ≤ 1 + [ln(2||ζ − ν||+ 1)]2

1 + [ln(2||ζ − ν|| − .9(e||ζ−ν||∞ − 1) + 1)]2

=
Θ(σ(ρ(ζ, ν))

Θ(ξ(ρ(ζ, ν)))
.

Due to assumption (v),
α � F(α).

By Theorem 4, there is ζ ∈ X such that ζ = F(ζ), which is a solution of (22).

Note that we can not apply the theorem of Roshan et al. [30] to have a solution of (22). Indeed,

e||ζ−ν||∞ − 1 >2||ζ − ν|| − (2||ζ − ν|| − 0.9(e||ζ−ν||∞ − 1))

= 2 ln(e||ζ−ν||∞ − 1 + 1)− (2 ln(e||ζ−ν||∞ − 1 + 1)− 0.9(e||ζ−ν||∞ − 1))

= σ(ρ(ζ − ν))− ξ(ρ(ζ − ν)).

4. Conclusions

We introduced contraction type mappings by intervening Θ-contractions of Jleli and Samet [35]
and some control functions including altering distance functions. We gave some fixed point theorems
related to above mappings in the class of p-metric spaces. The obtained results have been illustrated
by some concrete examples and an application on integral equations.
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6. Ćirić, L. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 265–273.
[CrossRef]
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