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Abstract: In this paper, a new collocation method based on Haar wavelet is developed for numerical
solution of Riccati type differential equations with non-integer order. The fractional derivatives are
considered in the Caputo sense. The method is applied to one test problem. The maximum absolute
estimated error functions are calculated, and the performance of the process is demonstrated by
calculating the maximum absolute estimated error functions for a distinct number of nodal points.
The results show that the method is applicable and efficient.

Keywords: fractional differential equations; fractional derivative; Caputo fractional derivative;
Haar wavelet; collocation method

1. Introduction

Fractional differential equations (FDEs) are encountered in model problems in fluid flow,
finance, engineering, and other areas of applications [1–12]. Fractional Riccati DE (FRDEs) arise
in many fields, although discussions on the numerical methods for these equations FRDEs are
rare. Homotopy perturbation technique is used by Odibat and Momani [13] for solution of FRDEs.
Khader [14] used the Chebyshev finite difference technique for solution of FRDEs. Li et al. [15] used
quasi-linearization technique for solution of this problem. Yuzbasi worked on numerical solutions
of FRDEs through the Bernstein polynomials [16]. Yuanlu [17] find solution of nonlinear fractional
differential equation using Chebyshev wavelets. Wang and Fan [18] used the second kind Chebyshev
wavelet method for solving fractional differential equations. R. Taherdangkoo and M. Abdideh [19]
applied wavelet transform to detect fractured zones using conventional well logs data (Case study:
Southwest of Iran). We will solve these differential equations by Haar wavelet collocation method
(HWCM). Some work using HWCM can be found in the references [20–26]. In this paper, the fractional
derivative (FD) will be considered in the Caputo sense. The Caputo FD operator Dα of order α,
was introduced by M. Caputo in 1967 and defined as [27,28]:

Dα f (x) =
1

Γ(n− α)

∫ x

0

f (n)(s)ds
(x− s)1+α−n , α > 0 (1)

where: n− 1 < α < n, n ∈ N, x > 0. Caputo FD is a linear operator,

Dα(λ1g(x) + λ2h(x)) = λ1Dαg(x) + λ2Dαh(x),

where λ1, λ2 are constants.
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For the Caputo’s derivative, we have [29,30]:

Dαk = 0, where k is any constant (2)

Dαtn =

0 for n ∈ N0 and n < dαe,
Γ(n+1)

Γ(n+1−α)
tn−α for n ∈ N0 and n ≥ dαe,

(3)

where dαe denotes the ceiling function and N0 = {0, 1, 2, . . . }. For detail on Caputo derivative
see [31,32], delay differential equations see [33,34] and fractional delay differential equations see [35,36].

In this paper, we will also consider the FRDE of the following form [16]:

dαy(t)
dtα

= A(t) + B(t)y + C(t)y2, 0 < t ≤ R < ∞, (4)

subject to the initial condition
y(0) = y0, (5)

where dαy(t)
dtα is Caputo fractional derivative of the unknown function y(t), A(t), B(t) and C(t) are the

functions defined in [0, R], α is a constant describing the order of the fractional derivative. Here we
will consider the case 0 < α < 1. The aim of this work is to develop HWCM for solution of FRDEs.
The significant contribution of the paper is the development of a single method based on HW which
can be applied to find the solution of Riccati type differential equations of fractional order.

The paper is organized as: Preliminaries and notations are given in Section 2. Numerical technique
for the solution of Riccati type differential equations of fractional order based on the Haar wavelet
is developed in Section 3. Error estimation and residual correction for RDEs of fractional order are
given in Section 4. In Section 5, some test problem are given to check the applicability of the method.
Finally, some conclusions are drawn in Section 6.

2. Preliminaries and Notations

In this section, we present some notations, definitions and preliminary facts of the fractional
calculus theory which will be used.

Definition 1. Fractional derivative is the generalization of ordinary derivative when the derivative order is not
a natural number. According to Caputo, fractional derivative operator Dη of order η for any function y(t) is
given by [17]:

Dηy(t) =
1

Γ(n− η)

∫ t

0

y(n)(s)ds
(t− s)1−n+η

, η > 0, (6)

where η > 0 is fractional number, n is a positive integer greater than η, that is n = [η + 1], [η] is integral value
of η and n− 1 < η < n, n ∈ N, t > 0, Γ(n− η) is the Euler’s Gamma function and is defined by [37]:

Γ(z) =
∫ ∞

0
xz−1e−xdx, (7)

where z is a positive real number.

Definition 2. The Rieman Liouville fractional derivative operator Dη of order η for any function y(t) is given
by [17]:

Dηy(t) =
1

Γ(n− η)

dn

dtn

∫ t

0

y(s)ds
(t− s)1−n+η

, η > 0,
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Haar Wavelet

The family of Haar wavelet falls into the category of those wavelets which have compact support.
The function in the Haar wavelet family is constant functions attaining the only three values 0, 1 and
−1. These functions are discontinuous, and their derivatives of any order vanish entirely. Due to
this reason, for Haar wavelet, when applying to different types of differential equations, an indirect
approach is used instead of the direct approach. The Haar wavelet family for interval [0, 1) is defined
as [38]

hi(s) =


1 for s ∈ [ξ1, ξ2),

−1 for s ∈ [ξ2, ξ3),

0 otherwise i = 1, 2, 3, · · · , 2M,

(8)

where

ξ1 = ζ1 + (ζ2 − ζ1)
d
f

, (9)

ξ2 = ζ1 + (ζ2 − ζ1)
d + 0.5

f
(10)

and ξ3 = ζ1 + (ζ2 − ζ1)
d + 1

f
, (11)

where the integer f = 2r, r = 0, 1, 2, 3, . . . , V, V = 2M, where M is a positive integer and the
integer d = 0, 1, 2, 3, . . . f − 1. The integer r represents the level of wavelet, d represents translation
and f represents dilation, V is the uppermost level of resolution and i, f and d are related as
i = d + f + 1. The family of HW form orthonomal basis for L2(0, 1],space of square integrable functions.
Therefore any function g(s) ∈ L2(0, 1] can be written as a linear combination of an infinite series of
Haar basis functions in the following manner

g(s) = Σ∞
i=1γihi(s),

where γi are real numbers and known as HW coefficients. This series is terminated after finite number
of terms for approximation. Hence for any unknown functiong(s) we have

g(s) ≈ ΣN
i=1γihi(s).

Here we denote
pi,1(s) =

∫ s

0
hi(s)ds, (12)

where hi(s) are defined in Equation (8). In general

pi,a+1(s) =
∫ s

0
pi,a(s)ds, a = 1, 2, . . . (13)

These integrals can be calculated using Equation (8) and are given below.

pi,n(x) =


0 for x ∈ [0, ξ1),
1
n! (x− α)n for x ∈ [ξ1, ξ2),
1
n! [(x− α)n − 2(x− β)n] for x ∈ [ξ2, ξ3),
1
n! [(x− α)n − 2(x− β)n + (x− γ)n] for x ∈ [ξ3, 1), n = 1, 2, . . .

(14)
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For Haar wavelet collocation method, the computational domain [a, b] is discretized using the
following collocation points:

tj = a + (b− a)
j− 0.5

N
j = 1, 2, . . . , N. (15)

3. Convergence Analysis

Suppose that u(x) is square integrable function with |u′(x)| ≤ K on (0, 1), then the error norm at
Jth level satisfies (16)

‖ej(x)‖ =
√

K
C

2−(3)2
J−1

, (16)

Here K, C are constants and M is natural number related to Jth resolution of the wavelet.

4. Numerical Results

In this section, the proposed numerical method will be developed to find the approximate solution
of Riccati type differential equations of fractional order using Haar wavelet collocation method.

First, we assume that ẏ(t) is square integrable function and therefore can be expressed as a Haar
wavelet series given as follows:

ẏ(t) =
N

∑
i=1

λihi(t). (17)

Integration yields the following relation.

y(t) = y0 +
N

∑
i=1

λi pi,1(t), (18)

where u0 = u(0). By applying the Caputo derivative definition to Riccati type differential Equation (4)
of fractional order, we have

1
Γ(n− α)

∫ t

0
(t− τ)n−α−1yn(τ)dτ = A(t) + B(t)y + C(t)y2,

since 0 < α < 1, therefore n = 1, and we have

1
Γ(1− α)

∫ t

0
(t− τ)−αy′(t)(τ)dτ = A(t) + B(t)y + C(t)y2.

By applying the Haar wavelet approximations we obtain

1
Γ(1− α)

∫ t

0
(t− τ)−α

N

∑
i=1

λihi(τ)dτ = A(t) + B(t)

(
y0 +

N

∑
i=1

λi pi,1(t)

)
+ C(t)

(
y0 +

N

∑
i=1

λi pi,1(t)

)2

,

after simplification, we have

1
Γ(1− α)

∫ t

0
(t− τ)−α

N

∑
i=1

λihi(τ)dτ−A(t)− B(t)

(
y0 +

N

∑
i=1

λi pi,1(t)

)
−C(t)

(
y0 +

N

∑
i=1

λi pi,1(t)

)2

= 0.
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Substituting the collocation points tj, j = 1, 2, . . . , N, we obtain the following system of
nonlinear equations

Let Fj =
1

Γ(1− α)

∫ tj

0
(tj − τ)−α

N

∑
i=1

λihi(τ)dτ − A(tj)− B(tj)

(
y0 +

N

∑
i=1

λi pi,1(tj)

)

− C(tj)

(
y0 +

N

∑
i=1

λi pi,1(tj)

)2

, j = 1, 2, . . . , N.

(19)

The integrals in the above system are approximated using the following Haar wavelet integration
formula [39] ∫ b

a
f (t)dt ≈ b− a

N

N

∑
k=1

f (tk) =
N

∑
k=1

f
(

a +
(b− a)(k− 0.5)

N

)
. (20)

By applying the above integral formula, we have

Let Fj =
1

Γ(1− α)

tj

N

N

∑
m=1

(tj − τm)
−α

N

∑
i=1

λihi(τm)− A(tj)− B(tj)

(
y0 +

N

∑
i=1

λi pi,1(tj)

)

− C(tj)

(
y0 +

N

∑
i=1

λi pi,1(tj)

)2

, j = 1, 2, . . . , N.

(21)

This system can be solved using either Newton’s method or Broyden’s method. The Jacobian of
the system is given by

J = [Jjk]N×N , (22)

where

Jjk =
∂Fj

∂λk
=

tj

Γ(1− α)N

N

∑
m=1

(tj − τm)
−αhk(τm)− B(tj)pk,1(tj)− 2C(tj)

(
y0 +

N

∑
i=1

λi pi,1(tj)

)
pk,1(tj).

The solution of the above system gives values of the unknown coefficients λi, i = 1, 2, . . . , N.
The approximate solution y(t) at the collocation points is finally calculated by substituting
λi, i = 1, 2, . . . N in Equation (18).

5. Error Estimation and Residual Correction

In this section, we will study the error estimation and residual correction for Riccati type
differential equations of fractional order. The residual function RN(t) is defined as

RN(t) =
dαyN(t)

dtα
− A(t) + B(t)yN + C(t)y2

N . (23)

Let us define the error function as

eN(t) = y(t)− yN(t), (24)

where y(t) is exact solution. So
y(t) = eN(t) + yN(t) (25)

also
y′(t)− y′N(t) = (y(t)− yN(t))

′ = (eN(t))
′ , (26)

and
dαy(t)

dtα
− dαyN(t)

dtα
=

dα

dtα
(y(t)− yN(t)) =

dαeN(t)
dtα

, (27)
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subtracting Equation (23) from Equation (4), we have

dα

dtα
(y(t)− yN(t)) = B(t) (y(t)− yN(t)) + C(t)

(
y2(t)− y2

N(t)
)
− RN(t),

by using Equations (24), (26) and (27), we have

dαeN(t)
dtα

= B(t)eN(t) + C(t)e2
N(t)− RN(t). (28)

By applying the Caputo derivative definition, we have

1
Γ(n− α)

∫ t

0
(t− τ)n−α−1en

N(t)(τ)dτ = B(t)eN(t) + C(t)e2
N(t)− RN(t),

since 0 < α < 1, therefore n = 1, and we have

1
Γ(1− α)

∫ t

0
(t− τ)−αe′N(t)(τ)dτ = B(t)eN(t) + C(t)e2

N(t)− RN(t),

where eN(t) is unknown function to be determined. The initial condition for approximate solution
yN(t) is

yN(0) = y0, (29)

so initial condition for system (5) is
eN(0) = 0. (30)

Let [eN(t)]
′ is square integrable function and therefore can be expressed as a Haar wavelet series

given as follows:

[eN,M(t)]′ =
M

∑
i=1

ζihi(t), (31)

integrating we get

eN,M(t) =
M

∑
i=1

ζi pi,1(t), (32)

where eN(t) is approximated by eN,M(t), eN,M(t) is Haar error estimation for eN(t). Applying Haar
wavelet approximations, we have

1
Γ(1− α)

∫ t

0
(t− τ)−α

M

∑
i=1

ζihi(t)(τ)dτ = B(t)

(
M

∑
i=1

ζi pi,1(t)

)
+ C(t)

(
M

∑
i=1

ζi pi,1(t)

)2

− RN(t),

after simplification, we get

1
Γ(1− α)

∫ t

0
(t− τ)−α

M

∑
i=1

ζihi(t)(τ)dτ − B(t)

(
M

∑
i=1

ζi pi,1(t)

)
− C(t)

(
M

∑
i=1

ζi pi,1(t)

)2

− RN(t) = 0,

putting the collocation points (15), we obtain a system of nonlinear equations given below,

Fj =
1

Γ(1− α)

∫ tj

0
(tj − τ)−α

M

∑
i=1

ζihi(tj)(τ)dτ − B(tj)

(
M

∑
i=1

ζi pi,1(tj)

)

− C(tj)

(
M

∑
i=1

ζi pi,1(tj)

)2

− RN(tj), j = 1, 2, . . . , M.
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The integrals in the above system are approximated using the following Haar wavelet integration
formula [39] ∫ b

a
f (t)dt ≈ b− a

N

N

∑
k=1

f (tk) =
N

∑
k=1

f
(

a +
(b− a)(k− 0.5)

N

)
. (33)

By applying the above integral formula, we have

Fj =
1

Γ(1− α)

tj

N

M

∑
m=1

(tj − τm)
−α

M

∑
i=1

ζihi(tj)(τm)− B(tj)
M

∑
i=1

ζi pi,1(tj)

− C(tj)

(
M

∑
i=1

ζi pi,1(tj)

)2

− RN(tj), j = 1, 2, . . . , M.

The above system can be solved using either Broyden’s method or Newton’s method. The Jacobian
of the system is given by

J = [Jjk]M×M, (34)

where

Jjk =
∂Fj

∂ζk
=

tj

Γ(1− α)N

M

∑
m=1

(tj − τm)
−αhk(tj)− B(tj)pk,1(tj)− 2C(tj)

M

∑
i=1

ζi pi,1(tj)pk,1(tj). (35)

The solution of the above system gives values of the unknown coefficients ζi, i = 1, 2, . . . , M.
The approximate solution at the collocation points is finally calculated by substituting ζi, i = 1, 2, . . . M
in Equation (32). Substituting the value of eN,M(t) in Equation (25), we get the required solution of
unknown function y(t).

6. Numerical Results and Discussion

In this section, we will use the Haar wavelet collocation technique to solve fractional (arbitrary)
Riccati Type differential equation. These examples are considered because closed form solutions are
available for them, or they have also been solved using other numerical schemes. The Haar wavelet is
implemented on the problem which has exact solution. The performance of the proposed method is
very good which can be easily observed from these tables and figure.

Numerical Experiments

In this section, some test problems are considered to illustrate the efficiency of the proposed
method. The implementations and testing of the above techniques are performed in MATLAB software.

Example 1. Consider the following Riccati fractional differential equation [16]

dαy(t)
dtα

+ y2(t) = 1, 0 < α < 1, (36)

with initial condition
y(0) = 0. (37)

In this problem A(t) = 1, B(t) = 0 and C(t) = −1. The exact solution of the problem for α = 1 is given
by y(t) = e2t−1

e2t+1 . The proposed method is applied to this nonlinear FDEs. The numerical results for α = 1
2 are

reported in Table 1, for α = 1
3 are reported in Table 2 and for α = 1

5 are reported in Table 3. The performance of
the proposed method is very good which can be easily observed from these tables. The comparison of exact and
approximate solutions for α = 1 are shown in Figure 1.
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Table 1. Maximum estimated absolute errors for α = 1
2 for Example 1.

J N M eN,M(t)

1 4 8 4.71362 ×10−3

2 8 16 1.02141 ×10−2

3 16 32 3.72674 ×10−3

4 32 64 2.61325 ×10−4

5 64 128 4.58470 ×10−5

6 128 256 1.84356 ×10−5

7 256 512 4.01407 ×10−6

8 512 1024 1.37851 ×10−6

9 1024 2048 3.93057 ×10−7

Table 2. Maximum estimated absolute errors for α = 1
3 for Example 1.

J N M eN,M(t)

1 4 8 4.07815 ×10−3

2 8 16 2.08991 ×10−2

3 16 32 4.21256 ×10−3

4 32 64 2.63916 ×10−4

5 64 128 3.12723 ×10−5

6 128 256 1.61477 ×10−5

7 256 512 3.10984 ×10−6

8 512 1024 1.15074 ×10−6

9 1024 2048 4.18620 ×10−7

Table 3. Maximum estimated absolute errors for α = 1
5 for Example 1.

J N M eN,M(t)

1 4 8 5.86412 ×10−3

2 8 16 2.70831 ×10−2

3 16 32 3.44670 ×10−3

4 32 64 2.71416 ×10−4

5 64 128 5.50248 ×10−5

6 128 256 1.54249 ×10−5

7 256 512 5.44532 ×10−6

8 512 1024 1.13653 ×10−6

9 1024 2048 3.65001 ×10−7

Example 2. Consider the following fractional Riccati differential equation

dαy(t)
dtα

= t3y2(t)− 2t4y(t) + t5, 0 < α < 1, (38)

with initial condition
y(0) = 0. (39)

The exact solution of the problem for α = 1 is given by y(t) = t. The numerical results for α = 1
2 are

reported in Table 4. The performance of the proposed method is very good which can be easily observed from these
tables. The comparison of exact and approximate solutions for α = 1 are shown in Figure 2.
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Figure 1. Comparison of exact α = 1 and approximate solution for N = 32 for Example 1.

Table 4. Maximum estimated absolute errors for α = 1
2 for Example 2.

J N M eN,M(t)

1 4 8 1.29043 ×10−2

2 8 16 3.62737 ×10−3

3 16 32 1.51488 ×10−4

4 32 64 4.07078 ×10−5

5 64 128 1.76634 ×10−5

6 128 256 5.54249 ×10−6

7 256 512 3.61688 ×10−6

8 512 1024 1.74098 ×10−6

9 1024 2048 4.80576 ×10−7
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Figure 2. Comparison of exact α = 1 and approximate solution for N = 32 for Example 2.

7. Conclusions

A HWCM is developed for numerical solution of FRDEs. The error estimation and residual
function of this technique is given. The results show that the proposed technique is efficient and
accurate. Some analytical method by using HW can be found in the references [40,41]. The performance
of the method is equally suitable for these equations. By observing the tables and figures, the proposed
method solutions are close to the exact solutions. Hence, the proposed technique is suitable for solving
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these differential equations. An excellent performance of the proposed method is observed when
tested on benchmark problems of these equations from existing literature.
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