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Abstract: We introduce log-preinvex and log-invex functions on a Riemannian manifold. Some properties
and relationships of these functions are discussed. A characterization for the existence of a global minimum
point of a mathematical programming problem is presented. Moreover, a mean value inequality under
geodesic log-preinvexity is extended to Cartan-Hadamard manifolds.
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1. Introduction

In Mathematical Sciences, convexity plays very crucial role and contributes a fundamental character
in optimization theory, engineering, economics, management science, variational inequalities and
Riemannian manifolds etc. However, convexity fails to render accurate results in real world mathematical
and economic models. For that reason, many authors have presented the various concepts of generalized
convexity. In 1981, Hanson [1] gave a generalization of convex function, which was later known as an invex
function. Furthermore, Ben-Israel and Mond [2] introduced preinvex function. The characterizations of
preinvex functions and their applications in optimization theory have been studied in [3,4]. Noor [5,6]
discussed relations between an equilibrium problem and variational inequalities under these functions.
Hermite-Hadamard inequality based on log-preinvex function was presented by Noor [7,8]. Many papers
have appeared in the literature under the concept of preinvexity (see, [9–15]).

Some results related to nonlinear analysis and optimization theory have been enhanced on Riemannian
manifolds from Euclidean space. The geodesic convexity was introduced by Rapcsak [16] and Udriste [17].
Later on, the concept of invexity on a Riemannian manifold was proposed by Pini [18] and its generalizations
were explored in [19]. In [12], Barani and Pouryayevali have presented the geodesic invex set, geodesic
η-preinvex and geodesic η-invex functions on a Riemannian manifold. The geodesic α-preinvex function
was introduced by Agrawal et al. [9]. In [15], Zhou and Huang presented the B-invex function on
a Riemannian manifold. The geodesic geodesic E-convexity was proposed on a Riemannian manifold in [20].
These results were further generalized in [21–23]. Recently, Ahmad et al. [24] have discussed the geodesic
sub-b-s convex functions and studied characterizations of these functions.

Analyzing the discussion of Pini [18], Barani and Pouryayevali [12], and Noor [7,8], we attempt
an effort to introduce the geodesic log-preinvex and geodesic log-invex functions on Riemannian manifolds.
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These functions are a generalization of preinvexity defined in [7,8,12]. The contents of this paper are
divided as follows: In Section 2, we recall preliminaries and definitions, which will be used to demonstrate
the work. In Section 3, we present a new class of functions namely, geodesic log-preinvex and geodesic
log-invex functions. Some properties and relations between geodesic log-preinvex and geodesic log-invex
functions are studied on a Riemannian manifold in Section 4. In Section 5, proximal subdifferential and lower
semi-continous log pre-invex function are used to observe that a local minimum point for a mathematical
optimization problem is also a global minimum point on a Riemannian manifold. Finally, we present a mean
value inequality on a Cartan-Hadamard manifold in Section 6 and conclude the paper in Section 7.

2. Notations and Preliminaries

We recall some basic definitions and concepts on Riemannian manifolds. For more details, authors
may consult [25]. Let M̄ be a n-dimensional Riemannian manifold and let Tu M̄ be the tangent space
of M̄. The Riemannian metric is denoted by 〈., .〉 on the Tu M̄ and the associated norm is denoted by ‖.‖u.
Suppose TM̄ =

⋃
u∈M̄ Tu M̄ is tangent bundle of M̄. If u and v be two points on M̄ and γ : [a, b] → M̄ is

a piecewise smooth curve joining γ(a) = u to γ(b) = v, its length L(γ) is given by

L(γ) =
∫ b

a

∥∥∥γ
′
(s)
∥∥∥ ds.

The Riemannian distance d(u, v) between the points u and v defined as:

d(u, v) = inf {L(γ) : γ is a piecewise smooth curve connecting the points u and v} .

A metric d on M̄, which is similar topology as the one M̄ naturally has as a manifold. We define the open
ball for this metric centered at the point v with radius r > 0 as

B(v, r) = {u ∈ M̄ : d(u, v) < r} .

On a Riemannian manifold M̄ there exists a unique affine connection which is without torsion
and metric. This affine connection is called the Levi-Civita connection which is symbolized by ∇XY for
any vector fields X, Y on M̄. A geodesic is a smooth path γ, that is γ satisfies the equation ∇γγ′ = 0
when tangent of geodesic is parallel with the path γ. Any path γ connecting u and v in M̄ such that
L(γ) = d(u, v) is a geodesic and it is known as minimizing geodesic. Moreover, the exponential map
at u, expu : Tu M̄→ M̄ is well defined on Tu M̄. A simply connected complete Riemannian manifold with
non-positive sectional curvature is called Hadamard manifold.

Barani and Pouryayevali [12] have presented the following definitions on a Riemannian manifold M̄.

Definition 1. A nonempty subset U of M̄ is said to be a geodesic invex set with respect to η(u, v) : M̄× M̄→ TM̄,
if for every u, v ∈ U, there exists a unique geodesic γu,v : [0, 1]→ M̄ such that

γu,v(0) = v, γ′u,v(0) = η(u, v), γu,v(s) ∈ U, for all s ∈ [0, 1].

Let h : U → R be a real valued differentiable function.

Definition 2. A function h : U → R is said to be geodesic η-invex on U with respect to η, if

h(u)− h(v) ≥ dhv(η(u, v)), for all u, v ∈ U.



Mathematics 2019, 7, 547 3 of 12

Definition 3. A function h : U → R is said to be geodesic preinvex on U, if for any u, v ∈ U

h(γu,v(s)) ≤ sh(u) + (1− s)h(v), for all s ∈ [0, 1],

where γu,v is the particular geodesic defined in Definition 1. If the above inequality is strict, then h is said to be a
strictly geodesic preinvex function.

Definition 4. The function η(u, v) : M̄× M̄ → TM̄ satisfies the condition (C), if for every u, v ∈ M̄ and for
geodesic γ : [0, 1]→ M̄ satisfying γu,v(0) = v and γ′u,v(0) = η(u, v), we have

(C1) P0
t,γu,v [η(v, γu,v(t)] =− tη(u, v),

(C2) P0
t,γu,v [η(u, γu,v(t)] =(1− t)η(u, v),

for each t ∈ [0, 1].

Throughout the subsequent sections, h is a positive real valued function.

3. Geodesic Log-Invex and Geodesic Log-Preinvex Functions

Now we introduce the following geodesic log-invex and geodesic log-preinvex functions on
a Riemannian manifold M̄.

Definition 5. A function h : U → R is said to be a geodesic log-invex function with respect to η, if

dhv(η(u, v)) ≤ h(v)(ln(h(u))− ln(h(v))), for all u, v ∈ U.

The following definition of geodesic log-preinvex function on a Riemannian manifold is the
generalization of log-preinvex function defined in [7,8].

Definition 6. The function h : U → R is said to be a geodesic log-preinvex with respect to η on U, if for
any u, v ∈ U,

h(γu,v(s)) ≤ (h(v))1−s(h(u))s, for all u, v ∈ U, s ∈ [0, 1].

If the above inequality is a strict inequality, then h is called a strictly geodesic log-preinvex function.

Remark 1. Every geodesic preinvex function is also a geodesic log-preinvex function, but the converse is not true as
can be seen in the following example.

Example 1. Let M̄ =
{

eiθ : 0 < θ < π
2
}

and h : M̄→ R be a function defined as h(eiθ) = (30 + cos θ + sin θ)2

with u, v ∈ M̄, u = eiα and v = eiβ. Let γu,v(s) = ei((1−s)β+sα).

h(γu,v(s)) = (30 + cos((1− s)β + sα) + sin((1− s)β + sα))2,

and h(eiα) = (30 + cos α + sin α)2, h(eiβ) = (30 + cos β + sin β)2.
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The function h is a geodesic log-preinvex for all u, v ∈ M̄ and s ∈ [0, 1], can be seen below:

h(γu,v(s))−
(
(h(v))1−s(h(u))s

)
=h(ei((1−s)β+sα))−

(
(h(eiβ))1−s (h(eiα))s

)
= (30 + cos((1− s)β + αs) + sin((1− s)β + αs))2

−
(
((30 + cos β + sin β)2)(1−s) ((30 + cos α + sin α)2)s

)
= (30 + cos((1− s)β + αs) + sin((1− s)β + αs))2

−
(
(30 + cos β + sin β)2(1−s) (30 + cos α + sin α)2s

)
≤ 0.

However, the function h is not a geodesic preinvex function at α = π
4 , β = π

6 and s = 1
2 , since we have

h(γu,v(s))− sh(u)− (1− s)h(v) =
(

30 + cos
((

1− 1
2

)
π

6
+

π

4
× 1

2

)
+ sin

((
1− 1

2

)
π

6
+

π

4
× 1

2

))2

− 1
2

(
30 + cos

π

4
+ sin

π

4

)2
−
(

1− 1
2

)(
30 + cos

π

6
+ sin

π

6

)2

=0.75 6< 0.

4. Geodesic Log-Preinvexity and Differentiability

The following section deals with some properties and relationships between the geodesic log-preinvex
function and the geodesic log-invex function. Let U be a geodesic invex set.

Theorem 1. Let h : U → R be a geodesic log-preinvex function with respect to η on U. Then, the level set
Uα = {u|u ∈ U, h(u) ≤ α} is a geodesic invex set for each real number α ∈ R.

Proof of Theorem 1. Assume that u, v ∈ Uα and 0 ≤ s ≤ 1. It follows that h(u) ≤ α and h(v) ≤ α. By the
definition of log-preinvexity of h, we have

h(γu,v(s)) ≤ (h(v))1−s(h(u))s,

h(γu,v(s)) ≤ α1−sαs,

or

h(γu,v(s)) ≤ α.

Therefore, γu,v(s) ∈ Uα for all s ∈ [0, 1]. This completes the proof of the theorem.

Theorem 2. Let h : U → R be a geodesic log-preinvex function with respect to η on U. Let ψ : I → R be
an increasing log-preinvex function such that range h ⊂ I. Then the composite function ψ o h is a geodesic log-preinvex
on U.

Proof of Theorem 2. From the definition of geodesic log-preinvexity of h, we have

h(γu,v(s)) ≤ (h(v))1−s(h(u))s, for all u, v ∈ U and s ∈ [0, 1].
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As ψ is an increasing log-preinvex function, then we obtain

ψ(h(γu,v(s))) ≤ ψ((h(v))1−s(h(u))s)

or

ψ(h(γu,v(s))) ≤ h1−s(ψ(v))1−sψs(h(u))s,

by using the definition of composite function, we have

(ψ o h)(γu,v(s)) ≤ ((ψ o h)(v))1−s((ψ o h)(u))s,

which implies that ψ o h is a geodesic log-preinvex function on U.

Theorem 3. Let hj : U → R, j = 1, 2, . . . , r be geodesic log-preinvex functions with respect to η on U. Then

h =
r

∑
j=1

αjhj, for all αj ∈ R, αj ≥ 0, j = 1, 2, . . . , r

is a geodesic log-preinvex function on U.

Proof of Theorem 3. From the Definition 6, the proof is obvious.

Theorem 4. Let h : U → R be a geodesic log-preinvex function on U. Then the function h is a geodesic log-invex
on U.

Proof of Theorem 4. Since U is a geodesic invex set with respect to η, then for all u, v ∈ U, there exists
a particular geodesic such that γu,v(0) = v, γ′u,v(0) = η(u, v), γu,v(s) ∈ U, for all s ∈ [0, 1]. Using the
differentiability of h at v ∈ M̄, we get

dhv(η(u, v)) = lim
s→0

1
s
[h(γu,v(s))− h(v)],

and so

h(v) + dhv(η(u, v))s + O2(s) = h(γu,v(s)).

where O2(s) denotes the higher order terms of the variable s. By the geodesic log-preinvexity of h for
s ∈ (0, 1), we have

h(v) + dhv(η(u, v))s + O2(s) ≤ (h(v))1−s(h(u))s,

or

ln
(

h(v) + dhv(η(u, v))s + O2(s)
)
≤ s ln(h(u)) + (1− s) ln(h(v)).

On further simplification, we have

ln
(

h(v) + dhv(η(u, v))s + O2(s)
)
− ln(h(v)) ≤ s ln(h(u))− s ln(h(v)).
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Using the properties of lograthimic function, it is easy to see that

ln
(

1 + dhv(η(u,v))s
h(v) + O2(s)

h(v)

)
s

≤ ln(h(u))− ln(h(v)),

taking the limit s→ 0, we get

dhv(η(u, v)) ≤ h(v)(ln(h(u))− ln(h(v))).

Therefore, h is a geodesic log-invex function on U.

Theorem 5. Let U ⊆ M̄ be a geodesic invex set with respect to η : M̄× M̄→ TM̄ and η satisfies the condition (C).
Let h : U → R be a geodesic log-invex function on U. Then h is a geodesic log-preinvex function on U.

Proof of Theorem 5. It is clear that for a geodesic invex set with respect to η for each u, v ∈ U, there exists
a particular geodesic γu,v : [0, 1] → M̄ such that γu,v(0) = v, γ′u,v(0) = η(u, v), γu,v(s) ∈ U, for all
s ∈ [0, 1].

Fix s ∈ [0, 1] and set ū = γu,v(s). By geodesic log-invexity of h on U, we have

ln(h(u))− ln(h(ū)) ≥ 1
h(ū)

dhū(η(u, ū)), (1)

ln(h(v))− ln(h(ū)) ≥ 1
h(ū)

dhū(η(v, ū)). (2)

Inequalities (1) and (2) are multiplied by s and (1− s), respectively and adding them yields

s(ln(h(u))− ln(h(ū))) + (1− s)(ln(h(v))− ln(h(ū))) ≥ 1
h(ū)

dhū[sη(u, ū) + (1− s)η(v, ū)]. (3)

By condition (C), we obtain

sη(u, ū) + (1− s)η(v, ū) = s(1− s)Ps
0,γ[η(u, v)]− (1− s)sPs

0,γ[η(u, v)] = 0.

The above equation together with inequality (3), yields

s ln(h(u)) + (1− s) ln(h(v)) ≥ ln(h(ū)),

equivalently,

h(ū) ≤ (h(v))1−s(h(u))s.

This implies that h is a geodesic log-preinvex function on U.

5. Semi-Continuous Geodesic Log-Preinvexity

The following definition of a proximal sub-differential of a function defined on a Riemannian manifold
will be used in the sequel.
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Definition 7. [26,27] Let h : M̄→ (−∞, ∞] be a lower semi-continuous function. A vector ζ ∈ Tv M̄ is said to
be a proximal sub-gradient of h at v ∈ dom(h), if there exist positive numbers δ and σ such that

h(u) ≥ h(v)+ < ζ, exp−1
v u >v −σd2(u, v), for all u ∈ B(v, δ),

where dom(h) = {u ∈ M̄ : 0 < h(u) < ∞}. The set of all proximal sub-gradient of v ∈ M̄ is denoted by ∂ph(v)
and is called the proximal sub-differential of h at v.

To study the semicontinous geodesic log-preinvex function, we first show that any local minimum
point for a mathematical programming problem (P) is also a global minimum point under geodesic
log-preinvexity.

Theorem 6. Let U ⊆ M̄ be a geodesic invex set with respect to η : M̄× M̄→ TM̄ and h : U → R be a geodesic
log-preinvex function at ū ∈ U. If ū ∈ U is a local minimum point of the problem

(P) Minimize h(u)
subject to u ∈ U,

then ū is also a global minimum point of problem (P).

Proof of Theorem 6. Suppose that ū ∈ U is a local minimum point of the problem (P). Then there exists
a neighbourhood Nε(ū) such as

h(ū) ≤ h(u), for all u ∈ U ∩ Nε(ū). (4)

If ū is not a global minimum point of the problem (P), then there exists a point u∗ ∈ U such that

h(u∗) < h(ū),

or

ln (h(u∗)) < ln (h(ū)). (5)

As U is a geodesic invex set with respect to η, then there exists a particular geodesic γ so that
γ(0) = ū, γ′(0) = η(u∗, ū), γ(s) ∈ U and for all s ∈ [0, 1].

Although, we set ε > 0 such as d(γ(s), ū)ε, then γ(s) ∈ Nε(ū). The geodesic log-preinvexity of h gives

h(γ(s)) ≤ (h(u∗))s(h(ū))1−s,

equivalently, we get

ln(h(γ(s))) ≤ s ln(h(u∗)) + (1− s) ln(h(ū)).

The above inequality with inequality (5), implies

ln(h(γ(s))) < ln(h(ū)),

or
h(γ(s)) < h(ū), for all s ∈ (0, 1).
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Therefore, for each γ(s) ∈ U ∩ Nε(ū), h(γ(s)) < h(ū), which contradicts inequality (4). Hence ū is a
global minimum point of the problem (P).

Theorem 7. Let U ⊆ M̄ be a geodesic invex set with respect to η : M̄× M̄ → TM̄ with η(u, v) 6= 0, for u 6= v.
Suppose that h : U → (−∞, ∞] is lower semi-continuous geodesic log-preinvex function and v ∈ dom(h),
ζ ∈ ∂ph(v). Then there exists δ > 0 such that

ln(h(u))− ln(h(v)) ≥ 〈ζ, η(u, v)〉v
h(v)

, for all u ∈ U ∩ B(v, δ).

Proof of Theorem 7. From the definition of ∂ph(v), there are positive numbers δ and σ such that

h(u) ≥ h(v)+ < ζ, exp−1
v u >v −σd2(u, v), for all u ∈ B(v, δ). (6)

Now, fix u ∈ U ∩ B(v, δ). Since U is a geodesic invex set with respect to η, then there exists a particular
geodesic γu,v : [0, 1]→ M̄ such as γu,v(0) = v, γ′u,v(0) = η(u, v), γu,v(s) ∈ U, for all s ∈ [0, 1].

Since M̄ is a Hadamard manifold, then γu,v(s) = expv(sη(u, v)) for every s ∈ [0, 1] (see [25], p. 253).
If we take s0 = δ

‖η(u,v)‖v
, then expv(sη(u, v)) ∈ U ∩ B(v, δ), for all s ∈ (0, s0).

By the geodesic log-preinvexity of h, we have

h(expv(s(η(u, v)))) ≤ (h(u))s(h(v))1−s,

or

ln(h(expv(s(η(u, v))))) ≤ (1− s) ln(h(v)) + sln(h(u)). (7)

Inequality (6) for each s ∈ (0, s0) can be written as

h(expv(s(η(u, v)))) ≥ h(v)+ < ζ, exp−1
v expv(sη(u, v)) >v −σd2(expv(sη(u, v), v))

= h(v) + 〈ζ, sη(u, v)〉v − σd2(expv(sη(u, v), v)).

By the intrinsic property of Cartan-Hadamard manifold M̄, we have

d2(expv(sη(u, v), v)) = ‖sη(u, v)‖2
v = s2‖η(u, v)‖2

v.

for every s ∈ (0, s0).
Thus, we have

h(expv(s(η(u, v)))) ≥ h(v) + 〈ζ, sη(u, v)〉v − σs2‖η(u, v)‖2
v,

or

ln (h(expv(s(η(u, v))))) ≥ ln[h(v) + 〈ζ, sη(u, v)〉v − σs2‖η(u, v)‖2
v]. (8)

Inequalities (7) and (8), yield

(1− s) ln(h(v)) + s ln(h(u)) ≥ ln[h(v) + 〈ζ, sη(u, v)〉v − σs2‖η(u, v)‖2
v],



Mathematics 2019, 7, 547 9 of 12

or,

ln(h(u))− ln(h(v)) ≥ 1
s

ln
[

1 +
〈ζ, sη(u, v)〉v − σs2‖η(u, v)‖2

v
h(v)

]
.

Now, taking limit s→ 0, we obtain

ln(h(u))− ln(h(v)) ≥ 〈ζ, η(u, v)〉v
h(v)

.

Hence the proof of the theorem is complete.

6. Mean Value Inequality

Antczak [28] proved the mean value inequality under invexity. Barani and Pouryayevali [12] extended
this inequality under geodesic invexity to a Cartan-Hadamard manifold. We now generalize mean value
inequality under geodesic log-preinvexity on a Cartan-Hadamard manifold.

Definition 8. [12] Let U ⊆ M̄ be a geodesic invex set with respect to η : M̄× M̄ → TM̄, and u and x be two
arbitrary points of U. Let γ : [0, 1]→ M̄ be the particular geodesic such as γ(0) = x, γ′(0) = η(u, x), γ(s) ∈ U,
for all s ∈ [0, 1].

We denote by Pxy the closed η-path joining the points x and y = γ(1), defined as

Pxy = {v : v = γ(s), s ∈ [0, 1]}.

Let define P0
xy an open η-path joining the points x and y as

P0
xy = {v : v = γ(s), s ∈ (0, 1)}.

If x = y we set P0
xy = φ.

Theorem 8. (Mean Value Inequality) Let M̄ be a Cartan-Hadamard manifold and U ⊆ M̄ be a geodesic invex set
with respect to η : M̄× M̄→ TM̄ such that η(a, b) 6= 0 for each a, b ∈ U, a 6= b. If γb,a(s) = expa(sη(b, a)) for
all a, b ∈ U, s ∈ [0, 1] and c = γb,a(1), then a necessary and sufficient condition for a function h : U → R to be
a geodesic log-preinvex is that the inequality

ln(h(u)) ≤ ln(h(a)) +
ln(h(b))− ln(h(a))
〈η(b, a), η(b, a)〉a

〈exp−1
a u, η(b, a)〉a, (9)

holds, for all u ∈ Pca.

Proof of Theorem 8. Necessity: Let h : U → R be a geodesic log-preinvex function and let a, b ∈ U and
u ∈ Pca. If u = a or u = c, then (9) is true trivially. If u ∈ P0

ca, then u = expa(sη(b, a)), for some s ∈ (0, 1).
From the geodesic invexity of U, we have u ∈ U and

s =
〈exp−1

a u, η(b, a)〉a
〈η(b, a), η(b, a)〉a

.
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From the geodesic log-preinvexity of h on U, we get

h(u) = h(expa(sη(b, a)) ≤ (h(a))1−s(h(b))s,

or

ln(h(u)) ≤ s ln(h(b)) + (1− s) ln(h(a)) = ln(h(a)) + s(ln(h(b))− ln(h(a))).

Using the value of s, we obtain

ln(h(u)) ≤ ln(h(a)) +
ln(h(b))− ln(h(a))
〈η(b, a), η(b, a)〉a

〈exp−1
a u, η(b, a)〉a.

Sufficiency: Suppose that inequality (9) is true. Let a, b ∈ U and u = expa(sη(b, a)), for some s ∈ [0, 1].
Then u ∈ U, we have

h(u) = h(expa(sη(b, a)).

Now from inequality (9), we get

ln (h(u)) ≤ ln (h(a)) +
ln(h(b))− ln(h(a))
〈η(b, a), η(b, a)〉a

〈exp−1
a u, η(b, a)〉a,

ln(h(u)) ≤ s ln(h(b)) + (1− s)ln(h(a)),

that is,

h(expa(sη(b, a)) ≤ (h(b))s(h(a))1−s.

Hence, h is a geodesic log-preinvex function on U.

7. Conclusions

The present paper is based on the concept of generalized geodesic convexity on a Riemannian
manifold. We have introduced the geodesic log-invex function and geodesic log-preinvex function.
Some properties and relationships between these functions are studied. Using the smoothness condition
on a geodesic log-preinvex function with lower semi-continuity, we obtained a result of the existence
condition for a global minimum of a mathematical programming problem. Moreover, we prove the mean
value inequality on Cartan-Hadamard manifold. As a future work, we can use the introduced functions to
establish the relations between variational inequalities and a vector optimization problem on the lines of
Jayswal et al. [29].
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