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Abstract: Hong (Mathematics 2019, 7, 326) recently introduced the general least squares deviation
(LSD) model for ordered weighted averaging (OWA) operator weights. In this paper, we propose
the corresponding generalized least square disparity model for regular increasing monotone (RIM)
quantifier determination under a given orness level. We prove this problem mathematically. Using
this result, we provide the full solution of the least square disparity RIM quantifier model as an
illustrative example.

Keywords: OWA operator; RIM quantifier; generating function; minimax disparity; least square
disparityts

1. Introduction

One of the important topics in the theory of ordered weighted averaging (OWA) operators is
the determination of the associated weights. Several authors have suggested a number of methods
for obtaining associated weights in many areas, such as decision-making, approximate reasoning,
expert systems, data mining, as well as fuzzy systems and control [1–18]. Yager [15] proposed regular
increasing monotone (RIM) quantifiers as a method for obtaining OWA weight vectors through fuzzy
linguistic quantifiers. Information aggregation procedures guided by verbally expressed concepts and
a dimension-independent description of the desired aggregation can be provided by RIM quantifiers.
Liu [11] and Liu and Da [12] gave solutions to the maximum-entropy RIM quantifier model for the
case in which the generating functions are differentiable. Liu and Lou [19] proved the solution
equivalence to the maximum-entropy and minimax ratio RIM quantifier problems, as well as the
solution equivalence to the minimum-variance and minimax disparity RIM quantifier problems by
taking a theoretical approach. Hong [20] provided proof of the minimum variance RIM quantifier
problem and minimax disparity RIM quantifier problem. Hong [21] also provided generalized solutions
to the maximum entropy RIM quantifier problem and minimax ratio RIM quantifier problem. Liu [22]
suggested a general RIM quantifier determination model, and proved it analytically using the optimal
control method, and proved the solution equivalence to the minimax problem for the RIM quantifier.
However, Hong [23] recently proposed a modified model for the general RIM quantifier model and
the correct formulation of Liu’s result.

Hong and Han [10] recently provided the following general model for the least squares deviation
(LSD) method as an alternative approach to determine the OWA operator weights:

Minimize F(W) =
n−1

∑
i=1

F (|wi+1 − wi|)

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n,
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where F is a strictly convex function on [0, 1], and F′ is continuous on [0, 1), such that F′(0) = 0.
In this paper, the corresponding generalized least convex disparity model for RIM quantifier

determination under a given orness level is proposed and proved analytically. This paper is organized
as follows: In Section 2, we present the preliminaries, and in Section 3, we review some general models
for the RIM quantifier problem. In Section 4, we propose the general least convex disparity model for
the RIM quantifier problem and prove, mathematically, for the case in which the generating functions
are absolutely continuous functions and F is a strictly convex function on [0, ∞), such that F(0) = 0.
We also provide the least square disparity (LSD) RIM quantifier model as an illustrative example.

2. Preliminaries

Yager [15] introduced a new aggregation technique based on OWA operators. An OWA operator
of dimension n is a mapping F : Rn → R that has an associated weight vector W = (w1, · · · , wn)T ,
with the properties w1 + · · ·+ wn = 1, 0 ≤ wi ≤ 1, i = 1, · · · , n, such that

F(a1, · · · , an) =
n

∑
i=1

wibi,

where bj is the jth largest element of the collection of the aggregated objects {a1, · · · , an}.
A measure of “orness” associated with the weight vector W of an OWA operator was introduced

by Yager [15]:

orness(W) =
n

∑
i=1

n− i
n− 1

wi.

This measure characterizes the degree to which the aggregation is like an OR operation.
RIM quantifiers, as a method for obtaining OWA weight vectors through fuzzy linguistic

quantifiers, were introduced by Yager [16]. Information aggregation procedures guided by verbally
expressed concepts and a dimension-independent description of the desired aggregation can be
provided by RIM quantifiers.

Definition 1 ([16]). A fuzzy subset Q on the real number line is called a RIM quantifier if Q(0) = 0, Q(1) = 1,
and Q(x) ≥ Q(y) for x > y.

Definition 2. For f (t) on [0, 1] and a RIM quantifier Q(x), f (t) is called generating function of Q(x), if it
satisfies

Q(x) =
∫ x

0
f (t)dt,

where f (t) ≥ 0 and
∫ 1

0 f (t)dt = 1.

Yager extended the orness measure of the OWA operator, and defined the orness of a RIM
quantifier [16] as

orness(Q) =
∫ 1

0
Q(x)dx =

∫ 1

0
(1− t) f (t)dt.

Since the RIM quantifier can be seen as a continuous form of OWA, an operator with a generating
function, the OWA optimization problem can be extended to the case of the RIM quantifier.

3. The General Model for the Minimax RIM Quantifier Problem

The essential supremum and the essential infimum of f are defined as follows [24]:

ess sup f = inf{t : |{x ∈ [0, 1] : f (x) > t}| = 0},

ess in f f = sup{t : |{x ∈ [0, 1] : f (x) < t}| = 0}
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where |E| is the Lebesgue measure of the Lebesgue measurable set, E.
A property is said to be almost everywhere (a.e.) in [0, 1] if this property holds in [0, 1], except in

some subset of [0, 1] with a Lebesgue measure of zero.
Here, we introduce the known concept of absolute continuity to prove Theorem 1.

Definition 3 ([24]). A function f on a finite interval [a, b] is said to be absolutely continuous on [a, b] if, given
ε > 0, there exists δ > 0 such that for any collection {[ai, bi]}i∈I of non-overlapping subintervals of [a, b],

∑ | f (bi)− f (ai)| < ε if ∑ |(bi − ai)| < δ.

The following lemma is well-known.

Proposition 1 ([24]). A function f on a finite interval [a, b] is absolutely continuous on [a, b] if, and only if
f ′(x) exists a.e. in (a, b), f ′(x) is integrable, and

f (x)− f (a) =
∫ x

a
f ′(t)dt (a ≤ x ≤ b).

Wang and Parkan [13] suggested the following minimax disparity OWA problem:

Minimize max
i∈{1,··· ,n−1}

|wi − wi+1|

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

The corresponding minimax disparity RIM quantifier problem [20] with a given orness level
0 < α < 1 is finding a solution f : [0, 1]→ [0, 1] to the following optimization problem:

Minimize ess supt∈(0,1) | f ′(t) |

subject to
∫ 1

0
(1− r) f (r)dr = α, 0 < α < 1,∫ 1

0
f (r)dr = 1,

f (r) ≥ 0

where the generating functions are absolutely continuous.
The minimax ratio RIM quantifier problem [21] with a given orness level 0 < α < 1 is finding a

solution f : [0, 1]→ [0, 1] to the following optimization problem:

Minimize ess supt∈(0,1)

∣∣∣∣ f ′(t)
f (t)

∣∣∣∣
subject to

∫ 1

0
(1− r) f (r)dr = α, 0 < α < 1,∫ 1

0
f (r)dr = 1,

f (r) ≥ 0

where the generating functions are absolutely continuous.
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The general model for the minimax RIM quantifier problem [23] is as follows:

Minimize M f = ess supr∈(0,1)|F′′( f (x)) f ′(x)|

subject to
∫ 1

0
r f (r)dr = α, 0 < α < 1,∫ 1

0
f (r)dr = 1,

f (r) ≥ 0

where F is a strictly convex function on [0, ∞) that is differentiable to at least the second order and the
generating functions are absolutely continuous.

4. The General Model for the Least Convex Disparity RIM Quantifier Problem

Wang et al. [14] proposed the following least squares deviation (LSD) method as an alternative
approach to determine the OWA operator weights:

Minimize
n

∑
i=1

(wi − wi−1)
2

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1,

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n.

The corresponding least squares disparity RIM quantifier problem under a given orness level can be

Minimize D f =
∫ 1

0
( f ′)2(r)dr

subject to
∫ 1

0
(1− r) f (r)dr = α, 0 < α < 1, (1)∫ 1

0
f (r)dr = 1,

f (r) ≥ 0,

where the generating functions are absolutely continuous.
Hong and Han [10] recently proposed the general least convex deviation model with a given

orness level, as follows:

Minimize F(W) =
n−1

∑
i=1

F (|wi+1 − wi|)

subject to orness(W) =
n

∑
i=1

n− i
n− 1

wi = α, 0 ≤ α ≤ 1, (2)

w1 + · · ·+ wn = 1, 0 ≤ wi, i = 1, · · · , n,

where F is a strictly convex function on [0, 1], and F′ is continuous on [0, 1), such that F′(0) = 0.
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We now propose the general least squares disparity models under a given orness level, as follows:

Minimize VF( f ) =
∫ 1

0
F(| f ′(r)|)dr

subject to
∫ 1

0
(1− r) f (r)dr = α, 0 < α < 1, (3)∫ 1

0
f (r)dr = 1,

f (r) ≥ 0,

where f is absolutely continuous and F is a strictly convex function on [0, ∞), such that F(0) = 0.
The least squares disparity RIM quantifier problem is a special case of Model 3, where F(x) = x2.

We now prove Model 3 for the least convex disparity RIM quantifier problem.

Note 1. It is clear that the optimal solution for α = 1/2 is f ∗(s) = 1 a.e. with Vf ∗ = 0. Since

Vf = Vf R ,
∫ 1

0 f (r)dr =
∫ 1

0 f R(r)dr and
∫ 1

0 r f R(r)dr = 1−
∫ 1

0 r f (r)dr where f R(r) = f (1− r), if a
weighting function f ∗(r) is optimal to Model 3 for some given level of preference α ∈ (0, 1/2), then
f ∗(1− r) is optimal to Model 3 for a given level of preference, 1− α. Therefore, we may assume that
α ∈ (0, 1/2) without loss of generality. That is, for α > 1/2, we can consider Model 3 for the level of
preference with index 1− α, and take the reverse of that optimal solution.

Lemma 1. Let f be a nonnegative, absolutely continuous function, such that
∫ 1

0 (1 − r) f (r)dr =

α,
∫ 1

0 f (r)dr = 1. Then, for α ∈ (0, 1/2), there exists a nonnegative nondecreasing continuous function, h,
such that

∫ 1
0 (1− r)h(r)dr = α,

∫ 1
0 h(r)dr = 1 and Vh ≤ Vf .

Proof. Let h1(x) =
∫ x

0 { f ′(t)}+dt + f (0). Then,

f (x) =
∫ x

0
f ′(t)dt + f (0) ≤ h1(x).

Also, since h1(0) = f (0), h1(x) ≥ f (x) and h1(x) is nondecreasing,

h′1(x) = { f ′(x)}+, h1(1) > 1,

and | f ′(x)| ≥ h′1(x). If
∫ 1

0 h1(x)dx = c ≥ 1 and (1/c)h1(x) = h2(x), then
∫ 1

0 x f (x)dx ≤
∫ 1

0 xh2(x)dx.

Hence, α =
∫ 1

0 (1− x) f (x)dx ≥
∫ 1

0 (1− x)h2(x)dx. Let a ∈ (0, 1), such that h2(a) = 1. If h3(x) =

h2(x + a)− 1 on [−a, 1− a], then for any ε ∈ [0, 1],

∫ 1−a

−a
εh3(x)dx = 0.

Let hε(x) = εh3(x− a) + 1, x ∈ [0, 1]. Then, hε(x) ≥ 0 is nondecreasing, and

∫ 1

0
hε(x)dx = 1.

We also note that if ε = 1, then hε(x) = h2(x) and if ε ↓ 0, then

∫ 1

0
(1− x)hε(x)dx ↑ 1/2.

Also, for α ∈ (0, 1/2), there exists 0 < ε ≤ 1, such that

∫ 1

0
(1− x)hε(x)dx = α.
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Noting that (hε)′(x) = (ε/c)h′1(x) for x ∈ [0, 1], we have (hε)′(x) ≤ | f ′(x)|, so that Vhε ≤ Vf . This
completes the proof.

Note 2. We note that

α =
∫ 1

0 (1− r) f (r)dr =
∫ 1

0
(1− r)

∫ r

0
f ′(s)dsdr +

1
2

f (0)

=
∫ 1

0

∫ 1

s
(1− r) f ′(s)drds +

1
2

f (0)

=
∫ 1

0

1
2
(1− s)2 f ′(s)ds +

1
2

f (0)

and

1 =
∫ 1

0 f (r)dr =
∫ 1

0

∫ r

0
f ′(s)dsdr + f (0)

=
∫ 1

0

∫ 1

s
f ′(s)drds + f (0)

=
∫ 1

0
(1− s) f ′(s)ds + f (0).

Hence, by Lemma 1, Model 3 is equivalent to the following model:

Minimize VF( f ) =
∫ 1

0
F( f ′(s))ds

subject to
∫ 1

0

1
2
(1− s)2 f ′(s)ds +

1
2

f (0) = α, 0 < α < 1, (4)∫ 1

0
(1− s) f ′(s)ds + f (0) = 1,

f ′(s) ≥ 0.,

where f is absolutely continuous and F is a strictly convex function on [0, ∞), such that F(0) = 0.
We now prove Model 4, which is equivalent to Model 3.

Theorem 1. Suppose that F is a strictly convex function on [0, ∞) and F′ is continuous with F′(0) = 0. Then,
the optimal solution of Model 4 for α ∈ (0, 1/2) is as follows:

In the case of f ∗(0) = 0, the solution has the form f ∗(s) =
∫ s

0 g∗(1− r)dr with

g∗(r) =

(F′)−1
(

1
2 r2a∗ + rb∗

)
a.e. if (F′)−1

(
1
2 r2a∗ + rb∗

)
> 0,

0 a.e. elsewhere

and a∗/2 + b∗ ≤ 0.
In the case of f ∗(0) > 0, the solution has the form f ∗(s) =

∫ s
0 g∗(1− r)dr + f ∗(0), where f ∗(0) =

1−
∫ 1

0 rg∗(r)dr with

g∗(r) = (F′)−1 (c∗r(1− r)) a.e.

where c∗ is determined by the constraint:

1− 2α =
∫ 1

0
r(1− r)g∗(r)dr.
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Proof. Model 4 is equivalent to the following model by taking f ′(1− r) = g(r):

Minimize Vg =
∫ 1

0
F(g(r))dr

subject to
∫ 1

0

1
2

r2g(r)dr = α− 1
2

f (0), (5)∫ 1

0
rg(r)dr = 1− f (0),

g(r) ≥ 0.

Case 1) f ∗(0) = 0. Let g∗ be the function, such that

g∗(r) =

(F′)−1
(

1
2 r2a∗ + rb∗

)
a.e. if (F′)−1

(
1
2 r2a∗ + rb∗

)
> 0,

0 a.e. elsewhere,

where a∗, b∗ are determined by the constraints:
∫ 1

0
1
2 r2g∗(r)dr = α∫ 1

0 rg∗(r)dr = 1,

g∗(r) ≥ 0.

Also, let g be a function to satisfy the constraint:
∫ 1

0
1
2 r2g(r)dr = α− 1

2 f (0)∫ 1
0 rg(r)dr = 1− f (0),

g(r) ≥ 0.

Assume that {r : g∗(r) > 0} = A and {r : g∗(r) = 0} = B. We also note that

F′ (g∗(r)) =

{
1
2 r2a∗ + rb∗ a.e., if r ∈ A,

0 a.e. elsewhere,
(6)

and 1
2 r2a∗ + rb∗ ≤ 0 for r ∈ B, since F′(0) = 0 and F′(x) is a strictly increasing function. We put

g(r) = g∗(r) + h(r), r ∈ [0, 1]. Then, noting that g(r) = h(r), r ∈ B, we have

∫
A

rh(r)dr +
∫

B
rg(r)dr =

∫ 1

0
rh(r)dr = − f (0), (7)

since

1− f (0) =
∫ 1

0
rg(r)dr =

∫ 1

0
rg∗(r)dr +

∫ 1

0
rh(r)dr = 1 +

∫ 1

0
rh(r)dr.

We also have ∫
A

1
2

r2h(r)dr +
∫

B

1
2

r2g(r)dr =
∫ 1

0

1
2

r2h(r)dr = −1
2

f (0), (8)

since

α− 1
2

f (0) =
∫ 1

0

1
2

r2g(r)dr =
∫ 1

0

1
2

r2g∗(r)dr +
∫ 1

0

1
2

r2h(r)dr = α +
∫ 1

0

1
2

r2h(r)dr.

We now show that ∫ 1

0
F(g(r))dr ≥

∫ 1

0
F(g∗(r))dr.
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Since F(x)− F(x0) ≥ F′(x0)(x− x0) (the equality holds if, and only if x = x0), we have that

∫ 1

0
F(g(r))dr−

∫ 1

0
F(g∗(r))dr

=
∫ 1

0
F(g∗(r) + h(r))dr−

∫ 1

0
F(g∗(r))dr

≥
∫ 1

0
F′(g∗(r))h(r)dr

=
∫

A

(
1
2

r2a∗ + rb∗
)

h(r)dr

= a∗
∫

A

1
2

r2h(r)dr + b∗
∫

A
rh(r)dr

= a∗
(
−
∫

B

1
2

r2g(r)dr− 1
2

f (0)
)
+ b∗

(
−
∫

B
rg(r)dr− f (0)

)
= −

∫
B

(
1
2

r2a∗ + rb∗
)

g(r)dr− f (0)
(

a∗

2
+ b∗

)
≥ 0,

where the second equality comes from (6), the fourth equality comes from (7) and (8), and the second
inequality comes from the fact that 1

2 r2a∗ + rb∗ ≤ 0 for r ∈ B and a∗/2 + b∗ ≤ 0. In particular, two
inequalities hold the equality whenever f ∗ = f a.e. This completes Case 1 of the proof.

Case 2) f ∗(0) > 0. Let g∗ be the function, such that

g∗(r) = (F′)−1 (c∗r(1− r)) a.e., (9)

where c∗ is determined by the constraint:

1− 2α =
∫ 1

0
r(1− r)g∗(r)dr. (10)

Then,

F′(g∗(r)) = c∗r(1− r) a.e. (11)

We note that

1− 2α =
∫ 1

0
r(1− r)g∗(r)dr (12)

=
∫ 1

0
rg∗(r)dr− 2

∫ 1

0

1
2

r2g∗(r)dr.

Since ( f ∗)′(1− r) = g∗(r) and
∫ 1

0 f ∗(r)dr = 1, f ∗(s) =
∫ s

0 g∗(1− r)dr + c for some c > 0 where

c = 1−
∫ 1

0

∫ t
0 g∗(1− r)drdt. Hence, f ∗(0) = 1−

∫ 1
0

∫ t
0 g∗(1− r)drdt. We also note that

∫ 1

0

∫ t

0
g∗(1− r)drdt =

∫ 1

0

∫ 1

r
g∗(1− r)dtdr

=
∫ 1

0
(1− r)g∗(1− r)dr

=
∫ 1

0
rg∗(r)dr.
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Since
∫ 1

0 rg∗(r)dr = 1− f ∗(0), we have that
∫ 1

0
1
2 r2g∗(r)dr = α− 1

2 f ∗(0) from (12). Hence, g∗ satisfies
constraints of Model 5. Now, let g be a function to satisfy the constraint:

∫ 1
0

1
2 r2g(r)dr = α− 1

2 f (0),∫ 1
0 rg(r)dr = 1− f (0),

g(r) ≥ 0.

(13)

Then, from (13),

1− 2α =
∫ 1

0
r(1− r)g(r)dr. (14)

We put g(r) = g∗(r) + h(r), r ∈ [0, 1]. Then, from (10) and (14),

0 =
∫ 1

0
r(1− r)h(r)dr. (15)

We now show that ∫ 1

0
F(g(r))dr ≥

∫ 1

0
F(g∗(r))dr.

Since F(x)− F(x0) ≥ F′(x0)(x− x0) (the equality holds if, and only if x = x0), we have that

∫ 1

0
F(g(r))dr−

∫ 1

0
F(g∗(r))dr

=
∫ 1

0
F(g∗(r) + h(r))dr−

∫ 1

0
F(g∗(r))dr

≥
∫ 1

0
F′(g∗(r))h(r)dr

=
∫ 1

0
c∗r(1− r)h(r)dr

= 0

where the second equality comes from (11) and the last equality comes from (15). This completes the
proof.

Remark 1. Theorem 1 is not correct if we assume that f (x) is continuous. To show this, we consider the
following example.

Example 1. If F(x) = (1/2)x2, then F′(x) = x and F′′(x) = 1. Let C(x) be a Cantor function—that is, a
nondecreasing continuous function with C′(x) = 0 a.e. (see [24]). Let f ∗(x) = 2C(x), since

∫ 1
0 C(r)dr = 1/2,

and let
∫ 1

0 (1− r) f ∗(r)dr = α0. Then, we have

max
r∈(0,1)

F
(
|( f ∗)′(r)|

)
= 0.

Hence, we have f ∗(x) = 2C(x), as the optimal solution of Model 3 under a given orness level, α0. This
example shows that Theorem 1 is incorrect if we do not assume that f (x) is absolutely continuous. Indeed,
f ∗(x) = 2C(x) differs from the optimal solution in Theorem 1.
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5. Numerical Example

If F(x) = (1/2)x2, then F′(x) = x = (F′(x))−1. Hence, Model 3 is the least squares deviation
(LSD) RIM quantifier problem under a given orness level:

Minimize D f =
∫ 1

0
( f ′)2(r)dr

subject to
∫ 1

0
(1− r) f (r)dr = α, 0 < α < 1, (16)∫ 1

0
f (r)dr = 1,

f (r) ≥ 0.

The optimal solution of Model 16 can be proved by using Theorem 1, as follows:

Case 1) f ∗(0) = 0⇔ 0 < α ≤ 0.3;
∫ − 2b∗

a∗
0

(
1
4 r4a∗ + 1

2 r3b∗
)

dr = α,∫ − 2b∗
a∗

0

(
1
2 r3a∗ + r2b∗

)
dr = 1,

imply that {
a∗ = − 243

1250α4 ,

b∗ = 81
250α3 .

The condition of a∗/2 + b∗ ≤ 0 implies 0 < α ≤ 243
810 = 0.3. Hence, by Theorem 1, the optimal solution

of the LSD RIM quantifier Model 10 for α ∈ (0, 0.3] is

g∗(r) = max
{
− 243

2500α4 r2 +
81

250α3 r, 0
}

,

f ∗(s) =
∫ s

0
g∗(1− r)dr

=

0, if s ∈
[
0, 1− 10α

3

]
3(−27s3+(81−135α)s2+(−81+270α)s+500α3−135α+27)

2500α4 , if s ∈
[
1− 10α

3 , 1
]

.

Case 2) f ∗(0) > 0⇔ 0.3 < α < 0.5

1− 2α =
∫ 1

0
r(1− r)g∗(r)dr =

∫ 1

0
r(1− r)c∗r(1− r)dr

implies that

c∗ = 30− 60α and f ∗(0) = −3
2
+ 5α.

The condition of f ∗(0) > 0 implies 0.3 < α < 0.5. Hence, by Theorem 1, the optimal solution of the
LSD RIM quantifier Model 10 for α ∈ (0.3, 0.5) is

g∗(r) = (30− 60α)r(1− r), r ∈ [0, 1],

f ∗(s) =
∫ s

0
g∗(1− r)dr + f ∗(0)

= (−10 + 20α)s3 + (15− 30α)s2 − 3
2
+ 5α, s ∈ [0, 1].

We also note that f ∗α (s) = 1 for α = 0.5, and f ∗α (s) = f ∗1−α(1− s) for α ∈ (0.5, 1).
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6. Conclusions

This paper proposed a generalized least squares deviation (LSD) model for the RIM quantifier
determination problem. We completely proved this constrained optimization problem mathematically.
Using this result, we provided a solution of the least squares deviation (LSD) RIM quantifier model as
an illustrative example.
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