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Abstract

:

We consider nonlinear Boussinesq-type equations that model the heat transfer and steady viscous flows of weakly concentrated water solutions of polymers in a bounded three-dimensional domain with a heat source. On the boundary of the flow domain, the impermeability condition and a slip condition are provided. For the temperature field, we use a Robin boundary condition corresponding to the classical Newton law of cooling. By using the Galerkin method with special total sequences in suitable function spaces, we prove the existence of a weak solution to this boundary-value problem, assuming that the heat source intensity is bounded. Moreover, some estimates are established for weak solutions.
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1. Introduction and Problem Formulation


In this work, we examine the solvability of a boundary-value problem for the Boussinesq approximation describing steady-state flows of weakly concentrated water polymer solutions [1,2] in a sufficiently regular bounded domain Ω⊂R3 with a heat source, under the assumption that on solid walls of Ω the impermeability condition, a vorticity-slip condition and a Robin-type temperature boundary condition are valid:


∑i=13ui∂u→∂xi−νΔu→−α∑i=13ui∂Δu→∂xi+gradp=Tg→inΩ,



(1)






divu→=0inΩ,



(2)






∑i=13ui∂T∂xi−kΔT=ψ(x→,T)inΩ,



(3)






u→·n→|∂Ω=0,(curlu→)×n→|∂Ω=0→,∂T∂n→+βT|∂Ω=0.



(4)







Let us briefly describe the various terms in this system: the symbols u→ and p stand for the velocity and the pressure, respectively, T denotes the temperature field, the parameter ν>0 represents the viscosity, α>0 is the relaxation viscosity, ψ denotes the heat source intensity, g→=(0,0,−g) is the gravitational acceleration, k>0 is the thermal conductivity, β>0 is the Robin coefficient, and n→ is the unit outward normal to the surface ∂Ω. The divergence, the gradient and the Laplacian Δ are taken with respect to the Cartesian coordinates x1, x2, x3.



Notice that Equations (1) and (2) without the temperature term T represent simplified equations of a stationary isothermal flow of the second grade fluid [3] (see also the book [4] for more details).



Obviously, in the case when α=0, we formally recover the stationary Navier–Stokes–Boussinesq system with a heat source, but, in what follows, we always assume that α>0. As shown in [5,6,7], the parameter α must be non-negative, in view of thermodynamic restrictions.



It is worth pointing out that there is a vast amount of literature on the model of weakly concentrated water polymer solutions and its various modifications, including the so-called Kelvin–Voigt equations that describe viscous fluid flows in which, after the instantaneous removal of stresses, the velocity does not vanish instantaneously but decays exponentially. Starting with the pioneering series of works by A.P. Oskolkov [8,9,10,11,12,13,14], there is an ever growing list of contributions. An interested reader can see the papers [15,16,17,18,19,20,21,22,23,24,25,26,27,28]; this list is by no means exhaustive, but gives a number of current mathematical results obtained for these types of viscoelastic fluids.



In the majority of works, isothermal flows are investigated, although from the point of view of applications in engineering, the analysis of heat transfer in polymer flows is no less important than the studying of hydrodynamic fields. Motivated by this, we consider problem (1)–(4). The present paper continues the investigations initiated in the articles [10,29], where the thermal convection is studied for a simplified version of the model of water polymer solutions. Namely, the authors of these papers focus on the Kelvin–Voigt–Boussinesq equations, which have a lower order (for partial derivatives with respect to the space variables) compared with the equations considered herein.



Under the assumption that the intensity of the heat source is bounded, by the Galerkin method with special total sequences in suitable function spaces, we show the existence of a weak solution to boundary-value problem (1)–(4) and derive some estimates for the norms of the velocity and temperature fields.




2. Preliminaries: Notations and Function Spaces


For Banach spaces E1 and E2, by L(E1,E2), we denote the space of all linear and continuous operators from E1 to E2. The space L(E1,E2) is equipped with the norm


∥A∥L(E1,E2)=defsup∥w∥E1≠0∥A(w)∥E2∥w∥E1.











As usual, C(Ω¯) denotes the space of all continuous functions w:Ω¯→R.



We shall use the classical notation and results [30] for the Lebesgue spaces Lq(Ω), q≥1, and the Sobolev spaces: Hm(Ω)=defWm,2(Ω), m∈{1,2,⋯}. By bold face letters, we denote the corresponding spaces of vector functions, e.g., Lq(Ω)=defLq(Ω)3, H1(Ω)=defH1(Ω)3, etc.



Let us introduce the following divergence-free subspaces:


Jn→1(Ω)=def{v→∈H1(Ω):divv→=0,v→·n→|∂Ω=0},Jn→,curl2(Ω)=def{v→∈H2(Ω):divv→=0,v→·n→|∂Ω=0,(curlu→)×n→|∂Ω=0→},Jn→,curl3(Ω)=def{v→∈H3(Ω):divv→=0,v→·n→|∂Ω=Δv→·n→|∂Ω=0,(curlu→)×n→|∂Ω=0→}.











By Xα(Ω) denote the space consisting of vector functions from Jn→,curl2(Ω) with scalar product defined according to the relation


(v→,w→)Xα(Ω)=def∫Ωcurlv→·curlw→dx+α∫ΩΔv→·Δw→dx.











It follows from ([16] § 2) that the scalar product (·,·)Xα(Ω) is well defined and the associated norm ∥·∥Xα(Ω)=def(·,·)Xα(Ω)1/2 is equivalent to the standard H2-norm.



Finally, by Yβ(Ω) denote the space consisting of functions from H1(Ω) with the following scalar product and norm:


(S,Q)Yβ(Ω)=def∫ΩgradS·gradQdx+β∫∂ΩSQdσ,∥S∥Yβ(Ω)=def(S,S)Yβ(Ω)1/2.











It can easily be checked that the scalar product (·,·)Yβ(Ω) is well defined and the norm ∥·∥Yβ(Ω) is equivalent to the standard H1-norm.




3. Weak Formulation of Problem (1)–(4) and Main Results


We propose the problem of determining the velocity field u→∈Xα(Ω) and the temperature T∈Yβ(Ω) that satisfy the system of equations:


−∑i=13∫Ωuiu→·∂v→∂xidx−ν∫ΩΔu→·v→dx+α∑i=13∫ΩuiΔu→·∂v→∂xidx=∫ΩTg→·v→dx,



(5)






∑i=13∫Ωui∂T∂xiSdx+k∫ΩgradT·gradSdx+kβ∫∂ΩTSdσ=∫Ωψ(x→,T)Sdx,



(6)




for any pair (v→,S) from the space Jn→1(Ω)×H1(Ω).



Definition 1.

A solution (u→,T)∈Xα(Ω)×Yβ(Ω) to system (5) and (6) is called a weak solution of boundary value problem (1)–(4).





The following theorem gives the main result of this paper.



Theorem 1.

Let us assume that




	(i)

	
the function ψ(·,ξ):Ω→R is measurable for every ξ∈R;




	(ii)

	
the function ψ(x→,·):R→R is continuous for almost every x→∈Ω;




	(iii)

	
there exists a positive constant ψ0 such that |ψ(x→,ξ)|≤ψ0 for almost every x→∈Ω and every ξ∈R.









Then, boundary value problem(1)–(4) has at least one weak solution (u→,T) such that


∥u→∥Xα(Ω)≤gψ0M22(Ω,β)M1(Ω,α)+α1/2meas(Ω)1/2kν,



(7)






∥T∥Yβ(Ω)≤ψ0M2(Ω,β)meas(Ω)1/2k,



(8)




with


M1(Ω,α)=def∥Iα∥L(Xα(Ω),L2(Ω)),M2(Ω,β)=def∥Iβ∥L(Yβ(Ω),L2(Ω)),








where Iα:Xα(Ω)→L2(Ω) and Iβ:Yβ(Ω)→L2(Ω) are embedding operators.






4. Proof of Theorem 1


To construct a weak solution of problem (1)–(4), we shall use the Galerkin method. Let us take a sequence {w→j}j=1∞ from the space Jn→,curl3(Ω) such that {w→j}j=1∞ is total in Jn→,curl3(Ω) and


(w→i,w→j)Xα(Ω)=δij,








where δij is the Kronecker symbol. In addition, fix a sequence {Sj}j=1∞ that is an orthonormal basis of Yβ(Ω).



For an arbitrary fixed number N∈{1,2,⋯}, we consider the 2N-dimensional auxiliary problem:



Find a vector h→λN=(aN1,⋯,aNN,bN1,⋯,bNN)∈R2N such that


−λ∑i=13∫ΩuiNu→N·∂(w→j−αΔw→j)∂xidx−ν∫ΩΔu→N·(w→j−αΔw→j)dx+λα∑i=13∫ΩuiNΔu→N·∂(w→j−αΔw→j)∂xidx=λ∫ΩTNg→·(w→j−αΔw→j)dx,j=1,⋯,N,



(9)






λ∑i=13∫ΩuiN∂TN∂xiSjdx+k∫ΩgradTN·gradSjdx+kβ∫∂ΩTNSjdσ=λ∫Ωψ(x→,TN)Sjdx,j=1,⋯,N,



(10)






u→N(x→)=def∑j=1NaNjw→j(x→),TN(x→)=def∑j=1NbNjSj(x→),



(11)




where λ is a parameter, λ∈[0,1].



Our immediate goal is to obtain a priori estimates for solutions to problem (9)–(11). Let a vector h→λN=(aN1,⋯,aNN,bN1,⋯,bNN) be a solution of problem (9)–(11) under a fixed parameter λ∈[0,1]. It is easy to see that


|h→λN|2=∑j=1NaNj2+∑j=1NbNj2=∥u→N∥Xα(Ω)2+∥TN∥Yβ(Ω)2.



(12)







Therefore, we wish to find estimates for the norms ∥u→N∥Xα(Ω) and ∥TN∥Yβ(Ω).



Let us multiply Equation (9) by aNj and add the results for j=1,⋯,N. Then, we get


−λ∑i=13∫ΩuiNu→N·∂(u→N−αΔu→N)∂xidx−ν∫ΩΔu→N·(u→N−αΔu→N)dx+λα∑i=13∫ΩuiNΔu→N·∂(u→N−αΔu→N)∂xidx=λ∫ΩTNg→·(u→N−αΔu→N)dx.











This equality can be rewritten as follows:


−λ∑i=13∫ΩuiN(u→N−αΔu→N)·∂(u→N−αΔu→N)∂xidx︸Q1−ν∫ΩΔu→N·(u→N−αΔu→N)dx=λ∫ΩTNg→·(u→N−αΔu→N)dx.











Note that the term Q1 vanishes. Indeed, using integration by parts, we find that


Q1=12∑i=13∫ΩuiN∂∂xi|u→N−αΔu→N|2dx=12∑i=13∫∂ΩuiNni|u→N−αΔu→N|2dσ−12∑i=13∫Ω∂uiN∂xi|u→N−αΔu→N|2dx=12∫∂Ω(u→N·n→)|u→N−αΔu→N|2dσ−12∫Ω(divu→N)|u→N−αΔu→N|2dx=0.











Therefore, we have


−ν∫ΩΔu→N·(u→N−αΔu→N)dx=λ∫ΩTNg→·(u→N−αΔu→N)dx.



(13)







Taking into account the relation


−∫ΩΔv→·w→dx=∫Ωcurlv→·curlw→dx,∀v→∈Jn→,curl2(Ω),w→∈H1(Ω),








we can rewrite (13) as


ν∫Ω|curlu→N|2dx+να∫Ω|Δu→N|2dx=λ∫ΩTNg→·u→Ndx−λα∫ΩTNg→·Δu→Ndx.











It follows from this equality that


ν∥u→N∥Xα(Ω)2=ν∫Ω|curlu→N|2dx+να∫Ω|Δu→N|2dx=λ∫ΩTNg→·u→Ndx−λα∫ΩTNg→·Δu→Ndx,








whence, using the Cauchy–Bunyakovsky–Schwarz inequality, the estimates 0≤λ≤1 and


∥u→N∥L2(Ω)≤M1(Ω,α)∥u→N∥Xα(Ω),∥TN∥L2(Ω)≤M2(Ω,β)∥TN∥Yβ(Ω),



(14)




we derive


ν∥u→N∥Xα(Ω)2≤g∫Ω|TN|2dx1/2∫Ω|u→N|2dx1/2+gα1/2∫Ω|TN|2dx1/2α∫Ω|Δu→N|2dx1/2=g∥TN∥L2(Ω)∥u→N∥L2(Ω)+gα1/2∥TN∥L2(Ω)∥α1/2Δu→N∥L2(Ω)≤gM2(Ω,β)M1(Ω,α)+α1/2∥TN∥Yβ(Ω)∥u→N∥Xα(Ω)








and hence


∥u→N∥Xα(Ω)≤gM2(Ω,β)M1(Ω,α)+α1/2ν∥TN∥Yβ(Ω).



(15)







Next, we multiply Equation (10) by bNj and add the results for j=1,⋯,N; this gives


λ∑i=13∫ΩuiN∂TN∂xiTNdx︸Q2+k∫Ω|gradTN|2dx+kβ∫∂Ω|TN|2dσ=λ∫Ωψ(x→,TN)TNdx.











Applying integration by parts, it can easily be checked that the term Q2 vanishes. Indeed,


Q2=12∑i=13∫ΩuiN∂∂xi|TN|2dx=12∑i=13∫∂ΩuiNni|TN|2dσ−12∑i=13∫Ω∂uiN∂xi|TN|2dx=∫∂Ω(u→N·n→)|TN|2dσ−12∫Ω(divu→N)|TN|2dx=0.











Therefore, we arrive at the equality


k∫Ω|gradTN|2dx+kβ∫∂Ω|TN|2dσ=λ∫Ωψ(x→,TN)TNdx,








whence, using the Cauchy–Bunyakovsky–Schwarz inequality, condition (iii), the second inequality of (14), and 0≤λ≤1, we derive


k∥TN∥Yβ(Ω)2=λ∫Ωψ(x→,TN)TNdx≤∫Ω|ψ(x→,TN)|2dx1/2∫Ω|TN|2dx1/2≤ψ0meas(Ω)1/2∥TN∥L2(Ω)≤ψ0meas(Ω)1/2M2(Ω,β)∥TN∥Yβ(Ω).











This yields that


∥TN∥Yβ(Ω)≤ψ0M2(Ω,β)meas(Ω)1/2k.



(16)







Combining (15) and (16), we get


∥u→N∥Xα(Ω)≤gψ0meas(Ω)1/2M22(Ω,β)M1(Ω,α)+α1/2kν.



(17)







Finally, using (12), (16) and (17), we obtain the following a priori estimate


|h→λN|2≤g2ψ02meas(Ω)M24(Ω,β)M1(Ω,α)+α1/22k2ν2+ψ02M22(Ω,β)meas(Ω)k2,



(18)




which is independent of N as well as λ.



Next, we define the operators A,Gλ:R2N→R2N as follows:




	
for each m∈{1,⋯,N}, we set


Am(aN1,⋯,aNN,bN1,⋯,bNN)=defν∫Ωcurlu→N·curlw→mdx+να∫ΩΔu→N·Δw→mdx,










Gλm(aN1,⋯,aNN,bN1,⋯,bNN)=def−λ∑i=13∫ΩuiNu→N·∂(w→m−αΔw→m)∂xidx+λα∑i=13∫ΩuiNΔu→N·∂(w→m−αΔw→m)∂xidx−λ∫ΩTNg→·(w→m−αΔw→m)dx;











	
for each m∈{N+1,⋯,2N}, we set


Am(aN1,⋯,aNN,bN1,⋯,bNN)=defk∫ΩgradTN·gradSm−Ndx+kβ∫∂ΩTN·Sm−Ndσ,










Gλm(aN1,⋯,aNN,bN1,⋯,bNN)=defλ∑i=13∫ΩuiN∂TN∂xiSm−Ndx−λ∫Ωψ(x→,TN)Sm−Ndx,
















where (aN1,⋯,aNN,bN1,⋯,bNN) is an arbitrary vector from space R2N, while functions u→N and TN are defined by (11).



Letting


F(aN1,⋯,aNN,bN1,⋯,bNN,λ)=defA(aN1,⋯,aNN,bN1,⋯,bNN)+Gλ(aN1,⋯,aNN,bN1,⋯,bNN),








we note that the Galerkin system (9)–(11) is equivalent to the following equation


F(aN1,⋯,aNN,bN1,⋯,bNN,λ)=0→∈R2N,



(19)




where λ∈[0,1].



It is worth pointing out that


F(aN1,⋯,aNN,bN1,⋯,bNN,0)=A(aN1,⋯,aNN,bN1,⋯,bNN)








and the operator A is an isomorphism due to the relation


A(aN1,⋯,aNN,bN1,⋯,bNN)=(νaN1,⋯,νaNN,kbN1,⋯,kbNN).











Then, an application of Proposition A1 (see the Appendix A) together with a priori estimate (18) allows us to state that problem (9)–(11) is solvable for any N∈{1,2,⋯} and λ∈[0,1].



Let {u→*N}N=1∞ and {T*N}N=1∞ be sequences of functions that satisfy (9) and (10) with the parameter λ=1, i.e.,


−∑i=13∫Ωu*iNu→*N·∂(w→j−αΔw→j)∂xidx−ν∫ΩΔu→*N·(w→j−αΔw→j)dx+α∑i=13∫Ωu*iNΔu→*N·∂(w→j−αΔw→j)∂xidx=∫ΩT*Ng→·(w→j−αΔw→j)dx,j=1,⋯,N,



(20)






∑i=13∫Ωu*iN∂T*N∂xiSjdx+k∫ΩgradT*N·gradSjdx+kβ∫∂ΩT*NSjdσ=∫Ωψ(x→,T*N)Sjdx,j=1,⋯,N.



(21)







It follows from estimates (16) and (17) that the set {u→*N}N=1∞ is bounded in the space Xα(Ω) and the set {T*N}N=1∞ is bounded in the space Yβ(Ω). Hence, there exists a vector function u→0 from the space Xα(Ω) and a function T0 from the space Yβ(Ω) such that u→*N′ converges to u→0 weakly in Xα(Ω) and T*N′ converges to T0 weakly in Yβ(Ω), for some subsequence N′→∞. Without loss of generality, we can assume that


limN→∞u→*N=u→0weaklyinXα(Ω),



(22)






limN→∞T*N=T0weaklyinYβ(Ω).



(23)







Using standard compactness results for the Sobolev spaces (see, e.g., [30] Chap. 6), we derive that the space Xα(Ω) is compactly imbedded into C(Ω¯) and the space Yβ(Ω) is compactly imbedded into Lq(Ω) when 1≤q<6. Therefore, it follows from (22) and (23) that


limN→∞u→*N=u→0stronglyinC(Ω¯),



(24)






limN→∞T*N=T0stronglyinLq(Ω),



(25)




where 1≤q<6.



Furthermore, by using the theorem of M. A. Krasnoselskii on a superposition operator (see the Appendix A, Proposition A2), we conclude from conditions (i)–(iii) and (25) that


limN→∞ψ·,T*N(·)=ψ·,T0(·)stronglyinL2(Ω).



(26)







Fix an arbitrary number j∈{1,2,⋯}. Then, letting m→∞ in (20) and (21), we get


−∑i=13∫Ωu0iu→0·∂(w→j−αΔw→j)∂xidx−ν∫ΩΔu→0·(w→j−αΔw→j)dx+α∑i=13∫Ωu0iΔu→0·∂(w→j−αΔw→j)∂xidx=∫ΩT0g→·(w→j−αΔw→j)dx,



(27)






∑i=13∫Ωu0i∂T0∂xiSjdx+k∫ΩgradT0·gradSjdx+kβ∫∂ΩT0Sjdσ=∫Ωψ(x→,T0)Sjdx.



(28)







Of course, in this passage-to-limit procedure, we used all the convergence results (22)–(26).



It follows from ([16] § 2) that the mapping Rα defined by


Rα:Jn→,curl3(Ω)→Jn→1(Ω),Rα(v→)=defv→−αΔv→








is an isomorphism. Therefore, the sequence {w→j−αΔw→j}j=1∞ is total in the space Jn→1(Ω). This fact is a key tool in our proof. Indeed, due to this property, equality (27) remains valid if we replace w→j−αΔw→j with an arbitrary vector function v→ from Jn→1(Ω). In addition, since the set {Sj}j=1∞ is total in H1(Ω), we see that (28) is true with an arbitrary function S from H1(Ω) instead of Sj. Thus, we have established that the pair (u→0,T0) is a weak solution of problem (1)–(4).



Moreover, in view of estimates (16) and (17), we obviously have the inequalities (7) and (8) with u→=u→0 and T=T0. The proof of Theorem 1 is complete.




5. Conclusions


In this paper, we considered nonlinear Boussinesq-type equations describing the heat transfer and steady viscous flows of weakly concentrated water solutions of polymers in a bounded three-dimensional domain with sufficiently smooth boundary. We proved the existence of weak solutions in suitable function classes. Besides, some estimates for weak solutions are obtained in terms of the data of this model.
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Appendix A


For the reader’s convenience, let us state an important generalization of the Brouwer fixed-point theorem, which is used in our proof.



Proposition A1.

Suppose Br=def{x→∈Rd:|x→|<r} and a continuous operator F:B¯r×[0,1]→Rd satisfies the following conditions:




	
F(x→,λ)≠0→ for any (x→,λ)∈∂Br×[0,1];



	
F(x→,0)=Ax→ for any x→∈B¯r, where A:Rd→Rd is an isomorphism.








Then, for any λ∈[0,1], the equation F(x→,λ)=0→ has at least one solution x→λ, which belong to the ball Br.





This proposition can be proved by methods of the topological degree theory (see, e.g., [31]).



In addition, recall the well-known theorem of M.A. Krasnoselskii on a superposition operator acting in Lebesgue spaces.



Proposition A2.

Let f:Ω×R→R be a function such that




	
the function f(·,ξ):Ω→R is measurable for every ξ∈R;



	
the function f(x→,·):R→R is continuous for almost every x→∈Ω;



	
there exist constants q1,q2≥1, C>0 and a function ϕ∈Lq2(Ω) such that the following inequality holds


|f(x→,ξ)|≤ϕ(x→)+C|ξ|q1/q2,








for almost every x→∈Ω and every ξ∈R.








Under these hypotheses, the superposition operator Φf defined by


Φf:Lq1(Ω)→Lq2(Ω),Φf(w)(x→)=deff(x→,w(x→))








is a bounded and continuous mapping.





The proof of this result can be found in the book ([32] Chap. 1).
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