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Abstract

:

For a (molecular) graph G, the extended adjacency index EA(G) is defined as Equation (1). In this paper we introduce some graph transformations which increase or decrease the extended adjacency (EA) index. Also, we obtain the extremal acyclic, unicyclic and bicyclic graphs with minimum and maximum of the EA index by a unified method, respectively.
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1. Introduction


Molecular descriptors are playing an important role in Chemistry, Pharmacology, etc. Among them, topological indices have a prominent place. Topological indices (molecular structure descriptor) are numerical quantities of a molecular graphs (or simple graphs), that are invariant under graph isomorphism. And, are used to correlate with various physico chemical properties, chemical reactivity or biological activity. There are hundreds of topological indices that have found some applications in theoretical chemistry, especially in QSPR/QSAR research. Among all topological indices one of the most investigated are the degree based topological indices, among them, the old and widely studied topological index is Randić index [1], see the recent articles [2,3] and references cited there in. Recently researchers are studying various degree based topological indices such as Zagreb group indices [4,5,6,7,8,9], forgotten index [10,11,12,13], etc.



Let G=(V,E) be a simple graph without loops and multiple edges. Let V(G) and E(G) be the vertex set and the edge set of G, respectively. The degree of a vertex u in G is the number of edges incident to it and is denoted by dG(u). For v∈V(G) and e∈E(G), let NG(v) be the set of all neighbors of v in G.



Extended adjacency index is one of the degree based topological descriptors which has been proposed by the authors Yang et al. [14] in 1994 and defined as, for any graph G extended adjacency (EA) index is:


EA=EA(G)=∑uv∈E(G)12dG(u)dG(v)+dG(v)dG(u).



(1)







In [14] Yang et al. described that EA index exhibits high discriminating power and correlate well with a number of physico chemical properties and biological activities of organic compounds. There are a couple of topological indices in the literature (see [15]) which are closely related to the extended adjacency index, and they are


EA*(G)=∑i<jdidj+djdi=2|E|∑j=1n1dj−n








and


R^(G)=∑i<jdidj+djdiRij








where Rij is the effective resistance between vertices i and j. Obviously, EA(G)≤EA*(G), and all upper bounds for the inverse degree index ρ(G)=∑j=1n1dj can be used to furnish upper bonds for EA*(G) and EA(G), even though they may not be tight for EA(G).



Since 1994, neither extended adjacency matrix nor the extended adjacency index was taken into the consideration but in recent years only few articles have come out with its algebraic approach [16,17,18]. Ramane et al. determined the bounds for the EA index and characterizes graphs extremal with respect to them. Also, obtained relation between EA index and other well known topological indices. Moreover, determined the new results on EA index from an algebraic view point [19]. As an application, one can find a unified approach for some degree based topological descriptors in [20,21,22,23,24,25]. For other undefined notations refer [26,27].



Let Sn, Pn and Cn be the star, path and cycle on n vertices, respectively. Let G−V be a subgraph of graph G by deleting vertex v and G−e be a subgraph of graph G by deleting edge e. Let G0 be a nontrivial graph and u be its vertex. If G is obtained by G0 amalgamating a tree T at u. Then we say that T is a subtree of G and u is its root. Let u∘v denote the amalgamating two vertices u and v of G.



In the present work, we obtain extremal properties of the EA index. In Section 2, we present some graph transformations which increase or decrease EA index. In Section 3, we obtain extremal acyclic, unicyclic and bicyclic graphs with minimum and maximum EA index by a unified method, respectively.




2. Some Graph Transformations


In this section, we present some graph transformations which increase or decrease the EA index and these graph transformations play an important role to determine the extremal graphs of the EA index among acyclic, unicyclic and bicyclic graphs, respectively.



Transformation I. Let G0 be a non-trivial connected graph and v is a given vertex in G0. Let G1 be a graph obtained from G0 by attaching at v two paths p:vu1u2…uk of length k and Q:vw1w2…wl of length l. Let G2 be a graph which is obtained from the graph G1, by Transformation I, G2=G1−vw1+ukw1.



Lemma 1.

Let G2 be a graph obtained from G1 by Transformation I as shown in Figure 1, then


EA(G1)>EA(G2).













Proof. 

In Transformation I degree of the vertex v is decreased and the degrees of its neighbor vertices NG0(v) remains same value. Let us assume that dG1(v)>0. Then by the definition of EA index, we have


EA(G1)−EA(G2)>12dG1(v)dG1(w1)+dG1(w1)dG1(v)+12dG1(u1)dG1(v)+dG1(v)dG1(u1)+12dG1(uk−1)dG1(uk)+dG1(uk)dG1(uk−1)−12dG2(uk)dG2(w1)+dG2(w1)dG2(uk)+12dG2(u1)dG2(v)+dG2(v)dG2(u1)+12dG2(uk−1)dG2(uk)+dG2(uk)dG2(uk−1)=(2+dG0(v))2+42(2+dG0(v))+54−(1+dG0(v))2+44(1+dG0(v))+2=dG0(v)4(1+dG0(v))dG0(v)2(2+dG0(v))+3>0.








□





Remark 1.

By continuing the process of Transformation I, any tree T of size t connected to a graph G1 can be changed into a path P with size (t+1) (i.e., Pt+1). From this process, we infer that EA index is strictly decreases.





Transformation II. Let G1 be a connected graph with an edge uv and dG1(v)≥2. Suppose that NG1(u)={v,w1,w2,…,wt} and w1,w2,…,wt are pendent vertices. Let G2=G1−{uw1,uw2,…,uwt}+{vw1,vw2,…,vwt}.



We now show that Transformation II strictly increases the EA index of a graph.



Lemma 2.

Let G2 be a graph obtained from G1 by Transformation II as shown in Figure 2. Then


EA(G2)>EA(G1).













Proof. 

Let dG0(v)>0. In Transformation II dG2(v)>dG1(v). So similar to the proof of Lemma 1, we have


EA(G2)−E(G1)>∑i=1t12dG2(v)dG2(wi)+dG2(wi)dG2(v)+12dG2(u)dG2(v)+dG2(v)dG2(u)−∑i=1t12dG1(u)dG1(wi)+dG1(wi)dG1(u)+12dG1(u)dG1(v)+dG1(v)dG1(u)=12∑i=1tdG2(v)dG2(wi)+dG2(wi)dG2(v)−dG1(u)dG1(wi)+dG1(wi)dG1(u)>0.








□





Remark 2.

By continuing the process of Transformation II, any tree T of size t connected to a graph G1 can be changed into a star St+1. And from this process EA index increases.





Transformation III. Let G1 be a non-trivial connected graph, u and v be two vertices of G1. Let Pl=v1(=u)v2…vl(=v) is a non-trivial path of length t connected to the vertices u and v in G1. If G2=G1−{v1v2,v2v3,…,vl−1vl}+{w(=u∘v)v1,wv2,…,wvl}, see the Figure 3.



Lemma 3.

Let G2 be a connected graph obtained from G1 by Transformation III as shown in Figure 3. Then


EA(G2)>EA(G1).













Proof. 

Let dH1(u)=x and dH2(v)=y, while w be the new vertex by merging u and v with dG2(w)=x+y+l−1, with l≥2. We can easily get that EA(G2)−EA(G1)>0, for l=2. We now show that EA(G2)−EA(G1)>0, for l>2. From (1), we have


EA(G2)−EA(G1)>12∑i=1l−1dG2(w)dG2(vi)+dG2(vi)dG2(w)−12x2+2x+12y2+2y+(l−3)=(l−1)12(x+y+l−1)1+1(x+y+l−1)−x2+44x−y2+44y−(l−3)>(x+y+l−1)2+12(x+y+l−1)−x2+44x+(x+y+l−1)2+12(x+y+l−1)−y2+44y>0.








□





Transformation IV. Let G1 be a non-trivial connected graph and x>3, y>3 are two neighbors of vertex v1. Assume that a pendent path P=v1v2,v2v3,…,vt−1vt is attached at v1 in graph G1, then G2=G1−xv1+xvt, see Figure 4.



Lemma 4.

Let G2 be a connected graph obtained from G1 by Transformation IV. Then


EA(G2)>EA(G1).



(2)









Proof. 

By the definition of EA index, we have


EA(G2)−E(G1)>12dG2(x)dG2(v1)+dG2(v1)dG2(x)+12dG2(v1)dG2(v2)+dG2(v2)dG2(v1)+12dG2(vt−1)dG2(vt)+dG2(vt)dG2(vt−1)+12dG2(vt)dG2(y)+dG2(y)dG2(vt)−12dG1(x)dG1(v1)+dG1(v1)dG1(x)+12dG1(v1)dG1(v2)+dG1(v2)dG1(v1)+12dG1(vt−1)dG1(vt)+dG1(vt)dG1(vt−1)+12dG1(v1)dG1(y)+dG1(y)dG1(v1)=12x2+2x+2+122y+y2−12x3+3x+1312+54+123y+y3=x2+44x−x2+96x+y2+44x−y2+96y−13>0.








□





Transformation V: Let G0 be a non-trivial connected graph. Let u and v be a pair of equivalent vertices in G0 with dG0(u)=dG0(v)=x and G1 be a graph obtained by attaching Sk+1 and Sl+1 at the vertices u and v of G0 with k≥l, respectively. If G2 is the graph obtained by deleting the l pendent vertices at v in G1 and connecting them to the vertex u of G, respectively, see Figure 5.



Lemma 5.

Let G2 be a connected graph obtained from G1 by Transformation V. Then


EA(G2)>EA(G1).













Proof. 

Let k≥l≥1. By (1), we have


EA(G2)−EA(G1)>12∑i=1kdG2(u)dG2(ui)+dG2(ui)dG2(u)−12∑i=1kdG1(u)dG1(ui)+dG1(ui)dG1(u)+12∑i=1ldG2(u)dG2(vi)+dG2(vi)dG2(u)−12∑i=1ldG1(v)dG1(vi)+dG1(vi)dG1(v)=k12dG2(u)1+1dG2(u)−12dG1(u)1+1dG1(u)+l12dG2(u)1+1dG2(u)−12dG1(v)1+1dG1(v)=k+l>0.








□





Remark 3.

From Lemmas 3–5, we can say that Transformation III, Transformation IV and Transformation V increases the EA index of a graph respectively.






3. Main Results


In this section, we determine the extremal EA index of graphs from An, Un and Bn, respectively by a unified method.



Let An, Un and Bn are the set of connected acyclic, unicyclic and bicyclic graphs of order n respectively. Let Cn(p,q) be the graph contains two cycles Cp and Cq having a common vertex with p+q−1=n, Pnk,l,m be the graph obtained by connecting two cycles Ck and Cm with a path Pl with k+l+m−2=n and Cn(r,l,t) be the graph obtained by joining two triples of pendent vertices of three paths Pl, Pr and Pt to two vertices with l+r+t−4=n. (without loss of generality, we set 2≤l≤r≤t). If a bicyclic graph contains one of the three graphs which are depicted in Figure 6 as its subgraph then we have three subsets of Bn as Bn1={Cn(p,q):p+q−1=n}, Bn2={Cn(r,l,t):l+r+t−4=n} and Bn3={Pnk,l,m:k+l+m−2=n}. So the set Bn can be partitioned into three subsets Bn1, Bn2 and Bn3.



The following theorem gives the minimum and maximum value of the EA index.



Theorem 1.

Let G be a acyclic connected graph with order n. Then


EA(Pn)≤EA(G)≤EA(Sn).








The lower bound and upper bound is attained iff G≅Pn and G≅Sn respectively.





Proof. 

By using Lemmas 1 and 2 above inequalities holds good. □





The graphs which are depicted in Figure 7 will be used in the following proof.



Theorem 2.

Let G be a unicyclic graph with order n. Then


EA(Cn)≤EA(G)≤EA(Sn1),








where the lower bound and upper bound is attained iff G≅Cn and G≅Sn1 respectively.





Proof. 

Let G contains a uniquely cycle Cl and by Lemma 3 we obtain the graph G2 in which the size of the cycle is three and its EA index is strictly increased. Moreover, from Lemma 5, we can get the uniquely maximum graph Sn1 with respect to EA index (see Figure 7 ). On the other hand, by Lemma 1 we conclude that the minimum graph is Cn. □





Theorem 3.

Let G be a bicyclic graph with n vertices. Then


n+32≤EA(G)≤[(n−1)2+1][3n−8]+176(n−1)+136,



(3)




where the lower bound and upper bound is attained iff G∈{Pnk,l,m:l≥3}∪{Cn(r,l,t):l≥2} and G≅Sn2 respectively.





Proof. 

Firstly, we have to prove the upper bound for the bicyclic graph with respect to EA index. Suppose G is isomorphic to Sn2(orG≅Sn2), then from (1), we get


EA(G)=[(n−1)2+1][3n−8]+176(n−1)+136.








Next, we show that EA(G)<EA(Sn2) for G is not isomorphic to Sn2.



Case 1:K4−e is the subgraph of G.



If K4−e is the subgraph of a graph G, then from Lemmas 2 and 5 we obtain G′ as a new (bicyclic) graph whose EA index is more than that of G (see Figure 7). One can easily check that EA(G)=[(n−1)2+1][3n−8]+176(n−1)+136, equality attains iff G≅Sn2.



Case 2:K4−e is not the subgraph of G.



From Lemma 3 we can say that may be there are a bicyclic graph whose EA index is more than that of graph G has the subgraph K4−e. Hence following two subcases exist.



Subcase 2.1:G contains Cs(3,2,m) as a subgraph.



By Lemma 3 Subcase 2.1 deduce to Case 1.



Subcase 2.2:Cs(3,2,m) is not a subgraph of G.



If Cs(3,2,m) is not a subgraph of G, then from Lemmas 2, 3 and 5, we will have a new graph G″ whose EA index is more than that of G, see Figure 7. It is easy to verify that EA(G)<[(n−1)2+1][3n−8]+176(n−1)+136.



Furthermore, We have to show the lower bound. By Lemmas 1, 2 and 4, we infer that the extremal graph of the minimum EA index in bicyclic graphs must be the element which belongs to the set {Bn1,Bn2,Bn3}.



We easily get that EA(Cn(p,q))=n+2; EA(Pnk,l,m)=n+1712 if l=2 and EA(Pnk,l,m)=n+32, otherwise; EA(Cn(r,l,t)=n+32 if l≥2. Hence the lower bound and the equality attains iff G∈{Pnk,l,m:l≥3}∪{Cn(r,l,t):l≥2}. □
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Figure 1. Transformation I. 






Figure 1. Transformation I.
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Figure 2. Transformation II. 






Figure 2. Transformation II.
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Figure 3. Transformation III. 






Figure 3. Transformation III.
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Figure 4. Transformation IV. 






Figure 4. Transformation IV.
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Figure 5. Transformation V. 






Figure 5. Transformation V.
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Figure 6. Subgraphs of Bn. 






Figure 6. Subgraphs of Bn.
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Figure 7. The graphs which are used in the later proof. 






Figure 7. The graphs which are used in the later proof.
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