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1. Introduction

The wave problem consists of the wave equation and some initial data,

∆upx, tq “ Bttupx, tq, upx, 0q “ f pxq, Btupx, 0q “ gpxq, for x P Rn and t P R.

This problem is certainly one of the most interesting problems of mathematical physics. Standard
techniques involving the Fourier transform show that there are two distributions P1 and P2 on Rn ˆR
such that u “ P1 ˚ f ` P2 ˚ g. Here ˚ represents the Euclidean convolution product. The distributions
P1 and P2 are called propagators.

One of the most celebrated features of the wave equation is Huygens’ principle: When the
dimension n is odd and starting from 3, the propagators are supported entirely on spherical shells.
This is the reason why in our three-dimensional word, transmission of signals is possible and we can
hear each other. A two-dimensional world would be drastically different from this point of view.

The problem of classifying all second order differential operators which obey Huygens’ principle
is known as the Hadamard problem [1]. This problem has received a good deal of attention and the
literature is extensive (see, for instance, [2–13]). Nevertheless, this problem is still far from being fully
solved.

In this paper we will consider a deformed wave equation where the Laplacian ∆ is replaced by a
certain differential-difference operator. We will prove the non-existence of Huygens’ principle for the
deformed wave equation for all n ě 1. The main tool is the representation theory of the Lie algebra
slp2,Rq.

More precisely, we will consider the deformed wave equation 2}x}∆kupx, tq “ Bttupx, tq with
compactly supported initial data p f , gq. Here ∆k is the differential-difference Dunkl Laplacian (see (2)),
where k is a multiplicity function for the Dunkl operators. The operator }x}∆k appeared in [14] and
played a crucial rule in the study of the so-called pk, 1q-generalized Fourier transform. When k ” 0,
the deformed wave equation becomes 2}x}∆upx, tq “ Bttupx, tq and the p0, 1q-generalized Fourier
transform reduces to a Hankel type transform on Rn. We refer the reader to [14] for a detailed study
on the generalized Fourier transform.
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We begin with a straightforward treatment of the Cauchy problem for the deformed wave equation
by means of the pk, 1q-generalized Fourier transform, and derive the existence of propagators Pk,1 and
Pk,2, in terms of which, the Cauchy problem is solved. Huygens’ principle for the deformed wave
equation is that Pk,1 and Pk,2 are supported entirely on the set tpx, tq P Rn ˆR : }x} ´ 1

2 t2 “ 0u. It is
not a simple task to study the support property from the precise form of the propagators. However,
subtler dilatation properties of the propagators allow us to show that Huygens’ principle holds true
if, and only if, Pk,1 and Pk,2 generate a finite dimensional representation of the Lie algebra slp2,Rq. It
is here that the construction of a representation of slp2,Rq plays a crucial role. This construction was
inspired by [14]. A closer investigation shows that Pk,1 and Pk,2 cannot generate finite dimensional
representations of slp2,Rq, and therefore, Huygens’ principle does not hold for the deformed wave
equation for any n ě 1 and any multiplicity function k. The strategy uses proof by contradiction. It is
noteworthy mentioning that the case k ” 0 is already new.

It would be interesting to understand the interpretation(s) of the non-existence of Huygens’
principle for the deformed wave equation from the physics point of view. It would also be fascinating
to ask whether Huygens’s principle holds for other seminal Dunkl-type equations such as the
Dunkl–Dirac equation (see [15] for more details about the Dunkl–Dirac operator). For the Euclidean
Dirac equation, this problem has been investigated in [16].

2. Background

Let x¨, ¨y be the standard Euclidean scalar product in Rn. For x P Rn, denote }x} “ xx, xy1{2.
For α in Rnzt0u, we write rα for the reflection with respect to the hyperplane αK orthogonal to α

defined by

rαpxq :“ x´ 2
xα, xy
xα, αy

α, x P Rn.

A finite set R Ă Rnzt0u is called a root system if rαpRq Ă R for every α P R. The finite group
G Ă Opnq generated by the reflections trα : α P Ru is called the finite Coxeter group associated with R.
A multiplicity function for G is a function k : RÑ Rě0 which is constant on G-orbits.

For 1 ď j ď n, the Dunkl operator is defined in [17] by

Tj f pxq “ Bj f pxq `
1
2

ÿ

αPR
kpαq

f pxq ´ f
`

rαpxq
˘

xα, xy
xα, ejy, x P Rn,

where Bj is the standard directional derivative and te1, . . . , enu is the canonical orthonormal basis in
Rn. The most important property of these operators is that they commute. The operators Tj and Bj are
intertwined by the following Laplace type operator

Vk f pxq “
ż

Rn
f pyqdµk

xpyq, (1)

where µk
x is a unique compactly supported probability measure with supppµk

xq Ă ty P Rn : }y} ď }x}u
(see [17,18]).

The Dunkl Laplacian, which is akin to the Euclidean Laplace operator ∆, is defined by ∆k :“
T2

1 ` ¨ ¨ ¨ ` T2
n and is given explicitly, for suitable function f , by

∆k f pxq “ ∆ f pxq `
ÿ

αPR
kpαq

ˆ

x∇ f pxq, αy

xα, xy
´
}α}2

2
f pxq ´ f

`

rαpxq
˘

xα, xy2

˙

, x P Rn, (2)

where ∇ is the gradient. It is worth mentioning that if kpαq “ 0 for all α P R, then ∆k reduces to the
Euclidean Laplacian ∆. We refer the reader to [19] for the theory of Dunkl’s operators. This theory,
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which started with the seminal paper [17], was developed extensively afterwards and continues to
receive considerable attention (see, e.g., [20–32]).

Next we will introduce some definitions and results for the generalized Fourier transform; for
details we refer to [14]. For a ą 0, let

∆k,a :“ }x}2´a∆k ´ }x}a,

where }x}a on the right-hand side of the formula stands for the multiplication operator by }x}a. The
operator ∆k,a is symmetric on the Hilbert space L2pRn, ϑk,aq consisting of square integrable functions
against the measure ϑk,apxqdx :“ }x}a´2 ś

αPR |xα, xy|kpαqdx.
The pk, aq-generalized Fourier transform Fk,a was defined in [14] to be

Fk,a :“ ei π
2

`

n`2xky`a´2
a

˘

exp
´

i
π

2a
∆k,a

¯

,

where xky :“ 1
2
ř

αPR kpαq. We pin down that Fk,a is a unitary operator from L2pRn, ϑk,aq onto itself and
the inversion formula is given as

F´1
k, 1

r
“ Fk, 1

r
,

`

F´1
k, 2

2r`1
f
˘

pxq “
`

Fk, 2
2r`1

f
˘

p´xq, (3)

where r is any nonnegative integer. The transform Fk,a reduces to the Euclidean Fourier transform
if k ” 0 and a “ 2; to the Kobayashi–Mano Hankel transform [33] if k ” 0 and a “ 1; to the Dunkl
transform [34] if k ą 0 and a “ 2. In this paper we consider the case k ą 0 and a “ 1. For more details,
we refer the reader to ([14] Sections 4 and 5) (see also [35–41]).

Let us collect the main properties of the pk, 1q-transform Fk,1 :“ Fk. In ([14] Theorem 4.23), the
authors proved that for n` 2xky ą 1, there exists a kernel Bkpx, yq such that for every f P L2pRn, ϑk,1q,

Fk f pxq “ c´1
k

ż

Rn
f pyqBkpx, yqϑk,1pyqdy, x P Rn,

where, for x “ rθ1 and y “ tθ2, the kernel Bk is given by

Bkpx, yq “ Vk

´

rJ n´3
2 `xky

`

a

2rtp1` xθ1, ¨yq
˘

¯

pθ2q.

Here Vk is the Dunkl intertwining operator (1) and rJνpzq is the normalized Bessel function. Above,

ck :“ Γpn` 2xky ´ 1q
ż

Sn´1

ź

αPR
|xα, ηy|kpαqdσpηq.

It is noteworthy mentioning that

Fk ˝ }x} “ ´}x}∆kFk, Fk ˝ p´}x}∆kq “ ´}x} ˝Fk. (4)

Recently, in [42] the authors defined a translation operator τx, for x P Rn, on the space L1 X

L8pRn, ϑk,1q by
Fkpτx f qpξq “ Bpx, ξqFkp f qpξq, ξ P Rn.

Here are some basic properties of the translation operator:

(i) τ0 “ Id;
(ii) τx f pyq “ τy f pxq;

(iii) τx fλ “ pτλx f qλ, where fλpxq “ f pλxq for λ ą 0.
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By means of the translation operator, a convolution � on the Schwartz space SpRnqwas defined by

f � gpxq “ c´1
k

ż

Rn
f pyqτxgpyqϑk,1pyqdy, x P Rn.

In particular, f � g “ g � f and Fkp f � gq “ Fk f ¨Fkg (see [42] for more details).
Next we turn our attention to the convolution of distributions (see [42,43]). Denote by S 1pRnq the

dual of the Schwartz space SpRnq. If T P S 1pRnq, then FkpTq is defined by

xFkpTq, ϕy :“ xT,Fkpϕqy, @ϕ P SpRnq.

It is worth mentioning that SpRnq is stable by Fk (see [36]). The convolution T � f of T P S 1pRnq

and f P SpRnq is defined in [42] by
T � f pxq “ xT, τx f y.

In particular, a result analogous to the Euclidean convolution shows that T � f P S 1pRnqXC8pRnq

and FkpT � f q “ FkT ¨Fk f .

3. The Deformed Wave Equation and Huygens’ Principle

For n` 2xky ´ 1 ą 0, where xky “ 1
2
ř

αPR kpαq, we consider the following Cauchy problem for
the wave equation

2}x}∆x
k ukpx, tq “ Bttukpx, tq, px, tq P Rn ˆR,

ukpx, 0q “ f pxq, Btukpx, 0q “ gpxq,
(5)

where the functions f and g belong to the space DpRnq of smooth functions with compact support.
Here the superscript in ∆x

k indicates the relevant variable, while the subscript t indicates differentiation
in the t-variable. Next, we will prove the following statements:

pSq Let ukpx, tq, x P Rn and t P R, satisfy 2}x}∆x
k ukpx, tq ´ Bttukpx, tq “ 0, then uk does not satisfy

Huygen’s principle. In other words, the solution uk is expressed as a sum of �-convolution of f
and g with distributions that are not supported entirely on the set tpx, tq P Rn ˆR : }x} “ 1

2 t2u.

For t P R, denote by Pk,t the 2ˆ 2 matrix of tempered distributions on Rn

Pk,t “

˜

P11
k,t P12

k,t
P21

k,t P22
k,t

¸

:“

˜

Fk
`

cospt
a

2} ¨ }q
˘

Fk
`

sinpt
a

2} ¨ }q{
a

2} ¨ }
˘

Fk
`

´
a

2} ¨ } sinpt
a

2} ¨ }q
˘

Fk
`

cospt
a

2} ¨ }q
˘

¸

. (6)

Set Ukpx, 0q :“

˜

f pxq
gpxq

¸

, where the initial data p f , gq P DpRnq ˆDpRnq. Thus, we may define the

vector column Ukpx, tq by

Ukpx, tq :“
 

Pk,t � Ukp¨, 0q
(

pxq (7)

“

#˜

P11
k,t P12

k,t
P21

k,t P22
k,t

¸

�

˜

f
g

¸+

pxq.

By applying the Fourier transform Fk to (7), in the x-variable, we get

FkpUkp¨, tqqpξq “ etAFkpUkp¨, 0qqpξq, (8)

where

A :“

˜

0 1
´2}ξ} 0

¸

. (9)
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Above we have used the fact that F´1
k “ Fk (see (3)). That is FkpUkp¨, tqqpξq is a solution to the

following ordinary differential equation

BtFkpUkp¨, tqqpξq “ AFkpUkp¨, tqqpξq “

˜

0 1
´2}ξ} 0

¸

FkpUkp¨, tqqpξq. (10)

Now, recall from (4) that ´}ξ}Fkp f qpξq “ Fkp}x}∆k f qpξq, and using the injectivity of the Fourier
transform Fk, we deduce that

BtUkpx, tq “

˜

0 1
2}x}∆k 0

¸

Ukpx, tq. (11)

Hence, if we write Ukpx, tq “

˜

ukpx, tq
vkpx, tq

¸

, then ukpx, tq satisfies the following equation

Bttukpx, tq “ 2}x}∆kukpx, tq.

Moreover, since f , g P DpRnq, it follows from (7) and the properties of the �-convolution that
ukp¨, tq P C8pRnq for all t P R.

Furthermore, ukpx, tq Ñ f pxq as t Ñ 0. Indeed, if δ denotes the Dirac functional, then, as t Ñ 0,
Fkpcospt

a

2} ¨ }qq Ñ δ in S 1pRnq and thus in D1pRnq. On the other hand Fkpsinpt
a

2} ¨ }q{
a

2} ¨ }q Ñ 0
as t Ñ 0. Using the continuity of the convolution �, we deduce that

ukpx, tq Ñ pδ � f qpxq “ f pxq as t Ñ 0.

Similarly, one can prove that pBtukqpx, tq Ñ gpxq as t Ñ 0.
We mention that the solution uk constructed above is unique. To prove this claim, we need the

lemma below. Let

Ekruksptq “
ż

Rn

!

|BtFkpukp¨, tqqpξq|2 ` 2}ξ}|Fkpukp¨, tqqpξq|2
)

ϑk,1pξqdξ. (12)

Lemma 1. Assume that n` 2xky ´ 1 ą 0 and that the initial data f , g P DpRNq. Then the total energy Ekruks

is independent of t.

Proof. Since

Fkpukp¨, tqqpξq “ cospt
a

2}ξ}qFk f pξq `
sinpt

a

2}ξ}q
a

2}ξ}
Fkgpξq, for all t P R,

we deduce that

|Fkpukp¨, tqqpξq|2 “ cos2pt
a

2}ξ}q|Fk f pξq|2 `
sin2pt

a

2}ξ}q
2}ξ}

|Fkgpξq|2

`
?

2
cospt

a

}ξ}q sinpt
a

}ξ}q
a

}ξ}
Re

´

Fk f pξqFkgpξq
¯

,

and

|BtFkpukp¨, tqqpξq|2 “ cos2pt
a

2}ξ}q|Fkgpξq|2 ` 2}ξ}sin2pt
a

2}ξ}q|Fk f pξq|2

´2
a

2}ξ}cospt
a

2}ξ}q sinpt
a

2}ξ}qRe
´

Fk f pξqFkgpξq
¯

.
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Thus we have
Ekruksptq “

ż

Rn

!

2}ξ}|Fk f pξq|2 ` |Fkgpξq|2
)

ϑk,1pξqdξ. (13)

Hence, we established the lemma.

Now let us go back to the uniqueness of the solution uk. Assume that up1qk and

up2qk are two solutions of the wave equation with the same initial data, then up1qk ´ up2qk
is a solution of the wave equation with zero initial data. Therefore, by (13), we have
Ekru

p1q
k ´ up2qk sptq “ 0. Hence, (12) implies BtFkppu

p1q
k ´ up2qk qp¨, tqqpξq “ 0 for every t P R. That is,

the function t ÞÑ Fkppu
p1q
k ´ up2qk qp¨, tqqpξq is a constant, which implies Fkppu

p1q
k ´ up2qk qp¨, tqqpξq “

Fkppu
p1q
k ´ up2qk qp¨, 0qqpξq “ 0. Using the injectivity of the Fourier transform Fk, we deduce that

pup1qk ´ up2qk qpx, tq “ 0 for all x P Rn and t ą 0. This proves that the solutions of the wave equation are
uniquely determined by the initial Cauchy data.

The following theorem collects all the above facts and discussions.

Theorem 1. The solution to the Cauchy problem (5) is given uniquely by

ukpx, tq “ pP11
k,t � f qpxq ` pP12

k,t � gqpxq,

where, for a fixed t, P11
k,t and P12

k,t are the tempered distributions on Rn given by

P11
k,t “ Fk

`

cospt
a

2} ¨ }q
˘

, P12
k,t “ Fk

`

sinpt
a

2} ¨ }q{
a

2} ¨ }
˘

.

The distributions Pij
k,t will be called the propagators.

We shall now prove the statement (S). To do so, we will assume that the propagators P11
k,t and

P12
k,t are supported entirely on the set C “ tpx, tq P Rn ˆR : }x} “ 1

2 t2u and we will show that this
assumption cannot hold. Our approach uses the representation theory of the Lie algebra slp2,Rq,
following [43,44].

Assume that the propagators P11
k,t and P12

k,t are supported entirely on the set C “ tpx, tq P Rn ˆR :
}x} “ 1

2 t2u.
We start by investigating certain properties of the wave equation, which are reflected in properties

of the propagators. To see this, we define the 2ˆ 2 matrix Pk “

˜

P11
k P12

k
P21

k P22
k

¸

of entrywise distributions

on Rn`1, where

Pij
k pψ1 b ψ2q :“

ż

R
Pij

k,tpψ1qψ2ptqdt, i, j “ 1, 2,

for ψ1 P SpRnq and ψ2 P SpRq. Here we used the fact that SpRn`1q » SpRnqpbSpRq is the unique
topological tensor product of SpRnq and SpRq as nuclear spaces. From the constructive proof of
Theorem 1, it follows that

2}x}∆kPij
k “ BttP

ij
k , i, j “ 1, 2.

Next, we will investigate the dilations of the propagators under a dilation operator. This will
inform us on the degree of the “homogeneity” of the distributions Pij

k , with i, j “ 1, 2. For λ ą 0 and a
function ψ on Rn`1, let

Sx
λψpx, tq :“ ψpλ2x, tq, St

λψpx, tq :“ ψpx, λtq,

where the superscript denotes the relevant variable. Set Sλ :“ Sx
λ ˝ St

λ. By duality, the operators Sx
λ, St

λ,
and Sλ act on distributions in the standard way.
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We begin by looking to the properties of Pij
k,t under the dilation Sλ. Observe that if ukpx, tq is a

solution to (5) with initial data p f pxq, gpxqq, then Sλukpx, tq solves the wave equation with initial data
pSx

λ f pxq, λSx
λgpxqq. Thus

SλUkpx, tq “ Pk,t �

«

Sx
λ f

λSx
λg

ff

. (14)

On the other hand

SλUkpx, tq “

«

Sλukpx, tq
BttSλukpx, tqu

ff

“

«

ukpλ
2x, λtq

λtBtukupλ
2x, λtq

ff

“

«

uk
λBtuk

ff

pλ2x, λtq

“

«

1 0
0 λ

ff«

uk
Btuk

ff

pλ2x, λtq

“

«

1 0
0 λ

ff

!

Pk,λt �

«

f
g

ff

)

pλ2xq

“

«

1 0
0 λ

ff

Sx
λ

!

Pk,λt �

«

f
g

ff

)

pxq.

Using the fact that Sx
λ preserves the convolution of a distribution with a function, a fact that can

be easily checked using the properties of the translation operator, we get

SλUkpx, tq “

«

1 0
0 λ

ff

!

Sx
λPk,λt �

«

Sx
λ f

Sx
λg

ff

)

pxq

“

«

1 0
0 λ

ff

!

Sx
λPk,λt �

«

1 0
0 λ´1

ff«

Sx
λ f

λSx
λg

ff

)

pxq. (15)

Comparing (14) with (15) gives Sx
λPij

k,λt “ λj´iPij
k,t, for i, j “ 1, 2. Now we can obtain the dilation

properties of Pij
k as follows: For ψ1 P SpRnq and ψ2 P SpRq, we have

SλpP
ij
k qpψ1 b ψ2q “ Pij

k pS
x
λ´1pψ1q b St

λ´1pψ2qq

“

ż

R
Pij

k,tpS
x
λ´1pψ1qqSt

λ´1pψ2qptqdt

“ λ

ż

R
Pij

k,λtpS
x
λ´1pψ1qqψ2ptqdt

“ λ

ż

R
Sx

λpP
ij
k,λtpψ1qqψ2ptqdt

“ λ1`j´i
ż

R
Pij

k,tpψ1qψ2ptqdt

“ λ1`j´iPij
k pψ1 b ψ2q.

We summarize the above computations.

Proposition 1. For n` 2xky ´ 1 ą 0, we have

(1) The distribution Pij
k satisfies the deformed wave equation, i.e.,

p}x}∆k ´
1
2
BttqP

ij
k “ 0, i, j “ 1, 2. (16)
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(2) For λ ą 0,
SλPij

k “ λ1`j´iPij
k , i, j “ 1, 2.

Next we shall describe the structure of a representation of the Lie algebra slp2,Rq on SpRn`1q.
This structure, together with Proposition 1, will allow us to prove that the Assumption 3 does not hold
true.

We take a basis for the Lie algebra slp2,Rq as

e :“

˜

0 1
0 0

¸

, f :“

˜

0 0
1 0

¸

, h :“

˜

1 0
0 ´1

¸

.

The triple te, f, hu satisfies the commutation relations

re, fs “ h, rh, es “ 2e, rh, fs “ ´2f,

where rA, Bs :“ AB´ BA.
Choose x1, x2, . . . , xn as the usual system of coordinates on Rn. Let

En,1 :“ ip}x} ´
1
2

t2q, Fn,1 :“ ip}x}∆k ´
1
2
Bttq, Hn,1 :“ n` 2xky ´

1
2
` 2

n
ÿ

`“1

x`B` ` tBt.

Using ([14] Theorem 3.2), the following commutation relations hold

rEn,1,Fn,1s “ Hn,1, rHN,1,EN,1s “ 2EN,1, rHn,1,Fn,1s “ ´2Fn,1. (17)

These are the commutation relations of a standard basis of the Lie algebra slp2,Rq. Equation (17)
gives rise to a representation ωk of the Lie algebra slp2,Rq on the Schwartz space SpRn`1q by setting

ωkphq “ Hn,1, ωkpeq “ En,1, ωk,apfq “ Fn,1. (18)

An analogue of the representation ωk has been intensively studied in [14].
Recall that the Huygens’ principle is equivalent to the fact that the propagators P11

k and P12
k are

supported on the set C “ tpx, tq P Rn ˆR | }x} ´ 1
2 t2 “ 0u. Since C is the locus of zeros of }x} ´ 1

2 t2,

then, Pij
k is supported on C if and only if

Em
n,1 ¨ P

ij
k “ 0 (19)

for some positive integer m (see, for instance, ([44] p. 173)). In the light of Proposition 1(1) together
with the dilatation property of Pij

k , which implies that Pij
k is an eigen-distribution for Hn,1, Equation (19)

amounts to saying the distribution Pij
k generates a finite-dimensional representation ω˚k for slp2,Rq on

S 1pRn`1q. Thus, the qualitative part of Huygens’ principle holds.

Theorem 2. Huygens’ principle holds if and only if Pij
k is supported on the set C, if and only if Pij

k generates a
finite-dimensional representation ω˚k for slp2,Rq on S 1pRn`1q.

Theorem 3. Huygens’ principle cannot hold when

n´ 1` 2xky R Z.

Proof. In ([14] Theorem 3.21) the authors proved that the spectrum of the element k :“ ipf ´ eq
acting on S 1pRn`1q via the dual representation ω˚k is n´ 1` 2xky ` 2Z, whereas, it is well known, the
spectrum of k in finite-dimensional representations of slp2,Rq is contained in Z.
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The above theorem leaves the possibility that the wave equation may satisfy Huygens’ principle
when n´ 1` 2xky P Z.

Now, using Proposition 1(2), we get

!

2
n
ÿ

`“1

x`B` ` tBt

)

Pij
k “ p1` j´ iqPij

k .

Therefore

Hn,1Pij
k “ ´

ˆ

n` 2xky ´
1
2
` i´ j´ 1

˙

Pij
k , i, j “ 1, 2.

That is Pij
k is an eigendistributation for Hn,1 with eigenvalue ´pn` 2xky ´ 1

2 ` i´ j´ 1q. Keeping

in mind the fact that Fn,1 ¨ P
ij
k “ 0, and in the light of Theorem 3, clearly each distribution Pij

k cannot
generate a finite-dimensional ω˚k for slp2,Rq on S 1pRn`1q; otherwise n` 2xky ´ 1

2 ` i´ j´ 1 P Z which
is impossible in view of Theorem 3. That is our Assumption 3 does not hold true.

Theorem 4. The solution ukpx, tq to the Cauchy problem (5) does not satisfy the Huygens’ principle.
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