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1. Introduction

Fractional calculus is a generalization of classical integer-order calculus and has been studied
for more than 300 years. Unlike integer-order derivatives, the fractional derivative is a non-local
operator, which implies that the future states depend on the current state as well as the history of
all previous states. From this point of view, fractional differential equations provide a powerful tool
for mathematical modeling of complex phenomena in science and engineering practice (see [1-7]).
For example, an epidemic model of non-fatal disease in a population over a lengthy time interval can
be described by fractional differential equations:

Dyx(t) = —px(t)y(b),
Doy(t) = px(t)y(t) — ry(t),
Doz(t) = vy(t),

where 0 < a < 1, Df is the Caputo fractional derivative of order «, x(t) represents the number of
susceptible individuals, y(t) expresses the number of infected individuals that can spread the disease
to susceptible individuals through contact, and z(t) is the number of isolated individuals who cannot
contract or transmit the disease for various reasons (see [1]). In [2], Ates and Zegeling investigated the
following fractional-order advection—diffusion-reaction boundary value problem (BVP):

eCD%x + yx' + f(x) = S(t), te€0,1],
x(0) = x1, x(1) = xg,

where 1 < a <2,0 < e < 1,7 € R, D" is the Caputo fractional derivative of order a and S(t) is a
spatially dependent source term.

In recent years, the discussion of fractional initial value problems (IVPs) and BVPs have attracted
the attention of many scholars and valuable results have been obtained (see [8-33]). Various methods
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have been utilized to study fractional IVPs and BVPs such as the Banach contraction map principle
(see [8-11]), fixed point theorems (see [12-18]), monotone iterative method (see [19-21]), variational
method (see [22-24]), fixed point index theory (see [17-25]), coincidence degree theory (see [26-29]),
and numerical methods [30,31]. For instance, Jiang (see [26]) studied the existence of solutions using
coincidence degree theory for the following fractional BVP:

D, u(t) = f(t,u(t), Dy u(t)), ae.te[0,1].
u(0) =0, D§ u(0) =Y ", a;Dy  u(g;),
Dy *u(1) = 30, biDg (),

where 2 < & < 3, Dj L is the Riemann-Liouville fractional derivative of order «.

BVPs on an infinite interval arise naturally in the study of radially symmetric solutions of
nonlinear elliptic equations and various physical phenomena such as plasmas, unsteady flow of
gas through a semi-infinite porous medium, and electric potential of an isolated atom (see [34]).
Numerous papers discuss BVPs of integer-order differential equations on infinite intervals (see [35-38]).
Naturally, BVPs of fractional differential equations on infinite intervals have received some attention
(see [8,12,14-16,18-20,27,29,32]). For example, Wang et al. [8] considered the following fractional BVPs
on an infinite interval:

{D"‘u(t) +f(tu(t))=0,2<a<3, tecl0,+o)
u(0) = u'(0) =0, D* u(co) = &IPu(y), p > 0.

where D* is the Riemann-Liouville fractional derivative of order a, I? is the Riemann-Liouville
fractional integral of order B, f € C(]0,+) x R,R), § € Rand 5 € [0,+). Then, employing the
Banach contraction mapping principle, the author established the existence results.

Motivated by the aforementioned work, this paper uses coincidence degree theory to investigate
the existence of solutions for the following fractional BVP:

D&, u(t) = f(t,u(t), D3 %u(t), D&, u(t)), 0 <t < +oo,
u(0) =0, D§2u(0) =y " 1“13“ 2u(Zi), 1)
Dg:l Z] 1ﬁJDlx 1 )

where D  is the standard Riemann-Liouville fractional derivative, 2 < 4« < 3,0 < <& < --- <
Cm < 400, 0 <myp <1y < -+ <ty < 400, a;, B €R, f 1 [0, +00) x R3 — R Carathéodory’s criterion,
ie., f(t,u,v,w) is Lebesgue measurable in ¢ for all (1, v, w) € R3, and continuous in (u, v, w) for a.e.
t € [0, +o0).

Throughout this paper, we assume the following conditions hold:

(H) Yliai=Yl =1 L aigi=0.
(Hy) There exist nonnegative functions 5(t), B(t), 7 (t), y(t) € L'[0, +00) such that Vt € [0, +c0) and
(u,v,w) € R3,

BT+ n(0) ol + (1),

P
[Flt0,0)] <807

+0c0
where we let 2 := {611 + [IBl|rx + [[7l]pa, [ll[ 12 =/0 [k (£)|dt, k = 6, B, 1.
(H3) A= ai1dp — aq12dayn1 75 0, where
a — -1 + Zm 06'6767’ aipp — 27:1 ﬁjefﬂf,
=2+ ai(2+E)e,  ay = 27:1 Bi(1+n)e .
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A BVP is called a resonance problem if the corresponding homogeneous BVP has nontrivial
solution. According to (H; ), we will consider the following homogeneous BVP of fractional BVP (1):

Dgu(t) =0, 0<t< +oo,
u(0) =0, Dg:zu(o) = 271:1 ocz-Dg‘:zu((ji), )
Dy u(-+oo) = Y1 ByDi ).

By Lemma 2 (see Section 2), BVP (2) has nontrivial solution u(t) = at* 1+ pt*=2 4,b € R, which
implies that BVP (1) is a resonance problem and the kernel space of linear operator Lu = D, u is
two-dimensional, i.e., dimKerL = 2 (see Section 3, Lemma 7).

In this paper we aim to show the existence of solutions for BVP (1). To the authors” knowledge,
the existence of solutions for fractional BVPs at resonance with dimKerL = 2 on an infinite interval
has not been reported. Thus, this article provides new insights. Firstly, our paper extends results from
dimKerL = 1 to dimKerL = 2 [27,29] and from finite interval to infinite interval [26]. Secondly, we
generalize the results of [37,38] to fractional-order cases. Meanwhile, in the previously literature [37,38]
authors established the existence results are based on similar conditions to (Hy) and (Hs) (see Section 3,
Theorem 1). In the present paper we also show that existence results can be obtained by imposing sign
conditions (see Section 3, Theorem 2).

The main difficulties in solving the present BVP are: Constructing suitable Banach spaces for
BVP (1); Since [0, +o0) is noncompact, it is difficult to prove that operator N is L-compact; The theory
of Mawhin’s continuation theorem is characterized by higher dimensions of the kernel space on
resonance BVPs, therefore, constructing projections P and Q is difficult; Estimating a priori bounds of
the resonance problem on an infinite interval with dim KerL = 2 (see Section 3, Lemmas 11-16).

The rest of this paper is organized as follows. Section 2, we recall some preliminary definitions
and lemmas; Section 3, existence results are established for BVP (1) using Mawhin’s continuation
theorem; Section 4 provides two examples to illustrate our main results; Finally, conclusions of this
work are outlined in Section 5.

2. Preliminaries
In this section, we recall some definitions and lemmas which are used throughout this paper.

Let (X, ||-]|x) and (Y, ||-|ly) be two real Banach spaces. Suppose L : domL C X — Y is a Fredholm
operator with index zero then there exist two continuous projectors P : X — X and Q : Y — Y such that

ImP =KerL, ImL =KerQ, X =KerL®KerP, Y =ImL®ImQ,

and the mapping L |gomLrkerp : domL — Im L is invertible. We denote K, = (L |qomrrkerp) |- Let Q
be an open bounded subset of X and domL N Q) # @. The map N : X — Y is called L-compact on (},
if QN (1) is bounded and Kp gN(Q)) = K, (I — Q)N : 0 — X is compact (see [39,40]).

Lemma 1. (see [39,40]). Let L : domLCX—Y be a Fredholm operator of index zero and N : X—Y is
L-compact on Q). Assume that the following conditions are satisfied:

(i) Lu # ANu for any u € (domL\KerL) N 0Q), A € (0,1);
(ii) Nu ¢ ImL for any u € KerL N oCY;
(iif) deg{ QN |kerL, Q NKerL,0} # 0.

Then the equation Lu = Nu has at least one solution in domL N Q).
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Definition 1. (see [4,5]). The Rieman-Liouville fractional integral of order « > 0 for a function u : (0, +c0) —
R is defined as

I8, u(t) = r(l) /Ot (t — )% Tu(s)ds

)4

provided that the right-hand side integral is pointwise defined on (0, +c0).

Definition 2. (see [4,5]). The Riemann—Liouville fractional derivative of order & > 0 for a function u :
(0, +00) — R is defined as

& d" n—u 1 d" ! n—ux—1
DR u(t) = oI u(t) = mﬁ/o (t— )" Lu(s)ds,

where n = [a] + 1, provided that the right-hand side integral is pointwise defined on (0, +o0).

Lemma 2. (see [18]). Let « > 0. Assume that u € C[0,+0c0) N L'(0,+c0), then the fractional
differential equation
Dg, u(t) =0,

has u(t) = o t* 14 cot* 24 out* M €R,i=1,2,...,n,n = [a] + 1, as the unique solution.

Lemma 3. (see [4,5]) Assume that x > 0, A > —1, t > 0, then

rA+1
1§ = (A+1) (22, D&, P =

F(A + 1) t)xfoc
IF'(A+1+a)

I'(A+1-—a) ’

in particular D§ t*~" =0, m =1,2,-- -, n, where n = [a] + 1.

Lemma 4. (see [4,5]) Let & > B > 0. Assume that f(t) € LY(R"), then the following formulas hold:

D 1§, f(t) = f(), Db 1§ F(t) =13 Pf ().

Lemma 5. (see [4,5]) Let « > 0, m € Nand D = d/dx. If the fractional derivatives (Dfj, u)(t) and
(D§™"u)(t) exist, then
(D™D u)(t) = (Dg™"u)(t).

3. Main Result

X:{u

Y = L'[0, +-0),

Let

o lu(t)]
u, Dng u, Dng u e C[O’ —I—OO), StglOD 1 +ta—l
ID§2u(t)|
sup ———— < 409, su D”‘*lut‘<+oo ,
S P | Do ()

< oo,

with norms

a—2
D0+ u’

il = max { D5 tul| 3oyl = lllle,

7
1



Mathematics 2020, 8, 126

respectively, where

4

Il = [ Wl [Dgi] | = sup D)

o t>0

i)
‘Do+ uH =sup———.
1 s 14t

It is easy to check that (X, ||-||x) and (Y, ||-||/) are two Banach spaces.

50f22

Define the linear operator L : domL C X — Y and the nonlinear operator N : X — Y as follows:

Lu = D§, u, u € domL, Nu = f(t,u, D} *u,Dj 'u), u € X,

where

dom L = {u € X|Dg, u(t) € Y, u satisfies boundary value conditions of (1)}.

Then BVP (1) is equivalent to Lu = Nu.

Lemma 6. (see [34]). Let M C X be a bounded set. Then M is relatively compact if the following

conditions hold:

(i) the functions from M are equicontinuous on any compact interval of [0, 400) ;
(ii) the functions from M are equiconvergent at infinity.

Lemma 7. Assume that (Hy) and (H3) hold. Then we have

KerL = {u(t) € domL : u(t) = at® 1 + bt"2,Vt € [0, +00), a,b € ]R} ,
ImL={yeY:Qy=Qy=0},

where

m Gi n )
Q=Y [ @G- ss)ds, Q=Y by [ y(o)ds,

Ui

Proof. By Lemmas 2 and 3 and boundary conditions, we obtain

KerL= {u(t) e domL : u(t) = at* ' + bt* 2Vt € [0, +c0), a,b € R} ~ R2,

Now, we prove thatImL = {y € Y : Q1y = Quy = 0} . In fact, if y € Im L, then there exists a function

u € domL, such that y(t) = D, u(t). By Lemma 2, we have

1t
a—1 a—2 a—3 _ ya—1
u(t) =t "+ ot et 0 4 I(a) /0 (t—s)*""y(s)ds.

Using Lemmas 3 and 4 and boundary condition #(0) = 0, we have c3 = 0,

Dg;lu(t) =cl(a) + /Oty(s)ds



Mathematics 2020, 8, 126 6 of 22

and
t
DET2u(t) = T (a)t + el (a — 1) +/ (t — s)y(s)ds.
0
Since D% ?u(0) = Y, a; D3 %u(¢&;) and D&~ 'u(+00) = )3 B;iD§~ u(nj), we obtain

Dgfu(o) =cl(a—1) = Zlmzl txl-ngrzu(ﬁi)

X far@gera =1 + [ @G- yie
—el(e 1)+ Ty [ (@ oy(s)ds

and
1 oo n -1
D§, u(4o00) =c1T («) —|—/0 y(s)ds = Z].:l BiDg, u(n;)
X6 ar@ + [ ]
=c1T(a) + Z?:l Bj /oﬂj y(s)ds.
Thus, .

i n —+o0

Yo zxi/o (& —s)y(s)ds =0, Zj:1 Bj /’7 y(s)ds = 0. 3)

On the other hand, for any y € Y satisfying (3), take u(t) = I,y(t), then u € domL and
D§, u(t) =y € Im L. Thus we have derived thatImL = {y € Y: Q1y = Qoy = 0}. O

Define the linear operators Ty, T, : Y — Y by

t

1 1
Ty = 1 (a2Qy —anQay)e™, Toy = 1 (~a12Q1y + anQay)e

where A, a;;(i,j = 1,2) are the constants which have been given in (H3).

Lemma 8. Define the operators P: X — X1, Q:Y — Yj by

1 -1 -1
Pu = WDS_'_ u(O)t“ +

where Xy := KerL, Y1 :=Im Q. Then L is a Fredholm operator with index zero.

x—2 x—2 _
r(a_l)DOJr u(0)t*™%, Qy = Ty + (Tay)t,

Proof. Obviously, P is a projection operator and Im P = KerL. For u € X, we have u = (u — Pu) + Pu,
that is, X = KerP + KerL. It is easy to show that KerL N KerP = {0} . So, X = KerL & KerP. Noting
that the definitions of the operators T; and T,, we see Q is a linear operator. On the other hand,
for y € Y, a routine computation gives

Ti(Tiy) = Ty, Ti((Tay)t) = 0, To(Thy) = 0, Ta((Tay)t) = Toy.

It follows that Q*y = Q(Qy) = Qy. Thus, Q is a projection operator. Lety = (y — Qy) + Qy, then
Qv € ImQ and Q(y — Qy) = 0, which together with (Hj), yields that

Qi1(y —Qy) = Qa(y — Qy) =0,ie., (y —Qy) € ImL.
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Hence, Y =ImL+ImQ.Ify € ImLNImQ, then y = Qy = 0. Therefore, Y = ImL & Im Q and
dim KerL=codim Im L=2. Consequently, we infer that L is a Fredholm operator with index zero. [

Lemma 9. Define operator Kp : Im L — domL N KerP by

_ 1 ! a—1
Kyy = m/@ (t—s)*""y(s)ds, y € ImL.

Then K, is the inverse operator of L |gomprkerp and ||Kpy||y < lyll11 -

Proof. Foranyy € ImL C Y, then Q1y = Qoy = 0 and Kpy = I§, y. By Lemma 4 and condition (Hy),
it is not difficult to verify that K,y € domL N KerP. Hence, K, is well defined. We now prove that
Kp = (L |domLrkerp) ' In fact, for u € domL N KerP, by Lemma 3, we have

1 t
KpLu = W/O (=)' Df u(s)ds = u(t) +ct* ! + ot % 4 c3t* >,

Since KyLu € domL NKerP, then K,Lu(0) = 0 and P(K,Lu) = 0, which yields that c; = ¢; =
c3 = 0. Therefore, K, Lu = u, for any u € domL N KerP. In view of Lemma 4, it is straightforward to
show that LK,y = y for any y € Im L. Then

KP = (L |d0mLﬂKerP )_1'

It remains to show that ||Kpy/||y < [|ly||;1. Indeed,

|[Kpy| 1
p

= Su
T+m1 - 0D T(a)

t(t—s a—1

||pr||0 =sup
£>0

1
Sm vl <yl

2
’D8‘+ KPJ/’

[ A= ysas] <
o T+¢0%) = Wi

D% 2K yH = sup = sup
H LA PR S >0

and

<yl -

t
Jog- k] =sum| [ o
© >0 V0
Thus we arrive at the conclusion that ||Kpy||, < [ly||1 forany y € ImL. O

Lemma 10. Suppose that (Hy) holds and Q) is an open bounded subset of X such that domL N Q) # @, then N
is L-compact on Q).
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Proof. Since () is bounded in X, there exists a constant > 0 such that ||u||y < r forany u € (). Then
by (Hz), we have

m Gi _ _
|Q1Nu| = ‘Zi_l uci/o (& — s)f(s,u(s),D8‘+2u(s),D8‘+lu(s))ds

" Gi & — W .
=i B s uts), D 2t D ) s

<y l\ag,|/ )fs u(s), Dy 2u(s), Dy 'u(s)) | ds

<21 1 ‘a1€l|/ D’X 2 ( ),Dg;lu(S))‘ds
<Y el (ullx + lrli) = m

and

QaNu| = |Z]1/3] [, #6052, D (s

< ]1|ﬁ]|/ £(s,u(s), DS 2u(s), DS u(s)) | ds

<Y 1B Ellullx + 1lvll) = ma.

Hence,

400 +00 +oo
1ONu|| x :/O IQNu(s)| ds g/o |T1Nu(s)\ds+/0 IToNu(s)| sds

—/ ’ (a0 Q1Nu(s) —ax QaNu(s)) e *|ds

‘ (—a12Q1Nu(s) +a11Q2Nu(s)) se°|ds

|1A|/ (la22] [QiNu(s)| + |a21| |Q2Nu(s)|)e *ds

Al / (lar2| [QNu(s)[ + [a11] [Q2Nu(s)|) se™*ds
1

<TA| (laz2| m1 + |ax | m2) + |A| (2] m1 + |ag1| mo)
1

Tl [(|a1| + |azz]) m1 + (|ara| + |az|) m2] := m.

This means that QN (Q) is bounded. Next, we show that Kp oN (Q2) on [0, +00) is compact. To

this end, we divide our proof in three steps. First, we need to prove that Kp N : () — Y is bounded.
In fact, for any u € Q), we have

|Nul|;1 = ’./(;+Oof(s,u(s),Dg4—_2u(s),Dg;lu(s))ds
</ " (s uts), D2u(s), D u(s)) | ds

<EJullx +[lvllpr = ms.
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Then Kp oNu)| ' ot
poNu(t)] | 1 t—s) "
141 _‘I’(oc)/o 171 (- QNu(e)ds
1 e
ST b (INu(s)| + |QNu(s)|)ds
N 1 m+ ms3
=T UINull +1QNull1) < =575
DgIZKP,QN”(t)‘ tt—s
1+t :/01+t(1_Q)N“(S)dS
+o0
< [ (Nu(s)] + |QNu(s) )ds
= (INul| 1 + |QNul| ;1) < m+m3
and

t
Dg; Kp gNu(h)| = ‘/0 (I — Q) Nu(s)ds

+o00
< [ (Nu(s)] +|QNu(s) )ds
= (INullx + [QNul|p1) < m+ms.
Thus we conclude that Kp o N (Q) is bounded. The next thing to do in the proof is that Kp o N (Q)

is equicontinuous on any subcompact interval of [0, +o0) . Indeed, for u € ), by (H,), we have

DtX—Z ( )
Nu(s)| <a(s) 72, . - L ro D5 u()| + 769

and
|QNu(s)| = | TyNu + (T,Nu)s|

1 - 1 .
Sm’(ﬂzleNu —ay1QxNu)e | + m|(—[112Q1Nu +a11QxNu)se™|
<

A

1
SW [(|522|m1 + |ﬂ21|m2) + (‘g12|m1 + |ﬂ11|mz)s] e

Let x be any finite positive constant on [0, +0), then for any t1,t, € [0,x] (without loss of

generality we assume that t; < t3), we obtain

1 _
[(la2a|[Q1Nu| + |az1||Q2Nu|) + (|a12||Qi1Nu| + [a11||Q2Nul)s] e™*

—S
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KpoNu(t1)  KpoNu(ts)

T+t 14871
:r&)ﬂf(?;;¥1lu—CNNu@M&—AQ“;;gff(l—g)wwgﬁ
sr(la) /Otz (flz;tsgall (I — Q) Nu(s)ds — /O“ “12;:%)11 (I — Q) Nu(s)ds
+ﬂb‘g4?;2ﬁluQﬂw@MskgwﬁlziJUprgws
<t@ |k g fg)al_l (1= Q) Nu(s)ds

il (e - S -

1 ta 1 t
Smftl I(I—Q)Nu(S)IdSJrr(“)/O

— 0, ast; — tp.

(—s)*' (h—s)""
1+#571 1+t

[(I=Q) Nu(s)|ds

Proceeding as in the proof of above, we can obtain

Dg_i__zKp,QNu(tl) Dg;zKp,QNu(fz)

1+4 1+t

— 0, ast] — tp,

and
D3 Kp,oNu(t) = D3 KpoNu(t)|

/tz (I — Q) Nu(s)ds

t
§/2|(I—Q)Nu(s)\ds—>0, ast; — ty.
t 51

Consequently, we infer that Kp o N (Q) is equicontinuous on [0, x| . Finally, we have to show that
Kp,oN (Q) is equiconvergent at infinity. As a matter of fact, for any u € ), we have

“+o00
10— Q) Nu(t) dt < [Nullys + QN1 < 3+

Hence, for given £ > 0, there exists a positive constant L such that
+o0
/L (I — Q) Nu(t)|dt < . 4)

t—L)* 1 t—L

On the other hand, since lim Q =1land lim —— =1, then for above ¢ > 0 there
f>4o0 14+ fa—1 t—>+o0 1+ ¢

exists a constant T > L > 0 such that for any t1,f, > Tand 0 < s < L, we have

(=51 (tp—s)*! (bh—s) ' 141 (tp —s)*!

1+#71 1+ 1+#71 1+
_ a—1 _r1\a—1
<(1-W=D) (o 22D
1+ 1+

t1—L tr — L
<(1- 1— .
—< 1+h)+( 1+t2><E ©)

®)

and
t1—s tp—s

1+ 1+t
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Thus, for any t1,t, > T > L > 0, by (4)—(6), we get

KpoNu(t1)  KpoNu(ts)

14471 14571
oy I (t;:;“j (1-0) Nu(s)ds/otz(tlz:;“;lug) Nu(s)ds
<t b | e - ;13“1_1 (1 - Q) Nus) ds
+F(1a) /Ltl (tll_;:tic)all (I — Q) Nu(s)| ds + r(la) /L*Z (flz;:g)“ll (I — Q) Nu(s)| ds
Sr(ga)/oLKI_Q)N”(S)WSﬂLr(Za)/;OO(I—Q)Nu(s)|ds
<<m+rm()+2>

Using the similar argument as in the proof of above, we can show that

Dy *KpoNu(t1)  Dg *KpgNu(t)
1+t 1+t

< (m+m3+2)g,

and
| D8 K oNu(ty) — D§ 7 Kp oNu(h)|

= /tz (I — Q) Nu(s)ds

51

< /L+w|(I—Q)Nu(t)|dt<e.

Thus we arrive at the conclusion that KpoN (Q)) is equiconvergent at infinity. According to
Lemma 6, it follows that Kp o N (Q) is relatively compact. Therefore, N is L-compact on (). [

Theorem 1. Assume that (Hy)—(Hs) and the following conditions hold:

(Hy4) There exist positive constants A and B such that, for all u(t) € domL\KerL, if one of the following
conditions is satisfied:

(i) |D§2u(t)| > Aforany t € [0,B]; (ii) |D§;  u(t)| > A forany t € [0, +00),

then either Q1 Nu # 0 or QaNu # 0.
(Hs) There exists a positive constant C such that, for every a,b € R satisfying |a| > C or |b| > C, then either

aQiN(at* 1 4+ bt*2) + bQuN(at* 1 + bt*2) < 0, 7)

or
aQiN(at* ! 4+ bt*2) + bQyN(at* ! + bt*~2) > 0. 8)

Then boundary value problem (1) has at least one solution in X provided that
[(3+B)I'(a) + (¢« —1)B+1]Z < T'(«).

To prove the Theorem 1, we need several lemmas.



Mathematics 2020, 8, 126 12 of 22

Lemma 11. Assume that (Hp) and (Hy) hold, then the set
Oy = {u € domL\KerL : Lu = ANu, A € (0,1)}

is bounded in X.

Proof. For u € ()q, then Nu € Im L, this implies
Q1Nu = Q,Nu =0.

Thus, it follows from assumption (Hy) that there exist constants fo€ [0, B] and t; € [0, +0) such
that ’DS‘IZu(tO)‘ <A and ’Dg‘;lu(tl)‘ <A. These, combined with the Lemma 5, we obtain

t
‘Dg;lum] - ‘Dggu(tl) +/t DX, u(s)ds
1

t
< |Dgu(n)| +/t DR, u(s)|ds < A+ |Nul 1
1

and )
0
D2 ’—‘D”‘ 2 /O DE T u(s)ds

t
<A+ ‘/ " Dy u(s)ds
0

<A+ HDS; u(t)” B < A(1+4+B)+B|Nul|.
o

Then, we deduce that

| Pul
Pul|l, =su
|| ||O tz%]) 1+tp¢—1

1 1
=s D 1y 0) 1 +
t>lg 141 ©)

-2 -2
T Do+ Doy “u(0)t

F(uc -1)

tlx—l t(X—Z

_|_

‘D 0)’ sup

D u(0 ‘su
>0 1+ %1 ‘ (0)]sup

F(oc >0 1+ 11
1

F(zx)

T(zx—l

(A+[[Nulp) + [A(1+B) + B|[Nul|]

1
I(a—1)

and
HD"‘ 1PuH - ‘Dg;lu(o)( < A+||Nul,

’D"“lu(o)t + D"‘_zu(O)’
0 0
HD"‘ 2PuH = sup - -

>0 14t

Hence,

|Pully =max {||Pully, | DF;2Pul|

a—1
D Puf )
<||Pully + || D4 zPuH +HD”‘ tpul| ©)

(@) +1 T(a—1)+1

<SS At INulL) + =E

[A (14 B)+ B||Nu||;1].
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Noting that (I — P) u € domL NKerP and LPu = 0, by Lemma 9, we have
I(T=P)ullx = [[KpL (I = P)ul|x < |IL(I—=P)ullp = [|Lullp < [Nufp. (10)
Combining Formulas (9) and (10), we obtain

lullx = 1Pu+ (I=P)ullx < |[Pullx+I(I - P)ullx
< 2T (w) +1 Ma—1)+1
- T(a) I(a—1)

= 8A+O[|Nul|pr <EA+O(Z[ullx +[|7/l),

(A [INul| 1) + [A(1+B) + B[|Nul|p1] + [ Nul| 2

where 1 1+B 1 B
E=34+B+——+——, @=3+B+——+———.
3B "= @7 B iy T T
Solving the above inequality gives

EA+O|vlp

<
||u||X— 1— 0%

Thus we have derived that (); is bounded. O

Lemma 12. Assume that (Hs) holds, then the set

Oy ={ueKerL:NueclImL}

is bounded in X.

Proof. Let u € )y, then u can be written as u = at* 1 +bt*2, g,b € Rand Q;Nu = Q;Nu = 0.
According to the assumption (Hs), it follows that |a| < C and |b| < C. Hence, we have

HDg;luHm = |aT'(a)| < CT(a)

and ) )
at*=* 4+ bt*~
sup |u\_1 =su % <la|+1b| < 2C,
£>0 14t £>0 14t
-2
’D8‘+ u\ |aT (a)t + bT (a — 1)|
sup ————— =sup

<|a|T(a) 4+ |b|T(a—1) < (I'(a)+T(x—1))C.
Thus we conclude that ) is bounded. O

Lemma 13. Assume that (Hs) holds, then the set
Qs ={u€KerL:9AJu+ (1-A)QNu =0, A € [0,1]}

is bounded in X, where

—1, if (7) holds,
1, if (8) holds,
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J : KerL — Im Q is the linear isomorphism operator defined by
a—1 a—2 1 —t 1 —t
](th + bt ) = K(azza — a21b)e + K(*alzﬂ + anb)te a,beR.

Proof. Without loss of generality, we may assume hypothesis (7) holds. For u € (23, we can write u in
the form u = at* ' + bt*=2,a,b € Rand AJu = (1 — A)QNu, A € [0,1]. Using the same argument as in
the proof of Lemma 12, we need only show that |a| < C and |b| < C. In fact, if A = 0, then QNu =0,
that is,

1 1
K(azleNu —a31QNu)e™ + Z(—aquNu +a11QaNu)te™ = 0.

Thus,
a22Q1Nu — a1 Q2 Nu =0,
—a12Q1Nu +a11Q:Nu = 0.

It follows from A # 0 that Q1 Nu = Q;Nu = 0. By (Hs), we obtain |a| < C, |b] < C.
If A =1, then Ju = 0, that is,

1 1
K(azza —ayb)e ! + Z(—aua +apb)tet = 0.

From this it follows that
axpa —anb =0,
—apa—+anb =0.

Since A # 0, we obtaina = b = 0.For A € (0,1), by AJu = (1 — A)QNu, we have

1 1
A |:A (a22a —anb) et 4 A (—apa+ ﬂllb) te_t}

1 _ 1 _
= (1 — )\) [A (ﬂzleNu — {121Q2N1/l) et + Z (—ﬂ12Q1N1/{ +1111Q2Nu) te~t ,

from which we deduce that

Aapa — Aagb = (1 —A)apQiNu — (1 - A)an QoNu,
/\allb - /\611261 = (1 - /\)alleNu - (1 - A)ﬂuQ]NM.

In view of A # 0, we get

Aa=(1-A)Q1Nu,
Ab = (1—-A)QoNu.

We are now in a position to claim that |a| < C and |b| < C. If the assertion would not hold, then
by (7), we obtain
AMa? 4+ 1) = (1= A)(aQiNu +bQ,Nu) < 0.

This leads to a contradiction. Consequently, we infer that ()3 is bounded. O
We now turn to the proof of Theorem 1.

Proof. Let () C X be a bounded open set such that U?_; Q); C Q. It follows from Lemma 10 that N is
L-compact on Q. Applying Lemmas 11 and 12, we obtain

(i) Lu # ANuforany u € (domL\KerL) N9Q), A € (0,1);
(ii) Nu ¢ ImL for any u € KerL N 9Q.

We finally remark that deg{ QN|kerr, Q N KerL, 0} # 0. To show this, we define

H(u,A) = 8AJu + (1 — A)QNu.



Mathematics 2020, 8, 126 15 of 22
From Lemma 13 we conclude that H(u, A) # 0 for any u € KerLN9Q, A € [0,1].
Hence, by the homotopy of degree, we have

deg {ON|kerr, Q@ NKerL, 0} =deg{H(-,0),QNKerL,0}
=deg{H(-,1),Q2NKerL,0}
=deg {¢],QNKerL,0} # 0.

According to Lemma 1, it follows that Lu = Nu has at least one solution in domL N Q, that is, (1)
has at least one solution in X. [

Theorem 2. Assume that (Hy)—(H3) and the following conditions hold:

(He) There exists a positive constant M such that, for each u(t) € domL satisfying |D§ . u(t)| > M for all
t € [0, 400), we have either

sgn{D§ 'u(t)}QaNu(t) >0, Vt € [0,+00) (11)

or
sgn{DS‘;lu(t)}QzNu(t) <0, Vte|0,+o0); (12)

(Hy) There exist positive constants G and J such that, for every u(t) € domL satisfying \Dg;zu(tﬂ > G for
all t € [0, J], we have either

sgn{D§ *u(t)}Q1Nu(t) >0, Vt€[0,J] (13)

or
sgn{Df 2u(t)}Q1Nu(t) <0, Vte€[0,J]. (14)

Then boundary value problem (1) has at least one solution in X provided that
B3+2(ax—1)TZ < T(a).
We shall adopt the same procedure as in the proof of Theorem 1.
Lemma 14. Assume that (Hy), (Hg) and (Hy) hold, then Q) (same define as Lemma 11) is bounded in X.

Proof. For u € ()1, we get Nu € Im L = KerQ. By (Hg) and (Hy), there exist constants t; € [0, +0),
t, € [0, 7] such that D 'u(t1)| < M, |D§?u(ty)| < G. This together with the Lemma 5 implies that

Dy tu(t) =D§ u(t) + /t: Dg, u(s)ds,
DE-2u(t) =D& 2u(ty) + /t: DE T u(s)ds
—DE2u(ty) + (t — ) DS u () + /t: /t1 D&, u(7)drds.
Then, we obtain

ID§ |0 < M+ ||DG |11, (15)

|ID&2ully < G+ M+ ||Dg, ul|- (16)
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On the other hand, by Lemma 2, for u € (3; C domL, we have
u(t) = 1§, Dy u(t) + c1t* '+ ot* %, ¢, €R,
it follows that

)‘X_l Clta—l Czttx—z

14+l 14l

Dgu(s)ds +

T+ 1 T(a)Jo 1+t 1

u(t) 1 /f (t—s
0
DT () :/Ot DY, u(s)ds + c1T(a),
Dy 2u(t) = /Ot (t —s)Dg u(s)ds + 1T (a)t 4+ coT (o — 1)

t
- —/ sD&, u(s)ds + tDu(t) + ol (a — 1).
0

By solving the above equations, we obtain

1 a t
C1 :m <D0+1u(t) _/0 D0+M(S)ds> ,
1 _ B t

These together with the inequalities (15) and (16), we find

D5 ulloo + 1D el 1) S (M + 21| Dl 11),

1
I'(a)
G+ J|IDg: tulleo + T IDG 1| 11)

|Msﬂb(

leo| <

1
F(a—l)(

1 [
Sm(G+«7M+2«7||D0+”||L1)-

Substituting (18) into (17), one has

u(t) 1
| < 108wl + el + o
1 N M G+IM
m[B—FZ(lX—l) ]||DO+”||L1 + F(D{) + F(D(—l)/ Vt € [0,+00)
From this it follows that

M G+JIM
< A .
||u||0 r( )[3+2( )\7]||D0+u||L1 + r(a) + F(ac—l)

Combining formulas (15), (16) and (19) gives

[l Zmax{llullo/ |IDg 2 ullh, 11Dg3 ul oo}
G+IM

<y B+ 20 = DIIDG s + M+ TS

I(a)
Noting that Lu = ANu, by (Hy), we have

D6l <|INul[ . <E[[ul|x + (][]

16 of 22

(17)

(18)

(19)

(20)

(21)
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It follows from (20) and (21) that

B+2(a — 1) T|7|1 + MT(a) + (¢ — 1) (G + TM)
T(a)—[3+2(a—1)J|Z

Thus we arrive at the conclusion that (_1 is bounded. [

[ullx <

Lemma 15. Assume that (Hg), (Hy) hold, then Q) (same define as Lemma 12) is bounded in X.

Proof. For any u € (),, then u can be expressed as u(t) = at*~ ! +bt*=2, a,b € R, t € [0, +00) and
Q1Nu = Qu2Nu = 0. Using the same argument as in the proof of Lemma 12, to get the desired result,
we just need to show that |a| and |b| are bounded. By (Hg) and (Hy), there exist constants ¢3€0, +00)
and #,€[0, J] such that | D} u(t3)| <M, |D§ 2u(ts)|<G, ie.,

D8 u(ts)] = |al(@)] < M, |DE2u(ty)| = |al @)ty +bT(x —1)] < G.

Then, we obtain
a] < M / |b|§G+JM.
o I'(e—1)

I'(w)
The proof is completed. O

Lemma 16. Assume that (Hg) and (Hy) hold, then the set
Q4= {uecKerL:0uJu+(1—pu)QNu =0, u € [0,1]}.

is bounded in X, where

"7 -1, i (3.10) and (3.12) hold,

)1, if(3.10) and (3.11) hold,
27\ 1, if (3.9) and (3.12) hold,

{1, if (3.9) and (3.11) hold,

J : KerL — Im Q is the linear isomorphism operator defined by

1 _ 1 .

B Z(ﬂnb — 112111)6 t + K(ﬂua — alzb)te t, lfl9 =1,

J(at*™! 4 bt )= 1 1 a,bcR.
K(ﬂzzb +aga)e” + K(—ﬂnﬂ —apb)te™!, if o0 =8,

Proof. Without loss of generality, we may prove the lemma in the case that (12) and (14) hold. Indeed,
for u € Q4, we can expressuasu = at* ! +bt*2, a,b € Rand ufu = (1 — 4)QNu, u € [0,1]. Similar
proof as Lemma 13, we can show that |a| and |b| are bounded when 1 = 0 or = 1. Now we prove
that |a| and |b| are also bounded for u € (0,1). In fact, by uJu = (1 — 4)QNu, we have

{V(ﬂzzb —aya) = (1 —pu)(anQiNu — a1 Q>Nu),
p(apa —apb) = (1 — p)(a11Q2Nu — a12Q1 Nu).

Since A # 0, we obtain

pa = (1—pu)Q2Nu, (22)
b= (1—p)QiNu. (23)

From (12) and (22), we can get |a|T'(«) < M; otherwise, by (12) and (22), we have

0 < pasgn{a} = pa sgn{Dg‘Ilu(t)} =(1-p) sgn{Dg‘;lu(t)}QzNu(t) < 0.
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It is a contradiction. Similarly, from (14) and (23), we can derive |b|T'(« — 1) < G + M.J; otherwise,
by (14) and (23), a contradiction will be obtained:

0 < ubsgn{b} = ubsgn{D§ 2u(t)} = (1 — ) sgn{DE; 2u()}QiNu(t) < 0
Consequently, we infer that ()4 is bounded. O
With the help of the preceding three lemmas we can now prove the Theorem 2.

Proof. Set () C X be a bounded open set such that U7 ;Q; UQy C Y. Using Lemma 10, N is
L-compact on (). It follows from Lemma 14 and Lemma 15 that conditions (i) and (ii) of Lemma 1
hold. In what follows, we prove that condition (iii) is satisfied. To this end, we set

H(u,u) = duJu+ (1 — u)QNu.

By Lemma 16, we obtain H(u, 1) # 0 for any u € KerL N 9QY/, i € [0,1]. Based on the homotopy
of degree, we have

deg { ON|kerr, Q' NKerL, 0} =deg {H(-,0),Q)' NKerL,0}
=deg {H(-,1),QY NKerL,0}
=deg {¥], 0 NKerL,0} # 0.
According to Lemma 1, the equation Lu = Nu has at least one solution in domL N )/, which

means (1) has at least one solution in X. [J

4. Example

Example 1. Consider the following boundary value problem:

Dg2u(t) = f(t,u(t), Dgu(t), Dgpu(t)), t € (0,+0),

(0)—0 Di>u (0)—2D05 u(1/2) — DJSu(1), (24)
Dgu(+00) = Déiu(l)

Corresponding to problem (1), here

f(t,u(t), Dou(t), Dy u(t))
e "Dy 2u(t), t € [0,1],
| 04(—0.1e7% + 0.1 +-0.01e ) DI Mu(t), t € (1, +00).
Let
(1+t)e 1, te0,1],
0, te (1,+o0),

_ 1
10t ot

0, te]o,1],
n(t) = { 1 1

2 -5t
5° T35 250¢ ¢ FE (L)
We can easily check (Hy)—(Hjz) hold and
21 10 11 1 1

||/3||1:m—me Al = ﬁ"‘ﬁ +ﬁ



Mathematics 2020, 8, 126 19 of 22

Tuke A =100, B = 1, we can check that for any t € [0,1] if [DJ?u(t)| > A, we have Q1Nu # 0 and for
any t € [0,+00) if |[D{2u(t)| > A, we get QoNu # 0. Moreover, for every C > 0, if |a| > C, then we have

aQq (N (at“*l + bt“*z)) +bQ, (N (atafl n btafz))

3 7 11
21—~ ) 5 10
- .
¢ ( ) < 1000 500 10006 > <0

By Theorem 1, BVP (24) has at least one solution.
Example 2. Consider the following fractional boundary value problem:

Dgu(t) = f(t,u(t), Dgu(t), Do u(t)), 0 <t < +oo,
10 = 0, DYPu(0) = 2DY%u(1) — DI5u(2), (25)
D§?u(+o0) = 0.5D§7u(2) + 0.5D§u(3).

Corresponding to problem (1), here
0622.5, m:nzz, 061:2, Nyp—= — 1, 61:1, 62:2, ﬁ1:ﬁ2:0.5, 171:2, 112:3,

it u(e), DZu(8), D3 (1)
= e sin (74005 )+ s (0 X DB2u(0) + {ga(e *DZu) + g

20 1+ 15 15
where
1, te(1,2), 0, tel0,2],
gi1(t) = §2(t) =
0, t€[0,1]U[2,+0o0), 1, t € (2,+00).
et 1 1 1 1
_ e —2t _ o e
(6) = 55¢ ™, B(E) = 7 (14 De 2, (1) = ze 2, 9(t) = 5o !, T =2,
We can easily check that (Hy)— (H3) hold and
9 3

To verify the conditions (Hg) and (Hy), we let

Then, we have

J3
1 el 5 —t o3t Lt
E/Z <20 + 76 dt + = 5 / - + Ee dt
_ 1, 6,1, 1 9 1,3 1 -2
= 120° T2° timo® Ta¢ < 10(1+e )
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and

2/01(1—1‘4) dt—/ (2 — H)D(b)dt

</1(1—t) Lary Lt dt+/ 21 Loay L)y
= Jo 10 5 20 10

1o, 1o, 1 5, 1 ¢ 3 1, .
=5 T10° top Tig Tao <5t

Choosing M = 6, G = 12¢3, we conclude that
(i) for ID§Tu(t)| > M, t € [0, +0c0), one has

Sgn{Dé‘Ilu(t)}QzNu(t)

Lot 1 [te

+oo
2/ t)dt + 30/ e D u(t )dt] >0,

(ii) for |D§2u(t)| > G, t € [0,2], one gets

sgn{DB‘;zu(t)}QlNu(t)

— sgn{DY5u(t)} {z /01 (1— DD (t)dt — /02 (2 — H)D(b)dt

1 [2 _
-1/, (2—t)e #DY2ul(t )dt] <0.

Therefore, (Hg) and (Hy) hold. By Theorem 2, BVP (25) has at least one solution.

5. Conclusions

In the present work, we considered a class of fractional differential equations with multi-point
boundary conditions at resonance on an infinite interval. With the aid of Mawhin’s continuation
theorem, we obtained existence results for solutions of BVP (1). Two practical examples were presented
to illustrate the main results. BVPs of fractional differential equations on an infinite interval have been
widely discussed in recent years. However, there is still more work to be done in the future on this
interesting problem. For example, establishing the existence of solutions for fractional differential
equations with infinite-point boundary conditions, as well as the existence of non-negative solutions
for fractional BVPs, at resonance on an infinite interval in the case of dimKerL = 2.
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