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Abstract: Target location is the basic application of a multistatic sonar system. Determining the
position/velocity vector of a target from the related sonar observations is a nonlinear estimation
problem. The presence of possible sensor position uncertainties turns this problem into a more
challenging hybrid parameter estimation problem. Conventional gradient-based iterative estimators
suffer from the problems of initialization difficulties and local convergence. Even if there is no
problem with initialization and convergence, a large computational cost is required in most cases.
In view of these drawbacks, we develop a computationally efficient non-iterative position/velocity
estimator. The main numerical computation involved is the weighted least squares optimization,
which makes the estimator computationally efficient. Parameter transformation, model linearization
and two-stage processing are exploited to prevent the estimator from iterative computation. Through
performance analysis and experimental verification, we find that the proposed estimator reaches the
hybrid Cramér–Rao bound and has linear computational complexity.

Keywords: multistatic sonar; target location; hybrid Cramér–Rao bound; weighted least squares;
nonlinear estimation; non-iterative estimator; perturbation analysis; linear model; bias analysis;
complexity analysis

1. Introduction

In recent years, there has been a lively interest in target location using multistatic sonars [1–13].
In a multistatic sonar system, the sum of each pair of transmitter–target range and target–receiver range
defines an ellipse. Then the target is at the intersection of all these ellipses [7]. The elliptical location
encountered in the multistatic sonar systems has also been considered in the MIMO radar [14–20],
multistatic radar [21–25] and indoor positioning systems [26,27].

A considerable amount of literature has been published on the problem of estimating the
coordinates of the intersection of the ellipses, which can be statistically modelled as a nonlinear
estimation problem. To resolve the essential nonlinearity in the problem, linearization is a natural
idea. In particular, the measurement equations were linearized by Taylor expansion, resulting in
an iterative algorithm [20]. Alternative to the Taylor expansion, introducing nuisance parameters
is another approach to linearization. For example, the classic spherical-interpolation [28] and
spherical-intersection [29] methods were ported to the elliptical location problems [25]. However,
the estimation accuracy is not optimum in [25]. Slightly more complex than the linear models,
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a quadratically constrained least squares model was constructed, which is generally difficult to
solve effectively [27,30]. More recently, as another major methodology for parameter estimation,
a Bayes estimator was presented for elliptical location, involving formidable numerical integration [4].
Intuitively, integrating other kinds of observations helps improve the positioning accuracy. For instance,
the Doppler shift measurements were incorporated to improve the position estimate and identify the
velocity additionally [5].

In addition to the difficulties raised by the high nonlinearity in the statistical models, another
obstacle in the multistatic sonar location is that the complex ocean environments introduce uncertainties
in the positions of the transmitters and receivers. Preliminary work considering sensor location errors
in elliptical location was reported in the literature [6,10,13]. Recent advances have seen an efficient
non-iterative estimator for the multistatic sonar location [5,6] inspired by the renowned work of [31].

Perturbation analysis of least squares problems is a major topic in numerical linear algebra.
Related work has focused on establishing various error bounds [32–34]. We combine the basic
techniques of perturbation analysis with multivariate statistics [35] to quantitatively evaluate the
estimators for a nonlinear estimation problem.

On the basis of the above work, our technical contributions are summarized here.

1. We establish a statistical model of determining both the position and velocity of a moving target
in a multistatic sonar system using differential delays and Doppler shifts. The uncertainties in
the sensor positions are carefully taken into account in our model. The performance limit is
developed for this problem.

2. To tackle the proposed nonlinear hybrid parameter estimation problem, we design an efficient
non-iterative solution using parameter transformation, model linearization and two-stage
processing.

3. We further analyze the bias vector and covariance matrix of our estimator theoretically using the
second/first-order perturbation analysis and multivariate statistics.

4. We prove that the proposed estimator has approximate statistical efficiency and linear complexity.

The rest of this paper is organized as follows. Section 2 lists the notational conventions that will
be used throughout the paper. Section 3 provides the location scenario and formulates the problem
as a nonlinear estimation problem. In Section 4, we evaluate the performance limit for the proposed
problem. Section 5 is devoted to developing our estimator. Then, Section 6 analyzes the bias vector
and covariance matrix of our estimator up to the second/first-order random errors. Section 7 contains
comprehensive Monte Carlo simulation results, and finally Section 8 draws the conclusion.

2. Notational Conventions

We will use bold lowercase letters to denote the column vectors and bold uppercase ones to denote
the matrices. Specifically, 0p×q is a p× q zeros matrix, 1p×q is a p× q ones matrix, and I is an identity
matrix of appropriate size. The operators ⊗ and ◦ represent the Kronecker product and Hadamard
product respectively. The expression (M1 � M2) means that (M1 −M2) is a positive semidefinite
matrix. diag(v) is the square diagonal matrix with the elements of vector v on the main diagonal.
B = blkdiag(M1, . . . , MN) is the block diagonal matrix created by aligning the matrices M1, . . . , MN
along the diagonal of B. When we want to access selected elements of a vector/matrix, we imitate the
syntax of MATLAB programming language. For simplicity of presentation, we use numerous symbols
and notations. They are summarized in Table 1 for quick reference. For the sake of readability, the text
also includes relevant explanations about these symbols and notations.
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Table 1. List of symbols and notations ( � as a placeholder ).

Symbols/Notations Remarks

�o zero-order approximation of �
�̄ expected or nominal value of �
�̂ estimator of �

∆� random error or differential of �
Q� covariance of �

M known number of transmitters
N known number of receivers
ti actual unobservable position of the i-th transmitter, i = 1, . . . , M
sj actual unobservable position of the j-th receiver, j = 1, . . . , N
t [tT

1 , tT
2 , . . . , tT

M]T

s [sT
1 , sT

2 , . . . , sT
N ]T

z [tT, sT]T

z̄ known nominal value of z
c known signal speed
u unknown position of the target
u̇ unknown velocity of the target
θ [uT, u̇T]T

τi,j observed differential delay time between ti and sj
fi,j observed range rate between ti and sj
τi [τi,1, τi,2, . . . , τi,N ]T

fi [ fi,1, fi,2, . . . , fi,N ]T

mi [τT
i , fT

i ]
T

m [mT
1 , mT

2 , . . . , mT
M]T

m̄ expected value of m
∆z z− z̄, position uncertainties of transmitters and receivers
∆m m− m̄, observation errors

ρx,y (x− y)/‖x− y‖ , gradient of ‖x− y‖ with respected to x
Ax,y I/‖x− y‖ − (x− y)(x− y)T/‖x− y‖3 , Hessian of ‖x− y‖ with respected to x

3. Problem Formulation and Statistical Model

We now turn to the mathematical formulation of the problem. In the multistatic sonar location
scenario here, the transmitters and receivers are stationary and the target is moving. Let M be the
number of transmitters and N be the number of receivers. We consider a two-dimensional location
scenario. The unknown position vector and velocity vector of the target are denoted by u = [xu, yu]T

and u̇ = [xu̇, yu̇]T. For simplicity, the complete unknown parameter vector will be denoted by

θ = [uT, u̇T]T. (1)

To characterize the sensor location errors, the position vectors of the i-th transmitter and j-th
receiver are modeled as random vectors ti = [xti , yti ]

T and sj = [xsj , ysj ]
T respectively, where i =

1, 2, . . . , M and j = 1, 2, . . . , N. We write compactly

z = [tT, sT]T, (2)

where t = [tT
1 , tT

2 , . . . , tT
M]T and s = [sT

1 , sT
2 , . . . , sT

N ]
T. Generally, it can be assumed that

z ∼ N (z̄, Qz), (3)

where the nominal positions of the sensors z̄ and the covariance matrix Qz are known [6]. Then the
sensor position errors vector is ∆z = z− z̄.
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Physically, each transmitter radiates a sonar signal and all receivers observe the signals both from
direct propagation and from indirect reflection of the target. Thus, the observation model of differential
delay time between ti and sj is

τi,j =
1
c
(
‖u− ti‖+ ‖u− sj‖ − ‖ti − sj‖

)
+ ∆τi,j, (4)

where c is the signal propagation speed and ∆τi,j is the observation noise of τi,j [6]. Furthermore,
as the target is moving, we can also obtain the observation model of range rate (i.e., the Doppler shift
measurements divided by the carrier frequency) between ti and sj, that is,

fi,j =
1
c

(
ρu,ti + ρu,sj

)T
u̇ + ∆ fi,j, (5)

where ∆ fi,j is the observation noise of fi,j. For the notations ρu,ti and ρu,sj , see Table 1.
For the transmitter at position ti, all the related observations can be collected in an

observation vector
mi = [τT

i , fT
i ]

T, (6)

where τi = [τi,1, τi,2, . . . , τi,N ]
T, and fi = [ fi,1, fi,2, . . . , fi,N ]

T for i = 1, 2, . . . , M. Then, the observations
related to all the transmitters can be denoted by

m = [mT
1 , mT

2 , . . . , mT
M]T. (7)

Furthermore, it is assumed that the conditional distribution (given z) of the observed vector m is
of the form

m | z ∼ N (m̄, Qm), (8)

where m̄ is the ideal error-free observation vector and Qm is the covariance matrix of m.
The corresponding observation error vector can be denoted by ∆m = m− m̄.

As part of the observation model, the following small error assumptions are claimed.

1. ‖∆ti‖ � ‖u− t̄i‖,
2. ‖∆ti‖ � ‖t̄i − s̄j‖,
3. ‖∆sj‖ � ‖u− s̄j‖,
4. ‖∆sj‖ � ‖t̄i − s̄i‖,
5. |∆τi,j| � τ̄i,j,
6. |∆ fi,j| � f̄i,j.

The physical motivation for these assumptions is that the position uncertainty of a given
transmitter is small relative to its distance to the target and its distances to all the receivers, the position
uncertainty of a given receiver is small relative to its distance to the target and its distances to all the
transmitters, and the relative measurement errors are small. Besides, ∆z and ∆m are assumed to be
statistically independent for ease of illustration.

Given the statistical model in Equation (8), the problem is to estimate the target position vector u
and velocity vector u̇, i.e., θ, in real time and at a reasonable computational cost. Another significant
work is the theoretical analysis of statistical performance of the designed estimator.

We conclude this section with some comments. Generally, the small error assumptions can be
satisfied by increasing the observation period in obtaining the differential delay time and range rate
measurements in a nonsingular location geometry. In addition, as we will see in Section 5, our estimator
requires accurate knowledge of the positive definite covariance matrices Qm and Qz. They can usually
be obtained during the calibration stage of a multistatic sonar system. Specifically, some scattering
models from the environment may also help determine Qm.
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4. Hybrid Cramér–Rao Bound

In order to set a benchmark before designing an estimator, we now evaluate the Hybrid
Cramér–Rao Bound (HCRB) [36–39] for the hybrid parameter estimation problem proposed in Section 3.
The HCRB provides a lower bound on the error covariance matrix of the estimator of a hybrid unknown
parameter vector.

In our statistical model, the wanted parameter vector θ and the nuisance parameter vector (i.e., the
actual sensor positions) z are both unknown. What makes them different is that θ is deterministic,
and z is a random parameter vector. Such models arise in many applications where we want to
investigate model uncertainty or environmental mismatch. Here, we consider θ and z together as a
hybrid parameter vector

γ = [θT, zT]T. (9)

Before moving on to the estimator design, we outline the procedures for deriving the HCRB.
In such a hybrid parameter case, the HCRB is calculated using the joint probability density of the
observed measurement vector m and the sensor position vector z. The hybrid information matrix JH
can be expressed as the sum

JH = JD + JP, (10)

where JD represents the contribution of observations m and JP represents the contribution of the prior
knowledge on z. Note that the unknown parameter vector γ = [θT, zT]T is in the mean vector m̄ of the
multivariate normal distribution in Equation (8) and z is a multivariate normal random vector itself as
in Equation (3). Section 3 reveals that m̄ depends on θ, z and c. In our model, the random parameter
vector z does not depend on the deterministic parameter vector θ. Thus, JD and JP is fairly easy to
get [40]. Consequently,

JD = Ez

{[
∂m̄
∂γ

]T
Q−1

m

[
∂m̄
∂γ

]}
, (11)

JP = blkdiag(04×4, Q−1
z ). (12)

When the levels of sensor positions’ uncertainties are small, according to the approximation
principle suggested by [41], the expected value matrix in Equation (11) can be approximated by
replacing random vector z with its expected value vector z̄. Then, from the blockwise inversion
of JH |z=z̄ and the matrix inversion lemma, we have the HCRB for the estimation of θ = [uT, u̇T]T

as follows:

HCRBθ ≈


(

∂m̄
∂θ

)T
[

Qm +
∂m̄
∂z

Qz

(
∂m̄
∂z

)T
]−1

∂m̄
∂θ


−1 ∣∣∣∣∣

z=z̄

. (13)

For numerical computation using Equation (13), ∂m̄
∂θ and ∂m̄

∂z are required. More information is
available in Appendix A.

5. Estimator Design

In this section, we use Taylor expansion, introduce auxiliary variables and apply multi-stage
processing to deal with the nonlinear estimation problem proposed in Section 3. In particular,
our algorithm can be divided into two stages, each involving an unconstrained linear weighted
least squares (WLS) computation which is computationally attractive. During the algorithm design
and performance analysis of our estimator, it is necessary to use many matrix symbols to simplify the
presentation. These matrices are shown in Table 2 for easy reference. When justifying the introduction
of these matrices, we find that these matrices naturally arise in a general weighted least squares
problem. To prevent ourselves from obscuring the design of the estimator, the reader is referred to
the Appendix B.
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Table 2. List of matrix symbols.

Matrix Notations Expressions

P1 GT
1 W1G1

P2 GT
2 W2G2

H1 P1
−1G1

TW1
H2 P2

−1G2
TW2

K1 W1(I−Go
1Ho

1)
K2 W2(I−Go

2Ho
2)

U W−1
2 K2

V Ho
2W−1

2

Based on the Conditions 1 through 4 in Section 3, it follows from the first-order Taylor’s
formula that

‖u− ti‖ ≈ ‖u− t̄i‖+ ρT
t̄i ,u

∆ti, (14)

‖u− sj‖ ≈ ‖u− s̄j‖+ ρT
s̄j ,u∆sj, (15)

‖ti − sj‖ ≈ ‖t̄i − s̄j‖+ ρT
t̄i ,s̄j

(∆ti − ∆sj), (16)

ρu,ti ≈ ρu,t̄i
−Au,t̄i

∆ti, (17)

ρu,sj ≈ ρu,s̄j −Au,s̄j ∆sj. (18)

If we plug Equation (14) through Equation (16) into Equation (4), we obtain

c τi,j ≈ ‖u− t̄i‖+ ‖u− s̄j‖ − ‖t̄i − s̄j‖+ ετ,i,j, (19)

where
ετ,i,j = ρT

t̄i ,u
∆ti + ρT

s̄j ,u∆sj − ρT
t̄i ,s̄j

(∆ti − ∆sj) + c ∆τi,j. (20)

Furthermore, inserting Equation (17) and Equation (18) into Equation (5) gives

c fi,j ' ρT
u,t̄i

u̇ + ρT
u,s̄j

u̇ + ε f ,i,j, (21)

where
ε f ,i,j = −(Au,t̄i

u̇)T∆ti − (Au,s̄j u̇)
T∆sj + c ∆ fi,j. (22)

5.1. First Stage

Without loss of generality, let M < N. Move (‖u− t̄i‖ − ‖t̄i − s̄j‖) from the right side to the left
side in Equation (19), and square both sides. Then, we see that

2 ‖u− s̄j‖ ετ,i,j + ε2
τ,i,j

≈ 2 t̄T
i (t̄i − s̄j) + 2 c τi,j ‖t̄i − s̄j‖+ c2τ2

i,j

− 2 (t̄i − s̄j)
Tu− 2 (cτi,j + ‖t̄i − s̄j‖) ‖u− t̄i‖.

(23)

Applying similar procedures to Equation (21) gives

‖u− s̄j‖ ε f ,i,j + ρT
u,s̄j

u̇ ετ,i,j + ετ,i,j ε f ,i,j

≈ c fi,j‖t̄i − s̄j‖+ c2τi,j fi,j

− c fi,j‖u− t̄i‖ − (t̄i − s̄j)
Tu̇

− (c τi,j + ‖t̄i − s̄j‖)ρT
u,t̄i

u̇.

(24)
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If we define an unknown parameter vector as

φ1 = [uT, αT, u̇T, βT]T, (25)

where

α = [α1, α2, . . . , αM]T, (26)

β = [β1, β2, . . . , βM]T, (27)

αi = ‖u− t̄i‖, i = 1, 2, . . . , M, (28)

βi = ρT
u,t̄i

u̇, i = 1, 2, . . . , M, (29)

then a linear system of equations can be obtained from Equation (23) and Equation (24) as

B1ε
(1)
1 + ε

(2)
1 ≈ h1 −G1φ1. (30)

We leave the details of h1, G1, B1, ε
(1)
1 and ε

(2)
1 presented in Appendix C. Note that ε

(1)
1 and ε

(2)
1

are first-order and second-order approximation error respectively.
By ignoring the second-order error term ε

(2)
1 , the WLS solution to Equation (30) is

φ̂1 = H1h1, (31)

and has covariance matrix
cov(φ̂1) = cov(∆φ1) ≈ Po

1
−1, (32)

where H1 = P1
−1G1

TW1, P1 = GT
1 W1G1 and Po

1 is the zero-order approximation of P1. The weighting

matrix W1 is the inverse of the covariance matrix of the approximation error B1ε
(1)
1 , that is,

W1 = [E(B1ε
(1)
1 ε

(1)
1

T
BT

1 )]
−1

= B−T
1 cov(ε(1)1 )−1B−1

1 .
(33)

The computation of cov(ε(1)1 ) is straightforward. Because of the assumed statistical independence
between ∆z and ∆m in Equation (A15),

cov(ε(1)1 ) = DzQzDT
z + c2 Qm, (34)

where Dz is shown in Equation (A16).
We get Equation (32) by the first-order perturbation analysis.

cov(∆φ1) ≈ E[Ho
1B1ε

(1)
1 · (H

o
1B1ε

(1)
1 )T]

= Ho
1 · B1 cov(ε(1)1 )BT

1 ·Ho
1

T

= Po
1
−1Go

1
TW1 ·W−1

1 ·W
T
1 Go

1Po
1
−T

= Po
1
−1 ·Go

1
TWT

1 Go
1 · Po

1
−T

= Po
1
−1Po

1
TPo

1
−T

= Po
1
−1.

(35)
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5.2. Second Stage

With φ̂1 and its covariance matrix Po
1
−1, the aim of the second stage is to estimate the estimation

error vector introduced in the first stage. In order to use symbols similar to the first stage, we denote
this estimation error vector as φ2, i.e.,

φ2 = [∆uT, ∆u̇T]T = ∆φ1([1, 2, M + 3, M + 4]). (36)

By substituting u = û− ∆u and αi = α̂i − ∆αi into α2
i = ‖u− t̄i‖2, we obtain

2αi∆αi + ‖∆u‖2 + (∆αi)
2

= α̂i
2 − ‖û− t̄i‖2 + 2(û− t̄i)

T∆u.
(37)

Furthermore, plugging αi = α̂i − ∆αi, βi = β̂i − ∆βi, u = û− ∆u and u̇ = ˆ̇u− ∆u̇ into αiβi =

(u− t̄i)
Tu̇ gives

βi∆αi + αi∆βi + ∆αi∆βi + ∆uT∆u̇

= α̂i β̂i − (û− t̄i)
T ˆ̇u + ˆ̇uT∆u + (û− t̄i)

T∆u̇.
(38)

In matrix notation, from Equation (37) and Equation (38), we have

B2ε
(1)
2 + ε

(2)
2 = h2 −G2φ2, (39)

where
ε
(1)
2 = ∆φ1, (40)

i.e., the estimation error in the first stage ∆φ1 is considered as the first-order approximation error in
the second stage. This is a key point of our estimator. The details of h2, G2, B2 and the second-order
approximation error ε

(2)
2 can be found in Appendix D.

By ignoring the second-order error term ε
(2)
2 and following the first stage’s approach, the WLS

solution to Equation (39) is
φ̂2 = H2h2, (41)

and has error covariance matrix
cov(∆φ2) ≈ Po

2
−1, (42)

where H2 = P2
−1G2

TW2, P2 = GT
2 W2G2 and Po

2 is the zero-order approximation of P2. The weighting

matrix W2 is the inverse of the covariance matrix of the approximation error B2ε
(1)
2 , that is,

W2 ≈ E(B2ε
(1)
2 ε

(1)
2

T
B2

T)−1

≈ B2
−TPo

1B2
−1.

(43)

Finally, our estimator can be constructed from φ̂1in Equation (31) and φ̂2 in Equation (41) as

θ̂ = [φ̂1(1 : 2)T, φ̂1(M + 3 : M + 4)T]T − φ̂2. (44)

Last but not least, some obstacles arise in the practical computation of our estimator. In the
first stage, B1 and Dz, as shown in Equation (A13) and Equation (A16), involve u and u̇ which are
unavailable for the algorithm. To resolve this problem, we first assign an identity matrix to B1 and
an all-zero matrix to Dz to get coarse estimates of u and u̇ from Equation (31), and then substitute
the coarse estimates into Equation (A13) and Equation (A16) to update B1 and Dz. Confronted with
similar problems in the second stage in Equation (A20), we substitute α̂ and β̂ for computing B2,
resulting B̂2 and Ŵ2. These approximations will be considered properly in the statistical performance
analysis in Section 6.



Mathematics 2020, 8, 129 9 of 30

5.3. Summary

As a guide to implementation, the flowchart of the proposed estimator is shown in Figure 1 and
the algorithm of the first stage of our estimator is summarized in Algorithm 1.

Start

Input: m, z̄, Qm, Qz, c

Compute h1, G1 from m, z̄, c by Equations (A10) and (A11)

B1 ← I, Dz ← 0

Call Algorithm 1

Compute B1, Dz from φ̂1, z̄ by Equations (A13) and (A16)

Call Algorithm 1

Compute G2, h2, B2 from φ̂1, z̄ by Equations (A19), (A18) and (A20)

Compute φ̂2 from G2, h2, B2, cov(φ̂1) by Equations (41) and (43)

Output: θ̂ ( from φ̂1, φ̂2 by Equation (44))

Stop

Figure 1. Flowchart of the proposed estimator. Algorithm 1 is called in the flowchart.

Algorithm 1 First stage of the estimator.

1: procedure ESTIMATOR-FIRST-STAGE( Qm, Qz, c, G1, h1, Dz, B1 )
2: Compute cov(ε(1)1 ) from Qm, Qz, Dz, c by Equation (34)
3: Compute W1 from cov(ε1), B1 by Equation (33)
4: return φ̂1 from G1, h1, W1 by Equation (31)
5: return cov(φ̂1) from G1, W1 by Equation (32)
6: end procedure
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6. Performance Analysis

The covariance matrix and the bias vector are the two most important numerical characterization
of a vector estimator. The perturbations in the design matrices (i.e., G1 and G2) and the higher-order
noise terms in the observation vector (i.e., h1 and h2) in Equation (30) and Equation (39) make the
conditions of Gauss–Markov theorem no longer true.

6.1. Bias Vector

We first derive the covariance matrix of our estimator in Equation (44). The bias analysis here will
be up to the second-order statistics of the observation errors and the sensor position errors, i.e., the
random terms higher than the second-order are ignored. Matrix differential calculus presented in [42]
is intensively used in this subsection.

It can be seen from Equation (44) that the total bias vector of our estimator θ̂ is

[µ1(1 : 2)T, µ1(M + 3 : M + 4)T]T − µ2, (45)

where µ1 and µ2 are the bias vectors of φ̂1 and φ̂2, respectively. The rest of our task is to compute
the bias vector in the first stage and second stage, i.e., µ1 and µ2. We reiterate that the random terms
higher than the second-order will be ignored at each occurrence of the approximately equal symbol.
Please reference Table 2 for the matrix symbols involved.

The error of φ̂1 is
∆φ1 = φ̂1 −φ1

≈ H1(B1ε
(1)
1 + ε

(2)
1 )

≈ Ho
1(B1ε

(1)
1 + ε

(2)
1 ) + ∆H1 · B1ε

(1)
1 ,

(46)

where ∆H1 and its related differentials can be obtained by matrix differential as follows:

∆H1 = Po
1
−1∆GT

1 W1 + ∆(P−1
1 )Go

1
TW1, (47)

∆(P−1
1 ) = −Po

1
−1∆P1Po

1
−1, (48)

∆P1 = ∆G1
TW1Go

1 + Go
1

TW1∆G1. (49)

Putting Equation (47) through Equation (49) into Equation (46) gives the estimation error vector
in the first stage

∆φ1 ≈
(

Ho
1 · B1ε

(1)
1 + Ho

1ε
(2)
1

)
+
(

Po
1
−1∆GT

1 K1 · B1ε
(1)
1 −Ho

1∆G1Ho
1 · B1ε

(1)
1

)
. (50)

We note that the weight matrix W1 has no random errors in the first stage.
As in the first stage, the estimation error vector in the second stage is

∆φ2 = φ̂2 −φ2

= H2(B2ε
(1)
2 + ε

(2)
2 )

≈ Ho
2(B2ε

(1)
2 + ε

(2)
2 ) + ∆H2 · B2ε

(1)
2 .

(51)



Mathematics 2020, 8, 129 11 of 30

Before moving on to the expression of ∆H2, we note that we use B̂2 rather than B2 in the practical
implementation. So, ∆H2 can be obtained by matrix differential as follows:

∆H2 = ∆(P−1
2 )Go

2
TW2 + Po

2
−1∆GT

2 W2 + Po
2
−1Go

2
T∆W2, (52)

∆(P−1
2 ) = −Po

2
−1∆P2Po

2
−1, (53)

∆P2 = ∆GT
2 W2Go

2 + Go
2

TW2∆G2 + Go
2

T∆W2Go
2, (54)

∆W2 = B2
−T∆P1B2

−1 −W2∆B2B2
−1 − B2

−T∆BT
2 W2. (55)

By comparing Equation (52) through Equation (54) with Equation (47) through Equation (49), we
see that ∆W2 in Equation (55) contributes new perturbation resulted from practical implementation,
which are introduced by ∆P1 and ∆B2. Furthermore, ∆P1 can be expressed with ∆G1 by Equation (49).

Then from Equation (51), combining Equation (52) through Equation (55) together with
Equation (49) we have

∆φ2 ≈
(

Ho
2 · B2ε

(1)
2 + Ho

2ε
(2)
2

)
+
(

Po
2
−1∆GT

2 K2 · B2ε
(1)
2 −Ho

2∆G2Ho
2 · B2ε

(1)
2

)
+
(
−Ho

2∆B2B−1
2 U · B2ε

(1)
2 −V · B2

−T∆BT
2 K2 · B2ε

(1)
2

)
+
(

V · B2
−T ·Go

1
TW1∆G1 · B−1

2 U · B2Ho
1B1ε

(1)
1 + V · B2

−T · ∆GT
1 W1Go

1 · B
−1
2 U · B2Ho

1B1ε
(1)
1

)
.

(56)

The last line above is by Equation (46) and Equation (49).
Finally, taking expectation of ∆φ1 and ∆φ2 will yield µ1 and µ2. This involves complicated matrix

partitioning and multivariate statistical analysis. Interested readers may refer to Appendix E.

6.2. Covariance Matrix

We then derive the covariance matrix of our estimator. The covariance analysis here will be
up to the first-order statistics of the estimator errors, i.e., the error terms higher than the first-order
are ignored.

cov(θ̂) = cov(φ̂1(1, 2, M + 3, M + 4)− φ̂2)

= cov(φ1(1, 2, M + 3, M + 4) + ∆φ1(1, 2, M + 3, M + 4)−φ2 − ∆φ2)

= cov(φ1(1, 2, M + 3, M + 4)− ∆φ2) (by (36))

= cov(∆φ2)

≈ Po
2
−1.

(57)

We note that Yang et al. have explicitly given the covariance matrix of the two-stage weighted
least squares (TS-WLS) method as follows:

cov(θ̂TS-WLS) ≈ (Go
2

TB−T
2 V−1

1 B−1
2 Go

2)
−1, (58)

where

V1 = (Go
1

TW̃1Go
1)
−1Go

1
TW̃1B1 cov(ε(1)1 )BT

1 W̃T
1 Go

1(G
o
1

TW̃1Go
1)
−T, (59)

W̃1 = B−T
1 (c2Qm)−1B−1

1 . (60)

We now claim the following proposition.

Proposition 1.
cov(θ̂TS-WLS) � cov(θ̂). (61)
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Proof. By Equation (57) and Equation (58), it is enough to prove

Po
2 � Go

2
TB−T

2 V−1
1 B−1

2 Go
2. (62)

To get started, we expand the left side of Equation (62).

Po
2 = Go

2
TW2Go

2

≈ Go
2

T(B2
−TPo

1B2
−1)Go

2 (by Equation (43))

= Go
2

T[B2(Go
1

TW1Go
1)
−1BT

2 ]
−1Go

2

= Go
2

TB−T
2 Go

1
TW1Go

1B−1
2 Go

2

= Go
2

TB−T
2 V−1

2 B−1
2 Go

2 (by Equation (33)),

(63)

where
V2 = [Go

1
TB−T

1 cov(ε(1)1 )−1B−1
1 Go

1]
−1. (64)

As B−1
2 Go

2 has full column rank, to complete the proof, we need only show that

V1 � V2. (65)

We can prove Equation (65) by Matrix Schwarz inequality (Lemma 1.1 in [43]).
Because B1 cov(ε(1)1 )BT

1 is positive-definite, we can provide a Cholesky factorization as follows:

B1 cov(ε(1)1 )BT
1 = LLT, (66)

where L is a unique lower triangular matrix. Let

P = L−1Go
1, Q = LTW̃T

1 Go
1(G

o
1

TW̃1Go
1)
−T. (67)

By Matrix Schwarz inequality, we get

QTQ � (PTQ)T(PTP)−1(PTQ). (68)

Then with a straightforward verification, we have

QTQ = V1, PTP = V−1
2 , PTQ = I. (69)

The equations above imply that V1 � V2, as desired.

We close this section by establishing the approximate statistical efficiency of our estimator as the
proposition below shows.

Proposition 2. When the small error conditions in 1 through 6 are satisfied,

HCRBθ ≈ cov(θ̂). (70)

Proof. In view of Equation (13) and Equation (57), we will prove that
(

∂m̄
∂θ

)T
[

Qm +
∂m̄
∂z

Qz

(
∂m̄
∂z

)T
]−1

∂m̄
∂θ


∣∣∣∣∣
z=z̄

≈ Po
2. (71)
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By Equations (63), (64) and (34), the right side of Equation (71) is

Po
2 = GT

3 (DzQzDT
z + c2 Qm)−1G3, (72)

where
G3 = B−1

1 Go
1B−1

2 Go
2. (73)

Expanding Equation (73) (in Appendix F) and comparing it with Equation (A1), we can show
that, under the small error conditions,

G3 ≈ −c
∂ m̄
∂ θ

∣∣∣
z=z̄

. (74)

Furthermore, comparing Equation (A16) with Equation (A2), we arrive at

Dz ≈ c
∂ m̄
∂ z

∣∣∣
z=z̄

. (75)

If we plug Equation (74) and Equation (75) into Equation (72), we get Equation (71).

6.3. Time and Space Complexity

The computational load of our algorithm is focused on solving WLS problems. Singular value
decomposition (SVD) is an efficient algorithm for solving WLS problems. With the method of truncated
SVD, the time complexity is O(2mn2 + n3 + mn + n) and the space complexity is O(3n2 + 2mn + 3n)
for a matrix of size m× n [44].

To facilitate complexity analysis, we list the matrices involved in the algorithm and their sizes
in Table 3. As can be seen from the table, under the assumptions that M � N, the computational
complexity of the first stage is dominant in the total computational complexity. For the design
matrix G1 in the first stage, m = 2MN and n = 2 M + 4. By keeping the highest order term of N
and its coefficient, it can be seen that our algorithm takes O(N[4(4M3 + 17M2 + 18M)]) time and
O(N[8M(M + 2)]) space. In summary, our algorithm has linear complexity both in time and space.

Table 3. Size of matrices.

Matrix Notations Matrix Sizes

G1 (2MN)× (2 M + 4)
φ1 (2 M + 4)× 1
h1 (2MN)× 1
B1 (2MN)× (2MN)
W1 (2MN)× (2MN)
G1,i (2N)× (2 M + 4)
B1,i (2N)× (2N)
G2 (2 M + 4)× 4
φ2 4× 1
h2 (2 M + 4)× 1
B2 (2 M + 4)× (2 M + 4)
W2 (2 M + 4)× (2 M + 4)
Qm (2MN)× (2MN)
Qz (2M + 2N)× (2M + 2N)
Dz (2MN)× (2M + 2N)

7. Results and Discussion

In the previous section, we have theoretically analyzed the performance of our estimator. Now we
ascertain the performance of our estimator via computer simulations. Our simulations are divided
into four subsections. Section 7.1 compares the error covariance matrix of our estimator with HCRB
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and the ones of two typical estimators, i.e., the spherical-interpolation initialized Taylor series method
(SI-TS) [28,45] and TS-WLS [5]. Then, surface plots of the biases are shown in Section 7.2. In Section 7.3,
we empirically explore the time complexity of our estimator for locating multiple disjoint targets.
Finally, we use 80 randomly generated large-scale localization scenarios to further test the proposed
estimator in Section 7.4.

The first three subsections base on the simulation settings of [6]. Specifically, the simulations
use M = 3 transmitters and N = 5 receivers to determine the unknown position u and velocity
u̇ of a moving target. As in [6], the nominal positions of the sensors are known and given as
follows. t̄1 = [1500, 1500]T m, t̄2 = [−900, 4000]T m, t̄3 = [−3000,−4000]T m, s̄1 = [−1000, 3000]T m,
s̄2 = [2500,−500]T m, s̄3 = [−3000, 1000]T m, s̄4 = [2000,−4000]T m, and s̄5 = [−2000,−2000]T m.
Graphically, the nominal location geometry is shown in Figure 2.

-4000 -2000 0 2000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

Figure 2. Nominal location geometry for computer simulations.

The additional common settings for Sections 7.1 and 7.2 are as follows. The target is at
u = [0, 2000]T m with velocity u̇ = [20, 10]T m/s and the signal propagation speed is c = 1500 m/s.
The observation error covariance matrix related to the transmitter at ti is Qmi = blkdiag(σ2

τ R, σ2
f R)

for i = 1, 2, · · · , M, where στ is a given positive constant, σ2
f = σ2

τ /10, and R = 0.5 1N×N + 0.5 IN [31].

The sensors’ position error covariance matrix is Qz = σ2
z I2(M+N), where σz is a given positive constant.

We list the settings of the Monte Carlo simulations in Table 4 to illustrate our experiments more
clearly. Using Equation (8) based on Table 4, we generate data for simulations.
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Table 4. Monte Carlo simulation settings.

Quantities Values

M 3
N 5
c 1500 m/s
t1 [1500, 1500]T m
t2 [−900, 4000]T m
t3 [−3000,−4000]T m
s1 [−1000, 3000]T m
s2 [2500,−500]T m
s3 [−3000, 1000]T m
s4 [2000,−4000]T m
s5 [−2000,−2000]T m
R 0.5 1N×N + 0.5 IN
στ 0.02 : 0.02 : 0.2 s
σf στ/10
σz 20 : 20 : 200 m
u [0, 2000]T m
u̇ [20, 10]T m

7.1. Performance Comparison

We now turn to the performance comparison of several estimators. For a specific estimator θ̂ of
the unknown parameter vector θ, its performance can be measured by the root-mean-square error
(RMSE), which is defined as follows.

RMSE =

√√√√ 1
L

(
L

∑
`=1
‖θ` − θ‖2

)
,

where L is the number of Monte Carlo simulations and θ` is the `-th random realization of θ̂.
The RMSEs of our estimator, SI-TS and TS-WLS are compared with HCRB here. The simulation

settings are as follows. στ is 0.02 s, σz is from 0 m to 200 m with a step size of 20 m, and the number
of Monte Carlo simulations is 104 for each value of σz. The comparison curves for both the position
estimator and the velocity estimator are plotted respectively in Figures 3 and 4. It is evident that our
estimator has the least RMSE and can attain the HCRB accuracy at lower noise levels for determining
both the position and the velocity.
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Figure 3. RMSE and HCRB for position estimator.
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3.5

3.55

3.6

3.65

3.7

Figure 4. RMSE and HCRB for velocity estimator.

7.2. Bias Calculation

In this subsection, we evaluate the bias of our estimator. The simulation settings are as follows.
στ is from 0.02 s to 0.2 s with a step size of 0.02 s, and σz is from 20 m to 200 m with a step size of 20 m.
The norms of the theoretical bias vectors of û and ˆ̇u are calculated using results from Section 6 and
further visualized as surface plots in Figures 5 and 6. It is consistent with intuition that the biases
of both û and ˆ̇u increase with both στ and σz. It should be noted that the biases are relatively small
compared with the norms of u = [0, 2000]T m and u̇ = [20, 10]T m/s, even if the noise levels are high,
e.g., στ = 0.2 s and σz = 200 m.
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Figure 5. Surface plot of norm of the approximate bias of û.
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Figure 6. Surface plot of norm of the approximate bias of ˆ̇u.

7.3. Localizing Multiple Disjoint Targets

The aim of this section is to evaluate the computational complexity of the algorithm in the
sense of scalability, since the WLS algorithm involved in our estimator is computationally efficient.
One advantage of our estimator is that it is ready to be extended to location of multiple disjoint targets
by concatenating the data matrices in Section 5. Let the number of the disjoint targets be K, and 103

Monte Carlo experiments of joint location are performed for each value of K (= 1, 2, 4, 8, 16, 32, 64).
Then, the running time of the 103 experiments are recorded. For convenience of comparison,
we normalize the running time for each K with the one for K = 1. The normalized running times
are plotted in Figure 7 using log-log scale. It can be seen that the running time grows almost
exponentially with respected to the number of targets. This observation indicates that localizing
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multiple targets sequentially is more time-efficient than localizing them simultaneously using our
estimator. Such defects may root in the fact that our joint estimator does not share the nuisance
parameters across the multiple targets.

1 2 4 8 16 32 64
10

0

10
1

10
2

10
3

10
4

Figure 7. Normalized running time for locating multiple disjoint targets.

7.4. Large-Scale Simulation Experiments

The location scenario in Section 7.1 through Section 7.3 is the one examined in [6]. In order to
evaluate the performance of the proposed estimator more comprehensively, we design the following
lareg-scale random experiments. In view of the symmetry of the transmitter ti and receiver sj in
the observation model, we fix the number of transmitters to 1, and increase the number of receivers
from 21 to 100. The transmitter’s position is fixed at [0, 0]T m. Both the x-ordinate and y-ordinate
of the individual receiver’s position have the uniform probability distribution within the interval
[−5000, 5000]T m. σz = 20 m, and στ = 0.02 s. Other unspecified settings in these experiments are
referred in Table 4. In each location scenario, we conduct 104 Monte Carlo simulations. Then we
explore the effect of the number of reveivers on the bias/RMSE and computational complexity of the
proposed estimator in Figures 8 and 9.
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Figure 8. Normalized running time for locating multiple disjoint targets.
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Figure 9. Normalized running time for locating multiple disjoint targets.

Figure 8 shows that increasing the number of receivers helps to reduce the RMSE of the
estimator. It should be noted that increasing the number of receivers does not lead to a decrease
of bias. This fact may imply that designing unbiased estimators is an inherently difficult problem in
nonlinear estimation.

In addition, as can be seen in Figure 9, the estimator’s relative running time scales linearly as more
receivers are used when the number of the receivers is large enough (e.g., N > 80 here). This trend
coincides with the theoretical linear complexity obtained in Section 6.3.
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8. Conclusions

This paper develops a non-iterative solution to the nonlinear hybrid parameter estimation problem
of determining the position and velocity of a moving target in a multistatic sonar system in the presence
of sensor position uncertainties. It outperforms conventional methods such as SI-TS and TS-WLS
in RMSE, and can achieve the HCRB for moderate Gaussian observation noises and sensor position
errors. Our estimator involves only two WLS minimizations. Thus, it is computationally efficient,
and does not need to deal with the difficulties of initialization and local convergence. Moreover,
we obtain the bias vector and covariance matrix of this estimator using perturbation analysis and
multivariate statistics.
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The following abbreviations are used in this manuscript:

HCRB Hybrid Cramér–Rao bound
WLS Weighted least-squares
SI-TS Spherical-interpolation initialized Taylor series method
SVD Singular value decomposition
TS-WLS Two-stage weighted least squares method
RMSE Root-mean-square error

Appendix A. Jacobian Matrices for HCRB

Appendix A.1. Jacobian Matrix of Target Position and Velocity

∂m̄
∂θ

=


∂m̄1/∂u ∂m̄1/∂u̇
∂m̄2/∂u ∂m̄2/∂u̇

...
...

∂m̄M/∂u ∂m̄M/∂u̇

 , (A1)

where

∂m̄i
∂u

=

(∂τo
i,1

∂u

)T

, . . . ,

(
∂τo

i,N

∂u

)T

,

(
∂ f o

i,1

∂u

)T

, . . . ,

(
∂ f o

i,N

∂u

)T
T

,

∂m̄i
∂u̇

=

(∂τo
i,1

∂u̇

)T

, . . . ,

(
∂τo

i,N

∂u̇

)T

,

(
∂ f o

i,1

∂u̇

)T

, . . . ,

(
∂ f o

i,N

∂u̇

)T
T

,

for i = 1, 2, . . . , M.
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∂τo
i,j/∂u =

1
c
(ρu,ti + ρu,sj)

T,

∂τo
i,j/∂u̇ = 01×2,

∂ f o
i,j/∂u =

1
c

u̇T
(

Au,ti + Au,sj

)
,

∂ f o
i,j/∂u̇ =

1
c
(ρu,ti + ρu,sj)

T,

for i = 1, 2, . . . , M and j = 1, 2, . . . , N.

Appendix A.2. Jacobian Matrix of Sensor Positions

∂m̄
∂z

=


∂m̄1/∂t ∂m̄1/∂s
∂m̄2/∂t ∂m̄2/∂s

...
...

∂m̄/
M∂t ∂m̄M/∂s

 , (A2)

where

∂m̄i
∂t

=

(∂τo
i,1

∂t

)T

, . . . ,

(
∂τo

i,N

∂t

)T

,

(
∂ f o

i,1

∂t

)T

, . . . ,

(
∂ f o

i,N

∂t

)T
T

,

∂m̄i
∂s

=

(∂τo
i,1

∂s

)T

, . . . ,

(
∂τo

i,N

∂s

)T

,

(
∂ f o

i,1

∂s

)T

, . . . ,

(
∂ f o

i,N

∂s

)T
T

,

for i = 1, 2, . . . , M.

∂τo
i,j/∂tk =

{
(ρti ,u − ρti ,sj)

T/c, if i = k,

01×2, if i 6= k,

∂τo
i,j/∂sl =

{
(ρsj ,u − ρsj ,ti )

T/c, if j = l,

01×2, if j 6= l,

∂ f o
i,j/∂tk =

{
−u̇TAti ,u/c, if i = k,

01×2, if i 6= k,

∂ f o
i,j/∂sl =

{
−u̇TAsj ,u/c, if j = l,

01×2, if j 6= l,

for i = 1, 2, . . . , M, j = 1, 2, . . . , N, k = 1, 2, . . . , M and l = 1, 2, . . . , N.

Appendix B. Matrices Related to Weighted Least Squares

A weighted least squares problem is an optimization problem as follows.

minimizeφ (h−Gφ)TW(h−Gφ), (A3)

where G is the design matrix (of full column rank), h is the observation vector, φ is the parameter
vector, and W is the (positive definite) weighted matrix. We refer (h−Gφ) as residual vector.

We introduce the weighted residual vector rW as follows.

rW = W(h−Gφ). (A4)
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It follows from Equation (A4) that

W−1 rW + G φ = h. (A5)

By the orthogonality projection principle of least squares method,

GTrW = 0. (A6)

Combining Equation (A5) and Equation (A6), we get

M

[
rW

φ

]
=

[
h
0

]
, (A7)

where

M =

[
W−1 G
GT 0

]
. (A8)

After finding the inverse of M by matrix inversion lemma [46], we find an interesting fact that the
matrices listed in Table 2 have the same form as specific blocks of M−1 in Equation (A9).

M−1 =

[
W[I−G(GTWG)−1GTW] WTG(GTWG)−T

(GTWG)−1GTW −(GTWG)−1

]
. (A9)

Appendix C. Linear Model for the First Stage of Our Algorithm

h1 = [hT
1,1, hT

1,2, . . . , hT
1,M]T, (A10)

where

h1,i =



2 [t̄T
i (t̄i − s̄1) + c τi,1‖t̄i − s̄1‖] + c2τ2

i,1
2 [t̄T

i (t̄i − s̄2) + c τi,2‖t̄i − s̄2‖] + c2τ2
i,2

...
2 [t̄T

i (t̄i − s̄N) + c τi,N‖t̄i − s̄N‖] + c2τ2
i,N

c fi,1‖t̄i − s̄1‖+ c2τi,1 fi,1
c fi,2‖t̄i − s̄2‖+ c2τi,2 fi,2

...
c fi,N‖t̄i − s̄N‖+ c2τi,N fi,N


,

for i = 1, 2, . . . , M.
G1 = [GT

1,1, GT
1,2, . . . , GT

1,M]T, (A11)

where

G1,i =

[
G1,i(1 : N, 1 : M + 2) 0N×(M+2)

G1,i(N + 1 : 2 N, 1 : M + 2) G1,i(N + 1 : 2 N, M + 3 : 2 M + 4)

]
, (A12)

G1,i(1 : N, 1 : M + 2)

= 2 G1,i(N + 1 : 2 N, M + 3 : 2 M + 4)

=


2 (t̄i − s̄1)

T 01×(i−1) 2(cτi,1 + ‖t̄i − s̄1‖) 01×(M−i)
...

...
...

...
2 (t̄i − s̄N)

T 01×(i−1) 2(cτi,N + ‖t̄i − s̄N‖) 01×(M−i)

 ,

G1,i(N + 1 : 2 N, 1 : M + 2) = [0N×(i+1), c fi, 0N×(M−i)],
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for i = 1, 2, . . . , M.
B1 = IM ⊗ B1,i, (A13)

where

B1,i =

[
2 diag(‖u− s̄1‖, . . . , ‖u− s̄N‖) 0N×N

diag(ρT
u,s̄1

u̇, . . . , ρT
u,s̄N

u̇) diag(‖u− s̄1‖, . . . , ‖u− s̄N‖)

]
. (A14)

for i = 1, 2, . . . , M.
It follows from Equation (20) and Equation (22) that first-order error vector in the first stage is

ε
(1)
1 = Dz∆z + c ∆m = [Dz, c I]

[
∆z
∆m

]
, (A15)

where

Dz = [Dt, Ds], (A16)

Dt = blkdiag(Dt,1, Dt,2, . . . , Dt,M),

Ds = [DT
s,1, DT

s,2, . . . , DT
s,M]T,

Dt,i = [ρt̄i ,u − ρt̄i ,s̄1
, ρt̄i ,u − ρt̄i ,s̄2

, . . . , ρt̄i ,u − ρt̄i ,s̄N
,−11×N ⊗ (Au,t̄i

u̇)]T,

Ds,i =

[
blkdiag(ρs̄1,u + ρt̄i ,s̄1

, ρs̄2,u + ρt̄i ,s̄2
, . . . , ρs̄N ,u + ρt̄i ,s̄N

)T

− blkdiag(Au,s̄1 u̇, Au,s̄2 u̇, . . . , Au,s̄N u̇)T

]
,

for i = 1, 2, . . . , M.
By inspection of Equation (23) and Equation (24), the second-order error vector in the first stage

ε
(2)
1 can be expressed as

ε
(2)
1 = [ε

(2)
1,1

T
, ε

(2)
1,2

T
, . . . , ε

(2)
1,M

T
]T, (A17)

where
ε
(2)
1,i = [(ετ,i ◦ ετ,i)

T, (ετ,i ◦ ε f ,i)
T]T,

for i = 1, 2, . . . , M.

Appendix D. Linear Model for the Second Stage of Our Algorithm

h2 =



02×1

α̂1
2 − ‖û− t̄1‖2

α̂2
2 − ‖û− t̄2‖2

...
ˆαM

2 − ‖û− t̄M‖2

02×1

α̂1 β̂1 − (û− t̄1)
T ˆ̇u

α̂2 β̂2 − (û− t̄2)
T ˆ̇u

...
α̂M β̂M − (û− t̄M)T ˆ̇u



. (A18)

G2 =


I2 02×2

2 [(t̄1 − û), . . . , (t̄M − û)]T 0M×2

02×2 I2

1M×1 ⊗ (− ˆ̇uT) [(t̄1 − û), . . . , (t̄M − û)]T

 . (A19)
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B2 =

[
diag(−1,−1, 2 αT) 0(M+2)×(M+2)

diag(0, 0, βT) diag(−1,−1, αT)

]
. (A20)

Furthermore, Equation (37) and Equation (38) indicate that the second-order error vector in the
second stage is

ε
(2)
2 =


02×1

(∆uT∆u)1M×1 + ∆α ◦ ∆α

02×1

(∆uT∆u̇)1M×1 + ∆α ◦ ∆β

 . (A21)

Appendix E. Formulas for Computing Bias Vector of Our Estimator

Appendix E.1. Formulas for Computing Bias in the First Stage

∆G1 = [∆GT
1,1, ∆GT

1,2, . . . , ∆GT
1,M]T,

where for i = 1, 2, . . . , M,

∆G1,i = c (2 E1,iδ e1,i + E3,iδ e1,i + E2,iδ e2,i),

e1,i = [01×(i+1), 1, 01×(2M+2−i)],

e2,i = [01×(M+i+3), 1, 01×(M−i)],

E1,i = [02N×2(M+i N), [IN , 0N ]
T, 02N×[2N(M−i)+N]],

E2,i = [02N×2(M+i N), [0N , IN ]
T, 02N×[2N(M−i)+N]],

E3,i = [02N×[2(M+i N)+N], [0N , IN ]
T, 02N×2N(M−i)].

With some well-known formulas in multivariate statistics and Equation (A15), we list the related
expected values as follows, where

Q = blkdiag(Qz, Qm). (A22)

1. Let K1{i} = K1(2N(i− 1) + 1 : 2Ni, :) for i = 1, 2, . . . , M. Then

E[∆GT
1 K1B1ε

(1)
1 ]

=
M

∑
i=1

E
(

∆GT
1,iK1{i}B1ε

(1)
1

)
= 2 c

M

∑
i=1

eT
1,i tr(ET

1,iK1{i}B1[Dz, cI]Q)

+c
M

∑
i=1

eT
1,i tr(ET

3,iK1{i}B1[Dz, cI]Q)

+c
M

∑
i=1

eT
2,i tr(ET

2,iK1{i}B1[Dz, cI]Q).

2.

E[∆G1Ho
1B1ε

(1)
1 ]

= [E[∆G1,1Ho
1B1ε

(1)
1 ]T, . . . , E[∆G1,MHo

1B1ε
(1)
1 ]T]T,
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where

E[∆G1,iHo
1B1ε

(1)
1 ]

= 2 c E1,iQ (e1,iHo
1B1[Dz, c I])T

+c E3,iQ (e1,iHo
1B1[Dz, c I])T

+c E2,iQ (e2,iHo
1B1[Dz, c I])T,

for i = 1, 2, . . . , M.

Appendix E.2. Formulas for Computing Bias in the Second Stage

∆G2 =


02×2 02×2

1M×1 ⊗ (−2∆uT) 0M×2

02×2 02×2

1M×1 ⊗ (−∆u̇T) 1M×1 ⊗ (−∆uT)

 ,

∆B2 =

[
diag([0, 0, 2∆αT]) 0(M+2)×(M+2)
diag([0, 0, ∆βT]) diag([0, 0, ∆αT])

]
.

All the expected values required for calculating µ2 are listed as follows, where S is the mean
squared error matrix of ∆φ1, i.e.,

S = Po
1
−1 + µ1µT

1 .

1.

E[(∆αi)
2] ≈ S(i + 2, i + 2), i = 1, 2, . . . , M,

E[∆αi∆βi] ≈ S(i + 2, i + M + 4), i = 1, 2, . . . , M,

E[∆uT∆u] ≈ tr(S(1 : 2, 1 : 2)),

E[∆uT∆u̇] ≈ tr(S(1 : 2, M + 3 : M + 4)).

2.

∆G2Ho
2

=


02×1

1M×1 ⊗ (−2∆uT)Ho
2(1 : 2, :)

02×1

1M×1 ⊗ (−∆u̇T)Ho
2(1 : 2, :) + 1M×1 ⊗ (−∆uT)Ho

2(3 : 4, :)

 ,

where

E[∆uTHo
2(1 : 2, :)B2ε

(1)
2 ] = tr(Ho

2(1 : 2, :)B2S(:, 1 : 2)),

E[∆u̇THo
2(1 : 2, :)B2ε

(1)
2 ] = tr(Ho

2(1 : 2, :)B2S(:, M + 3 : M + 4)),

E[∆uTHo
2(3 : 4, :)B2ε

(1)
2 ] = tr(Ho

2(3 : 4, :)B2S(:, 1 : 2)).
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3.

∆B2B−1
2

=



02×(2M+4)
2∆α1B−1

2 (3, :)
2∆α2B−1

2 (4, :)
...

2∆αMB−1
2 (M + 2, :)

02×(2M+4)
∆α1B−1

2 (M + 5, :) + ∆β1B−1
2 (3, :)

∆α2B−1
2 (M + 6, :) + ∆β2B−1

2 (4, :)
...

∆αMB−1
2 (2M + 4, :) + ∆βMB−1

2 (M + 2, :)



,

where

E[∆αiB−1
2 (i + 2, :)UB2ε

(1)
2 ] = S(i + 2, :)BT

2 UTB−1
2 (i + 2, :)T,

E[∆αiB−1
2 (i + M + 4, :)UB2ε

(1)
2 ] = S(i + 2, :)BT

2 UTB−1
2 (i + M + 4, :)T,

E[∆βiB−1
2 (i + 2, :)UB2ε

(1)
2 ] = S(i + M + 4, :)BT

2 UTB−1
2 (i + 2, :)T,

for i = 1, 2, . . . , M.
4.

∆GT
2 K2

=

[
−2∆u ∑M

i=1 K2(i + 2, :)− ∆u̇ ∑M
i=1 K2(i + M + 4, :)

−∆u ∑M
i=1 K2(i + M + 4, :)

]
,

where

E[∆u
M

∑
i=1

K2(i + 2, :)B2ε
(1)
2 ] = S(1 : 2, :)BT

2

M

∑
i=1

K2(i + 2, :)T,

E[(Deltau̇
M

∑
i=1

K2(i + M + 4, :)B2ε
(1)
2 ] = S(M + 3 : M + 4, :)BT

2

M

∑
i=1

K2(i + M + 4, :)T,

E[∆u
M

∑
i=1

K2(i + M + 4, :)B2ε
(1)
2 ] = S(1 : 2, :)BT

2

M

∑
i=1

K2(i + M + 4, :)T,

for i = 1, 2, . . . , M.
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5.

∆BT
2 K2

=



02×(2M+4)
2∆α1K2(3, :) + ∆β1K2(M + 5, :)
2∆α2K2(4, :) + ∆β2K2(M + 6, :)

...
2∆αMK2(M + 2, :) + ∆βMK2(2M + 4, :)

02×(2M+4)
∆α1K2(M + 5, :)
∆α2K2(M + 6, :)

...
∆αMK2(2M + 4, :)



,

where

E[∆αiK2(i + 2, :)B2ε
(1)
2 ] = S(i + 2, :)BT

2 K2(i + 2, :)T,

E[∆αiK2(i + M + 4, :)B2ε
(1)
2 ] = S(i + 2, :)BT

2 K2(i + M + 4, :)T,

E[∆βiK2(i + M + 4, :)B2ε
(1)
2 ] = S(i + M + 4, :)BT

2 K2(i + M + 4, :)T,

for i = 1, 2, . . . , M.

Appendix F. Some Formula for Proving Proposition 2

By Equation (73),
G3 = [GT

3,1, GT
3,2, . . . , GT

3,M]T, (A23)

where
G3,i = B−1

1,i Go
1,i · B−1

2 Go
2. (A24)

By performing algebraic manipulations, we have

B−1
1,i Go

1,i =

[
Yi 0N×(M+2)
Zi Yi

]
, B−1

2 Go
2 =


−I2 02×2

Y 0M×2

02×2 −I2

Z Y

 , (A25)

where

Yi =


(t̄i−s̄1)

T

‖u−s̄1‖
01×(i−1)

c τi,1+‖t̄i−s̄1‖
‖u−s̄1‖

01×(M−i)
...

...
...

...
(t̄i−s̄N)T

‖u−s̄N‖
01×(i−1)

c τi,1+‖t̄i−s̄N‖
‖u−s̄N‖

01×(M−i)

 ,

Zi =


−

(t̄i−s̄1)
TρT

u,s̄1
u̇

‖u−s̄1‖2 01×(i−1) −
(c τi,1+‖t̄i−s̄1‖)ρT

u,s̄1
u̇

‖u−s̄1‖2 +
c fi,1
‖u−s̄1‖

01×(M−i)
...

...
...

...

−
(t̄i−s̄N)TρT

u,s̄N
u̇

‖u−s̄N‖2 01×(i−1) −
(c τi,1+‖t̄i−s̄N‖)ρT

u,s̄N
u̇

‖u−s̄N‖2 +
c fi,1
‖u−s̄N‖

01×(M−i)

 ,
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Y =


−ρT

u,t̄1

−ρT
u,t̄2
...

−ρT
u,t̄M

 , Z =


−u̇TAT

u,t̄1

−u̇TAT
u,t̄2

...
−u̇TAT

u,t̄M

 .

Expanding Equation (A24) with Equation (A25), the details of G3,i(i = 1, 2, . . . , M) is as follows,
where j = 1, 2, . . . , N.

G3,i(j, 1 : 2) =
−1

‖u− s̄j‖

[
(c τi,j + ‖t̄i − s̄j‖)ρu,t̄i

+
(
t̄i − s̄j

)]T
, (A26)

G3,i(N + j, 1 : 2) =
(ρT

u,s̄j
u̇)
(

ρu,t̄i
+ ρu,s̄j

)
‖u− s̄j‖

−
c fi,jρu,t̄i

‖u− s̄j‖
−

c τi,j + ‖t̄i − s̄j‖
‖u− s̄j‖

Au,t̄i
u̇T, (A27)

G3,i(j, 3 : 4) = 01×2, (A28)

G3,i(N + j, 3 : 4) = G3,i(j, 1 : 2). (A29)

When the small error conditions in Conditions 1 through 6 are satisfied, by Equation (19) and
Equation (21), we have

c τi,j + ‖t̄i − s̄j‖ ≈ ‖u− t̄i‖+ ‖u− s̄j‖, (A30)

c fi,j ≈ ρT
u,t̄i

u̇ + ρT
u,s̄j

u̇. (A31)

We also note that

Au,t̄i
u̇ =

βi

α2
i
(t̄i − u) +

1
αi

u̇, (A32)

Ax,y =
1

‖x− y‖

(
I− ρx,y ρT

x,y

)
. (A33)

Combining the above formulas,

G3,i(N + j, 3 : 4) = G3,i(j, 1 : 2) ≈ −(ρu,t̄i
+ ρu,s̄j), (A34)

G3,i(N + j, 1 : 2) ≈ −(Au,t̄i
+ Au,s̄j)u̇. (A35)
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