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Abstract: Zero-one quadratic programming is a classical combinatorial optimization problem that
has many real-world applications. However, it is well known that zero-one quadratic programming is
non-deterministic polynomial-hard (NP-hard) in general. On one hand, the exact solution algorithms
that can guarantee the global optimum are very time consuming. And on the other hand, the heuristic
algorithms that generate the solution quickly can only provide local optimum. Due to this reason,
identifying polynomially solvable subclasses of zero-one quadratic programming problems and their
corresponding algorithms is a promising way to not only compromise these two sides but also offer
theoretical insight into the complicated nature of the problem. By combining the basic algorithm and
dynamic programming method, we propose an effective algorithm in this paper to solve the general
linearly constrained zero-one quadratic programming problem with a k-diagonal matrix. In our
algorithm, the value of k is changeable that covers different subclasses of the problem. The theoretical
analysis and experimental results reveal that our proposed algorithm is reasonably effective and
efficient. In addition, the placement of the phasor measurement units problem in the power system is
adopted as an example to illustrate the potential real-world applications of this algorithm.

Keywords: zero-one quadratic problem; combinatorial optimization; k-diagonal matrix;
power system

1. Introduction

Optimization problems normally fall into two categories, one for continuous variables and the
other for discrete variables. The latter one is called combinatorial optimization, which is an active field
in applied mathematics [1]. Common problems are the maximum flow problem, traveling salesman
problem, matching problem, knapsack problem, etc. Among those famous combinatorial optimizations,
zero-one quadratic programming (01QP), whose variables can only be either 0 or 1 [2], is very important
and attracts a lot of attention.

Zero-one quadratic programming, which can be divided into constrained (01CQP) and
unconstrained (01UQP), is a combinatorial optimization and has practical significance. For example,
it can be applied in circuit design [3], pattern recognition [4], capital budgeting [5], portfolio
optimization [6], etc. Except for these well known applications, 01QP also has potential applications
in the nonlinear control related fields [7–11]. Among these applications, the phasor measurement
unit (PMU) placement has been widely studied. Phasor measurement units can be used in dynamic
monitoring, system protection, and system analysis and prediction. Therefore, the placement of
PMU has become an important issue. As the scale of the electric grid grows, the PMU placement
problem becomes more difficult and must be addressed considering certain requirements. In [12],
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a modified bisecting search combined with simulated annealing method was proposed, and the
latter randomly selected arrays were used to test the observability of the system. Considering the
incomplete observability of the system, a calculation method based on graph theory was proposed
in [13]. This method is time-consuming, and with the increase of dimensions, the calculation load is too
heavy. An integer linear programming method [14] and an improved algorithm [15] were put forward,
considering system redundancy, and full and incomplete observability. Researchers in [16] proposed a
binary programming method considering the joint placement of the conventional measurement units
and phasor measurement units.

Zero-one quadratic programming also has some theoretical significance. Many classical problems,
such as the max-cut problem [17,18] and max-bisection problem [19] can be converted to zero-one
quadratic programming. Therefore, designing the algorithm that can solve 01QP effectively and
efficiently is very meaningful not only in practical fields but also in theoretical fields.

However, zero-one quadratic programming is a well known NP-hard problem in general.
The common solutions are exact solution and heuristic algorithms. Exact solution algorithms can
guarantee the global optimum. In [20], the branch-and-bound method was used to solve zero-one
quadratic programming problems without constraints. In [21,22], some exact solutions were proposed
by means of geometric properties. Penalty parameters were introduced to solve zero-one quadratic
programming problems with constraints in [23]. But exact solution algorithm are very time consuming
and suitable for small scale problems only. Oppositely, heuristic algorithms, such as simulated
annealing [24], genetic algorithms [25], neural networks [26], and ant colony algorithms [27], can solve
the medium and large scale problems quickly in general. But most of them can only find the
local optimum.

Therefore, identifying polynomially solvable subclasses of zero-one quadratic programming
problems and their corresponding algorithms is a promising way to not only compromise these
two sides but also offer theoretical insight into the complicated nature of the problem. In our past
studies [28,29], the problem of five-diagonal matrix quadratic programming with linear constraints
has been solved effectively. In [30], an algorithm for solving 01QP with a seven-diagonal matrix Q was
presented. However, for these algorithms, the applicable problem is very specific. This narrows their
applications. Then, we proposed an algorithm for the unconstrained problems with a k-diagonal matrix
in [31]. In this paper, based on our previous results, we further propose an algorithm for the general
linearly constrained zero-one quadratic programming problem with a k-diagonal matrix by combining
the basic algorithm and dynamic programming method. For the algorithm we proposed, the value
of k is changeable. That means the algorithm can cover different subclasses of the problem. The
theoretical analysis and experimental results reveal that our proposed algorithm is reasonably effective
and efficient. We also apply the algorithm to real-world applications and then verify its feasibility.

The main contributions of this paper are reflected in the following aspects: (1) The previous
algorithm targeted a fixed k value in Q matrix. While the algorithm in this paper targeted a general
problem with changeable k values. (2) We analyze the time complexity and give the proof process of
the rationality of the algorithm. (3) We apply the algorithm to the phasor measurement units placement
in real-world application.

This paper is organized as follows: in Section 2, we review the algorithm of solving unconstrained
zero-one k-diagonal matrix quadratic programming. In Section 3, a constrained zero-one k-diagonal
matrix quadratic programming algorithm with the proof of the algorithm is proposed. Application
of zero-one quadratic programming in the phasor measurement units placement is put forward in
Section 4. Experimental results and discussion are given in Section 5. We draw our conclusions and
put forward the prospects in Section 6.
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2. Basic Algorithm to 01UQP

The following Equation (1) shows the form of the k-diagonal matrix zero-one quadratic
programming problem. The special point is the form of the matrix Q called the k-diagonal matrix,
where k = 2m + 1 (m = 0, 1, 2, . . . , n− 1).

min
x∈{0,1}n

f (x) =
1
2

xTQx + cTx (1)

where Q = (qij)n×n, qij = qji(i, j = 1, 2, . . . , n) indicates that it is a symmetric matrix. Note that all the
numbers in this matrix are zero except qij and qji(i = 1, 2, . . . , n− 1, j = i + 1, i + 2, . . . , i + m).



0 q1,2 q1,3 ... 0 0 0
q2,1 0 q2,3 ... 0 0 0
q3,1 q3,2 0 ... 0 0 0

...
...

...
. . .

...
...

...
0 0 0 ... 0 qn−2,n−1 qn−2,n
0 0 0 ... qn−1,n−2 0 qn−1,n
0 0 0 ... qn,n−2 qn,n−1 0


Based on past works [30,31], we can have the algorithm, as follows, to solve 01UQP. The feasibility

and effect of the algorithm can be seen in [31]. Figure 1 shows the Algorithm 1 process intuitively.

Start
1i = and assign 0 or 1 to 

1,...,n m n
x x

- +

Let

Fill in the 

states table

Select the optimal value from 

the latest table and trace back 

to find the optimal solution

End

1i i= +

Yes

No

If 1i n m< - +

Figure 1. Flow chart of the zero-one unconstrained quadratic programming (01UQP) algorithm.

Algorithm 1 Process of solving 01UQP
Step 1: Assign xn−m+1,. . . , xn to 0 or 1.

(1) Adjacent terms are the combination of xn−m+1,. . . , xn, whose value is the same except for
the value of xn.
(2) Get the corresponding f (x).
(3) Label these states state0, state1, . . . , state(2m − 1).
(4) Compare f (x) in the two adjacent terms. (only the coefficient of xn−m and the constant term
are different.)

Step 2: Change the value of xn−m−i to 0 and 1(i = 0, 1, . . . , n−m− 1).

(1) Compare every two adjacent states and take the result with the smaller constant term as the
new state.
(2) Update all the 2m states.

Step 3: Get the optimal solution x.

(1) Update the states based on Step 2 until only the constant term is in f (x).
(2) The optimal value is the minimal one.
(3) Trace back and get the optimal solution x.
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3. Basic Algorithm to 01CQP

3.1. 01CQP Algorithm Description

Consider the constrained k-diagonal matrix zero-one quadratic programming problem:

min
x∈{0,1}n

1
2 xTQx + cTx

s.t. aTx ≤ b
(2)

where Q has the same meaning as that of the 01UQP formula in Section 2, a ∈ Zn
+, b ∈ Z+.

In this section, we utilize the dynamic programming method to solve the 01CQP problem. To apply
the dynamic programming method, we introduce a state variable sk( sk ∈ Z) and a stage variable
k(0 < k ≤ n), which should satisfy the following iteration. sk+1 can be expressed as:

sk+1 = sk + ak+1xk+1 (k = 1, . . . , n− 1).

We only need to consider the integer point of the state space since a ∈ Zn
+ and b ∈ Z+. Since sk

satisfies 0 ≤ sk ≤ b, we define a set sk = {sk|0 ≤ sk ≤ b, sk ∈ Z}.
Algorithms 2 and 3 show the detailed calculation process.

Algorithm 2 Calculation Method of f (sk)

Case 1: When k = 1, there are two cases.

(1a) s1 < a1
x1 = 0, x∗1 = 0, f (s1) = f (0, . . . , xn)
(1b) s1 ≥ a1
x1 = 1, x∗1 = 1, f (s1) = f (1, . . . , xn)

We will get a series of functions f (x) after executing Case 1.

Case 2: When k ≥ 2, there are also two cases.

(2a) sk < ak
xk must be 0 to satisfy sk−1 = sk − akxk. At this time, sk = sk−1, by which we can obtain the
function f (sk) = f (sk−1)|xk=0.
(2b) sk ≥ ak
In this case, xk can be both 0 or 1, which generates two more situations:
1) If xk

∗ = 0 and sk = sk−1, we can get f (sk) = f (sk−1)|xk=0.
2) If xk

∗ = 1 and sk−1 = sk − akxk, we can get f (sk) = f (sk−1)|xk=1.

We can see that there is only one function f (sk) corresponding to each state sk when k = 1, and
there are several f (sk) to each state sk when k > 1. To save storage and computational time, f (sk)
should be selected satisfactorily in the next step. We need to find the optimal f (sk) = f (sk−1)|xk=0
and f (sk) = f (sk−1)|xk=1, that the optimizing process refers to for Algorithm 3.
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Algorithm 3 state0 and state1

state0(xk = 0)

Case 1: There is only one f (sk) = f (sk−1)|xk=0:
Set xk

∗ = 0, f (sk) = f (sk−1)|xk=0
Case 2: There are more than one f (sk) = f (sk−1)|xk=0:
1) Compare f (sk−1)|xk=0, which are almost the same except for the constant term and pick up
the smallest one.
2) Set xk

∗ = 0 and f (sk) = f (sk−1)|xk=0.
state1(xk = 1)

Case 1: There is only one f (sk) = f (sk−1)|xk=1:
Set xk

∗ = 1, f (sk) = f (sk−1)|xk=1
Case 2: There are more than one f (sk) = f (sk−1)|xk=1:
1) Find the f (x) using a similar approach to that in state0 Case 2.
2) Set xk

∗ = 1 and f (sk) = f (sk−1)|xk=1.

According to the above algorithm, the maximum number of functions per State is shown in
Table 1. The primary time is spent generating the state table. The number of times that the core steps
calculated is focused on the state number in Table 1. In total, we need to update the state table n times
and the number of state is b, so the time complexity is O(2m−1 × n× b).

Table 1. Maximum number of functions per State.

Situation The Maximum Number of Functions

Algorithm 2 Case 1 1
Algorithm 3 Case 1 2m−1

Algorithm 3 Case 2 2m−1

3.2. Analysis on the Effectiveness and Rationality of 01CQP Algorithm

In this section, we analyze the properties of the polynomial time algorithm for 01CQP. To analyze
the algorithm, we need to demonstrate the rationality of Algorithms 2 and 3. Suppose f (x) has
the form:

f (x) = q12x1x2 + q13x1x3 + · · ·+ q1,1+mx1x1+m + · · ·+ qn−m,n−m+1xn−m

xn−m+1 + · · ·+ qn−m,nxn−mxn + · · ·+ qn−1,nxn−1xn + c1x1 + · · ·+ cnxn.

Step 1: Set k = 1
(1) s1 < a1, x1 = 0

f1(s1) = f (x)|x1=0 = qi,i+1xixi+1 + qi,i+2xixi+2 + · · ·+ qi,i+mxixi+m
+ · · ·+ qn−m,n−m+1xn−mxn−m+1 + · · ·+ qn−m,nxn−mxn

+ · · ·+ qn−1,nxn−1xn + c2x2 + · · ·+ cnxn(i = 2, . . . , n−m− 1).
(3)

(2) s1 ≥ a1, x1 = 1

f1(s1) = f (x)|x1=1 = qi,i+1xixi+1 + qi,i+2xixi+2 + · · ·+ qi,i+mxixi+m
+ · · ·+ qn−m,n−m+1xn−mxn−m+1 + · · ·+ qn−m,nxn−mxn

+ · · ·+ qn−1,nxn−1xn + ĉ2x2 + · · ·+ ĉ1+mx1+m + cm+2xm+2

+ · · ·+ cnxn + c1.

(4)

Clearly, when k = 1, each state s1 has only one function f1(s1). The coefficient of x2, . . . , xm+1 and
the constants are the only different terms in the function.
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Step 2: Set k = 2, 3, ..., m
(1) If sk < ak, execute state0.

If sk−1 < ak−1, fk(sk) has the same form as function (3):

f (sk) = qk,k+1xkxk+1 + qk,k+2xkxk+2 + · · ·+ qk,k+mxkxk+m
+ · · ·+ qi,i+1xixi+1 + qi,i+2xixi+2 + · · ·+ qi,i+mxixi+m + · · ·+
qn−m,n−m+1xn−mxn−m+1 + · · ·+ qn−m,nxn−mxn + · · ·+
qn−1,nxn−1xn + ck+1xk+1 + · · ·+ cnxn + const.

(5)

(const represents the constant term of the f (sk−1).)
If sk ≥ ak−1, fk(sk) has the same form as function (4):

f (sk−1) = qk,k+1xkxk+1 + qk,k+2xkxk+2 + · · ·+ qk,k+mxkxk+m
+ · · ·+ qi,i+1xixi+1 + qi,i+2xixi+2 + · · ·+ qi,i+mxixi+m + · · ·+
qn−m,n−m+1xn−mxn−m+1 + · · ·+ qn−m,nxn−mxn + · · ·+
qn−1,nxn−1xn + ĉk+1xk+1 + · · ·+ ĉk+mxk+m + ck+mxk+m
+ . . . + cnxn + const + ck.

(6)

Then, fk(sk) can be shown as:

fk(sk) = fk−1(sk−1)|xk=0 = qk+1,k+2xk+1xk+2 + qk+1,k+3xk+1xk+3 + · · ·
+qk+1,k+m+1xk+1xk+m+1 + · · ·+ qi,i+1xixi+1 + qi,i+2xixi+2 + · · ·+
qi,i+mxixi+m + · · ·+ qn−m,n−m+1xn−mxn−m+1 + · · ·+ qn−m,nxn−mxn

+ · · ·+ qn−1,nxn−1xn + ĉk+1xk+1 + · · ·+ ĉk+mxk+m + ck+m+1xk+m+1

+ . . . + cnxn + ĉonst.

(7)

At this point, the maximum number of fk(sk) corresponding to each sk is 2k−2.
(2) If sk ≥ ak, execute state0 and state1.

Here, the state0 is the same as the one in Case 1, so we do not need to repeat it.
Consider state1, xk = 1, fk(sk) = fk−1(sk − akxk), sk−1 = sk − akxk = sk − ak.
If sk−1 < ak−1, f (sk−1) has the form of function (5). If sk−1 ≥ ak−1, f (sk−1) has the form of

function (6), then, fk(sk) can be expressed as:

fk(sk) = fk−1(sk−1)|xk=1 = qk+1,k+2xk+1xk+2 + qk+1,k+3xk+1xk+3 + · · ·
+qk+1,k+m+1xk+1xk+m+1 + · · ·+ qi,i+1xixi+1 + qi,i+2xixi+2 + · · ·+
qi,i+mxixi+m + · · ·+ qn−m,n−m+1xn−mxn−m+1 + · · ·+ qn−m,nxn−mxn

+ · · ·+ qn−1,nxn−1xn + ĉk+1
′
xk+1 + · · ·+ ĉk+m

′
xk+m + ck+m+1xk+m+1

+ . . . + cnxn + ĉonst
′
.

(8)

All fk(sk) are only different in the constant terms and the coefficient of xk+1, ..., xm+2.
Step 3: k = n−m− 1

Consider the most complex case, sk ≥ ak and the state variable sk corresponds to 2m−1 fk(sk) and
2m−1 fk(sk) = fk−1(sk − ak) respectively (2m−1 is the number of both). Therefore, we need to execute
state0 first, and then execute state1.
(1) state0:

Since fk(sk) has the form as function (8), the state0 is executed for the fk(sk) respectively, and the
following expression is obtained:

fk(sk) = fk−1(sk)|xk=0 = qn−m,n−m+1xn−mxn−m+1 + · · ·+
qn−m,nxn−mxn + · · ·+ qn−1,nxn−1xn + ĉn−m

′
xn−m + cn−m+1xn−m+1

+ . . . + cnxn + ĉonst
′
.

(9)



Mathematics 2020, 8, 138 7 of 16

Clearly, these fk(sk) are only different in the constants and the coefficients of xn−m.
(2) state1:

It is possible to obtain fk(sk), which has the following form:

fk(sk) = fk−1(sk−1)|xk=1 = qn−m,n−m+1xn−mxn−m+1 + · · ·+
qn−m,nxn−mxn + · · ·+ qn−1,nxn−1xn + ĉn−m

′′
xn−m + cn−m+1xn−m+1

+ . . . + cnxn + ĉonst
′
+ ̂cn−m−1.

(10)

For both case (1) and (2), they are only different in the constants and the coefficients of xk+1.
Step 4: k = m + 2, ..., n

Based on Algorithm 2 Case 2, we calculate the function fk(sk), and the core is the implementation
of state0 and state1. When executing state0 and state1, the difference between the two fk(sk) is the
constant and the coefficients of xk. Therefore, when executing state0, we only need to compare the
constant terms. When executing state1, we only need to compare the sum of the constants and the
coefficients of xk. In this way, we can avoid solving the excess fk(sk).

The form of the function fk(sk) and the maximum number of fk(sk) in each stage k are similar to
the one in stage k = n−m, which also ensures the repeatability of the algorithm. The algorithm is
supplemented by concrete examples and numerical simulations.

3.3. Calculation Example of 01CQP

For example, the parameters Q, c, a, and b are:

Q =



0 23 −37 −56 0 0 0 0
23 0 41 16 −34 0 0 0
−37 41 0 −62 −27 76 0 0
−56 16 −62 0 −81 14 −58 0

0 −34 −27 81 0 90 25 −42
0 0 76 14 90 0 −12 31
0 0 0 −58 25 −12 0 −94
0 0 0 0 −42 31 −94 0


c =

(
24, −54, −17, 36, −72, 63, 46, −18

)T

a =
(

1, 2, 3, 2, 4, 2, 3, 2
)T

b = 6.

In this example, we will omit some of the states.
(1) Set k = 1, s1 = a1x1,a1 = 1

We can set s1 = 0, 1, . . . , 6. According to Algorithm 2 Case 1, we can obtain Table 2.
When s1 = 0, we can calculate x1

∗ and f (s1) through Algorithm 2 Case (1a) for s1 < a1.
When s1 = 1, . . . , 6, we can calculate x1

∗ and f (s1) through Algorithm 2 Case (1b) for s1 ≥ a1.
We omit state3, . . . , state6, which is the same as state1, state2.

(2) Set k = 2, 3, s2 = a1x1 + a2x2 = s1 + a2x2, s3 = s2 + a3x3

We can set s3 = 0, 1, . . . , 6. According to Algorithm 2 Case 2, we obtain the Table 3. The case of
s2 = 0, 1, . . . , 6 is omitted.

(3) Set k = 4, 5, 6, 7
According to Algorithm 2 Case 2 and Algorithm 3, we can gain fk(sk) with k = 3, ..., 7. Tables 4
and 5 show part of the calculation process. From the table, we can see that only the coefficient of
sk+1 and constant terms are different in the adjacent items.
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(4) Set k = 8
Finally, we have Table 6, which only has the constant terms. Through it, we can see that
x8
∗= 0, f (x∗) = −160, and by the backtracking method, we find the optimum solution x∗ =

(0, 1, 0, 0, 1, 0, 0, 0).

Table 2. Functions f1(s1).

s1 x1 f1(s1)(a1 = 1)

0 0
41x2x3 + 16x2x4 − 34x2x5 − 62x3x4 − 27x3x5 + 76x3x6 − 81x4x5
+14x4x6 − 58x4x7 + 90x5x6 + 25x5x7 − 42x5x8 − 12x6x7 + 31x6x8
−94x7x8 − 54x2 − 17x3 + 36x4 − 72x5 + 63x6 + 46x7 − 18x8

1 1
41x2x3 + 16x2x4 − 34x2x5 − 62x3x4 − 27x3x5 + 76x3x6 − 81x4x5
+14x4x6 − 58x4x7 + 90x5x6 + 25x5x7 − 42x5x8 − 12x6x7 + 31x6x8
−94x7x8 − 31x2 − 54x3 − 20x4 − 72x5 + 63x6 + 46x7 − 18x8 + 24

2 1
41x2x3 + 16x2x4 − 34x2x5 − 62x3x4 − 27x3x5 + 76x3x6 − 81x4x5
+14x4x6 − 58x4x7 + 90x5x6 + 25x5x7 − 42x5x8 − 12x6x7 + 31x6x8
−94x7x8 − 31x2 − 54x3 − 20x4 − 72x5 + 63x6 + 46x7 − 18x8 + 24

Table 3. Functions f3(s3).

s3 x3 f3(s3)(a3 = 3)

0 0
f3(s3) = f2(0)| x3=0 = −81x4x5 + 14x4x6 − 58x4x7 + 90x5x6+

25x5x7 − 42x5x8 − 12x6x7 + 31x6x8 − 94x7x8 + 36x4 − 72x5+
63x6 + 46x7 − 18x8

1 0
f3(s3) = f2(1)| x3=0 = −81x4x5 + 14x4x6 − 58x4x7 + 90x5x6+

25x5x7 − 42x5x8 − 12x6x7 + 31x6x8 − 94x7x8 − 20x4 − 72x5+
63x6 + 46x7 − 18x8 + 24

3 0
f3(s3) = f2(3)| x3=0 = −81x4x5 + 14x4x6 − 58x4x7 + 90x5x6+

25x5x7 − 42x5x8 − 12x6x7 + 31x6x8 − 94x7x8 − 20x4 − 72x5+
63x6 + 46x7 − 18x8 + 24

3 0
f3(s3) = f2(3)| x3=0 = −81x4x5 + 14x4x6 − 58x4x7 + 90x5x6+

25x5x7 − 42x5x8 − 12x6x7 + 31x6x8 − 94x7x8 − 4x4 − 106x5+
63x6 + 46x7 − 18x8 − 7

3 1
f3(s3) = f2(3)| x3=1 = −81x4x5 + 14x4x6 − 58x4x7 + 90x5x6+

25x5x7 − 42x5x8 − 12x6x7 + 31x6x8 − 94x7x8 − 26x4 − 99x5+
139x6 + 46x7 − 18x8 − 17

5 0
f3(s3) = f2(5)| x3=0 = −81x4x5 + 14x4x6 − 58x4x7 + 90x5x6+

25x5x7 − 42x5x8 − 12x6x7 + 31x6x8 − 94x7x8 − 20x4 − 72x5+
63x6 + 46x7 − 18x8 + 24

5 0
f3(s3) = f2(5)| x3=0 = −81x4x5 + 14x4x6 − 58x4x7 + 90x5x6+

25x5x7 − 42x5x8 − 12x6x7 + 31x6x8 − 94x7x8 − 4x4 − 106x5
+63x6 + 46x7 − 18x8 − 7

5 1
f3(s3) = f2(2)| x3=1 = −81x4x5 + 14x4x6 − 58x4x7 + 90x5x6+

25x5x7 − 42x5x8 − 12x6x7 + 31x6x8 − 94x7x8 − 84x4 − 99x5+
139x6 + 46x7 − 18x8 − 30

5 1
f3(s3) = f2(2)| x3=1 = −81x4x5 + 14x4x6 − 58x4x7 + 90x5x6+

25x5x7 − 42x5x8 − 12x6x7 + 31x6x8 − 94x7x8 − 10x4 − 133x5+
139x6 + 46x7 − 18x8 − 30
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Table 4. Functions f4(s4).

s4 x4 f4(s4)(a4 = 2)

1 0
f4(s4) = f3(1)| x4=0 = 90x5x6 + 25x5x7 − 42x5x8 − 12x6x7 + 31x6x8
−94x7x8 − 72x5 + 63x6 + 46x7 − 18x8 + 24

5 0
f4(s4) = f3(5)| x4=0 = 90x5x6 + 25x5x7 − 42x5x8 − 12x6x7 + 31x6x8
−94x7x8 − 72x5 + 63x6 + 46x7 − 18x8 + 24

5 0
f4(s4) = f3(5)| x4=0 = 90x5x6 + 25x5x7 − 42x5x8 − 12x6x7 + 31x6x8
−94x7x8 − 106x5 + 63x6 + 46x7 − 18x8 − 7

5 0
f4(s4) = f3(5)| x4=0 = 90x5x6 + 25x5x7 − 42x5x8 − 12x6x7 + 31x6x8
−94x7x8 − 99x5 + 139x6 + 46x7 − 18x8 − 30

5 0
f4(s4) = f3(5)| x4=0 = 90x5x6 + 25x5x7 − 42x5x8 − 12x6x7 + 31x6x8
−94x7x8 − 133x5 + 139x6 + 46x7 − 18x8 − 30

5 1
f4(s4) = f3(3)| x4=1 = 90x5x6 + 25x5x7 − 42x5x8 − 12x6x7 + 31x6x8
−94x7x8 − 153x5 + 77x6 − 12x7 − 18x8 + 4

5 1
f4(s4) = f3(3)| x4=1 = 90x5x6 + 25x5x7 − 42x5x8 − 12x6x7 + 31x6x8
−94x7x8 − 187x5 + 77x6 − 12x7 − 18x8 − 11

5 1
f4(s4) = f3(3)| x4=1 = 90x5x6 + 25x5x7 − 42x5x8 − 12x6x7 + 31x6x8
−94x7x8 − 180x5 + 153x6 − 12x7 − 18x8 − 43

Table 5. Functions f5(s5).

s5 x5 f5(s5)(a5 = 4)

5 0
f5(s5) = f4(5)| x5=0 = −12x6x7 + 31x6x8
−94x7x8 − 72x6 + 46x7 − 18x8 − 7

5 0
f5(s5) = f4(5)| x5=0 = −12x6x7 + 31x6x8
−94x7x8 − 72x6 + 46x7 − 18x8 − 30

5 0
f5(s5) = f4(5)| x5=0 = −12x6x7 + 31x6x8
−94x7x8 + 77x6 − 12x7 − 18x8 − 11

5 0
f5(s5) = f4(5)| x5=0 = −12x6x7 + 31x6x8
−94x7x8 + 153x6 − 12x7 − 18x8 − 43

5 1
f5(s5) = f4(1)| x5=1 = −12x6x7 + 31x6x8
−94x7x8 + 153x6 + 71x7 − 60x8 − 48

Table 6. Functions f8(s8).

s8 x8 f8(s8)

0 0 0
1 0 24
2 0 −54
2 1 −18
3 0 −17
3 1 6
4 0 −72
4 1 −72
5 0 −48
5 1 −66
6 0 −160
6 1 −132

4. Application of Zero-One Quadratic Programming in Phasor Measurement Units Placement

How to find the installation location and the number of installations is the focus of the
phasor measurement units placement problem. The matrix in the PMU placement problem differs
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from the previous k-diagonal matrix in the elements of the main diagonal. However, since x is
either 0 or 1, we can convert it into a k-diagonal matrix. Then, we can take advantage of the
algorithms designed above to work out PMU placement without considering too many constraints
and realistic requirements.

4.1. Modelling

For the power system composed of n nodes, the placement of PMU is represented by
n-dimensional vector X = (x1, x2, . . . , xn). Here, i = 1, 2, . . . , n,

xi =

{
0 a PMU is installed at bus i

1 otherwise.

The matrix H represents the network graph structure,

hij =


1 i = j

1 i is connected to j

0 otherwise,

and the objective function is

V(x) = λ(N − HX)T R(N − HX) + XTQX (11)

where λ is the weight. N ∈ Rn represents the upper bound of the maximum redundancy of each bus.
R ∈ Rn×n and Q ∈ Rn×n are diagonal arrays, representing the importance of each bus and the cost of
placing the PMU on the bus respectively.

We expand Equation (11),

V(x) = λ(N − HX)T R(N − HX) + XTQX
= λ[NT RN − NT RHX− XT HT RN + XT HT RHX] + XTQX
= λNT RN − 2λNT RHX + λXT HT RHX + XTQX
= 1

2 XT(2λHT RH + 2Q)X + (−2λNT RH)X + λNT RN.

(12)

Then, Equation (12) can be expressed as integer quadratic programming as,

min 1
2 xTGx + f Tx

s.t. M(x) = 0
xi ∈ {0, 1}n

(13)

where G = 2λHT RH + 2Q, f = (−2λNT RH)
T . M(x) is the column vector consisting of mi(x) =

(1− xi)∏j∈Ai
(1− xj)(i ∈ Ω). Ai and Ω represent a set of nodes adjacent to the bus i and the bus set

respectively. The above constraints require at least one PMU unit to be placed between the bus and its
adjacent nodes to ensure that each adjacent node of the bus can be observed. The above problem can
be expressed as unconstrained problems by the weighted least square method:

min 1
2 xTGx + f Tx + M(x)TVM(x)
= 1

2 xTGx + f Tx + ∑n
i=1(vi(1− xi)

2(∏j∈Ai
(1− xj))

2)

s.t. xi ∈ {0, 1}n
(14)

where V = diag(vi).
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4.2. Example and Experimental Result

Suppose the coefficient matrix H of a power system is

H =



1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 1 0 0
0 1 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1


.

Set Q as the unit matrix, λ = 0.5,

R =



12 0 0 0 0 0
0 128 0 0 0 0
0 0 50 0 0 0
0 0 0 140 0 0
0 0 0 0 72 0
0 0 0 0 0 10


, N =

(
2, 2, 2, 3, 2, 1

)T
.

Then, we can have

G =



192 140 62 178 0 0
140 282 152 268 140 0

62 152 204 190 140 0
178 268 190 392 212 72

0 140 140 212 224 82
0 0 0 72 82 84


,

f =
(
−380, −700, −544, −920, −574, −154

)T
.

The main diagonal of the matrix for this problem is 1, while the definition of k-diagonal matrix Q
requires the main diagonal elements to be zero. Since x ∈ {0, 1}n, the diagonal of G can be converted
into a linear term and can be considered as a seven-diagonal matrix. This indicates that the diagonal of
G becomes zero and f is updated as seen in Equation (15). Using the algorithm in Section 2, we can
find the optimal solution (0, 1, 1, 1, 0, 1) without considering the constraints. This is to install four
PMUs in bus 2, 3, 4, and 6. Through observation, it can be seen that the configuration results meet the
system observability and the constraint is reached.

f =
(
−284, −559, −442, −724, −462, −112

)T
. (15)

The above problem considers the placement of PMU under the condition that the system is
completely observable. When considering the PMU placement problem with the N − 1 principle,
constraint conditions 2xi + 2 ∑j∈P2

i
xj + ∑j∈P1

i
xj ≥ 2(i ∈ N) are added based on the definition of

a single node observable. N is a set that includes the nodes required to have objectivity when a
fault occurs in the system. P2

i and P1
i represents a node set connected to node i with two and one

line respectively.
If the bus between nodes 5 and 6 breaks down, we set H(5, 6) and H(6, 5) as zero. Then,

the constraint is added. (
0 0 0 1 1 0
0 0 0 0 0 1

)
x ≥

(
1
1

)
.

We can get the optimal solution is the same as that in the former example. As the connection
between nodes 5 and 6 fails, the system after placing PMU will not lose its observability. We only
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consider the algorithm to solve the constrained k-diagonal zero-one matrix quadratic programming
and consider that it can be applied to some form of PMU placement problems. Some of the conditions
to the placement of PMU have not been taken into account here, which has yet to be studied by
specialized engineers.

5. 01CQP Algorithm Simulation and Discussion

5.1. Algorithm Experimental Simulation

Now, the experimental results are provided for this algorithm to illustrate its performance.
We implement the algorithm with C++ and run it on an Intel(R) Core(TM) i7-8550U CPU. For the
problems we tested, the dimension of matrix Q ranges from 10 to 100 and k takes 5, 7, . . . , 25.
All simulation data (Q, c, a, b) are generated randomly. Q, c is set up as in Section 2 with numbers
ranging from −100 to 100, and a, b range between 0 and 20. Then, we obtain Table 7, which shows the
detailed computation time for different dimensional problems with different diagonal numbers.

Table 7. Corresponding computation time in different diagonal numbers with dimension n = 10 to 100
of 01CQP.

n 10 20 30 40 50 60 70 80 90 100

k = 5 0.0356 0.0678 0.1404 0.2039 0.3289 0.4102 0.4589 0.6942 0.7391 1.0060

k = 7 0.0336 0.0703 0.1419 0.2030 0.3097 0.4024 0.4839 0.6908 0.7475 1.0519

k = 9 0.0320 0.0638 0.1424 0.1851 0.3129 0.3640 0.4896 0.6831 0.7835 0.9771

k = 11 0.0335 0.0619 0.1470 0.2025 0.2749 0.3357 0.4155 0.5482 0.6621 0.8812

k = 13 0.0246 0.0482 0.1093 0.1577 0.2591 0.3500 0.4176 0.6029 0.7109 0.8872

k = 15 0.0185 0.0544 0.1138 0.1734 0.2561 0.3624 0.4469 0.5782 0.7356 0.8873

k = 17 0.0234 0.0549 0.1185 0.1749 0.2838 0.3766 0.4732 0.7220 0.8908 1.1064

k = 19 0.0397 0.0744 0.1692 0.2210 0.3944 0.4888 0.6059 0.9147 0.9886 1.2304

k = 21 −− 0.0872 0.1797 0.2836 0.4656 0.5714 0.6995 1.1097 1.2544 1.7283

k = 23 −− 0.1283 0.2640 0.4409 0.5499 0.9615 1.0942 1.3158 1.8381 1.8951

k = 25 −− 0.1961 0.3673 0.6169 0.8295 1.3556 1.3235 2.0418 2.3717 4.2689

5.2. Experimental Results Discussion

Here, based on the experimental results, we investigate the influence of n and k on the algorithm
and discuss the importance and implications of our study results. Firstly, we fix the values of k
but increase n. Figure 2 shows the experimental situations when the matrix dimension n changes
from 10 to 100 with k is fixed at 9, 13, 19 and 23 respectively. As can be seen, the calculation time
increases slightly with the increase of dimension. Secondly, we fix the values of n but increase k.
Figure 3 shows the experimental situations when k changes from 5 to 25 with n is fixed at 20, 40, 60
and 80 respectively. It can be observed clearly that time changes significantly with the increase of
diagonal number. Finally, we increase n and k simultaneously. Figure 4 illustrates this situation. It is
obvious that k has an obvious influence on the calculation speed. All these observations coincide
with the time complexity we derived in Section 3. It means that if the diagonal number is within
an appropriate range, our algorithm can perform effectively and efficiently even for very large scale
problems. And these kind of problems cover a large portion of the whole problem set. Therefore,
the algorithm we proposed will have great potential in many real-world applications.
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Figure 2. Calculation time with different dimensions when the diagonal number k = 9, 13, 19, 23.
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Figure 4. The variation of calculation time with different dimensions n and diagonal number k.

6. Conclusions

In this paper, a novel exact algorithm to the general linearly constrained zero-one quadratic
programming problem with k-diagonal matrix is proposed. The algorithm is designed by analyzing
the property of matrix Q and then combining the famous basic algorithm and dynamic programming
method. The complexity of the algorithm is analyzed and shows that it is polynomially solvable when
m is fixed. The experimental results also illustrate the feasibility and efficiency of the algorithm.
Designing efficient algorithm to this special class of problem 01CQP not only provides useful
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information for designing efficient algorithms for other special classes but also can provide hints
and facilitate the derivation of efficient relaxations for the general problems. And finally, the phasor
measurement units placement problem is used to demonstrate that the algorithm has wide potential
applications in decision-making real-life problems.
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Abbreviations

The following abbreviations are used in this manuscript:
01QP Zero-One Quadratic Programming
01UQP Unconstrained Zero-One Quadratic Programming
01CQP Constrained Zero-One Quadratic Programming
PMU Phasor Measurement Units
NP-hard Non-deterministic polynomial-hard

Variables

The following variables are used in this manuscript:
Q Q = (qij)n×n and only qij=qji(i = 1, 2, . . . , n− 1, j = i + 1, i + 2, . . . , i + m) are not zero
c c = (cij)n×1

a a = (aij)n×1

b b ∈ Z+

n Dimensions of matrix Q
m m ∈ [0, n− 1] and m ∈ Z
k k = 2m + 1 (m = 0, 1, 2, . . . , n− 1)
sk State variable sk ∈ Z, stage variable k(0 < k ≤ n)
f (x) f (x) = 1

2 xTQx + cT x
H H = (hij)n×n is a network graph structure
N N ∈ Rn represents the upper bound of the maximum redundancy of each bus
R R ∈ Rn×n is the importance of each bus
Q Q ∈ Rn×n in the application is the cost of placing the PMU on the bus
M(x) Column vector consisted of mi(x) = (1− xi)∏j∈Ai

(1− xj)(i ∈ Ω)

Ω Bus set
λ Weight
Ai Nodes adjacent to the bus i
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