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Abstract: This paper investigates the generalized multi-period mean-variance investment-reinsurance
optimization model in a discrete-time framework for a general insurance company that contains a
reinsurer and an insurer. The intertemporal restrictions and the common interests of the reinsurer
and the insurer are considered. The common goal of the reinsurer and the insurer is to maximize the
expectation of the weighted sum of their wealth processes and minimize the corresponding variance.
Based on the game method, we obtain the Nash equilibrium investment-reinsurance strategies for the
above-proposed model and find out the equilibrium strategies when unilateral interest is considered.
In addition, the Nash equilibrium investment-reinsurance strategies are deduced under two special
premium calculated principles (i.e., the expected value premium principle and the variance value
premium principle). We theoretically study the effect of the intertemporal restrictions on Nash
equilibrium investment-reinsurance strategies and find the effect depends on the value of some
parameters, which differs from the previous researches that generally believed that intertemporal
restrictions would make investors avoid risks. Finally, we perform corresponding numerical analyses
to verify our theoretical results.

Keywords: investment and reinsurance; insurer and reinsurer; generalized mean-variance criterion;
Nash equilibrium strategies; intertemporal restrictions

1. Introduction

In recent decades, investment-reinsurance optimization problem, as a hot research topic in the
field of actuarial insurance, has been widely studied by many experts and scholars (e.g., Browne [1],
Schmidli et al. [2], Zeng and Li [3], Zhu et al. [4], Hu and Wang [5], Deng et al. [6], and so on).
With the rapid development of society, the relationship between companies is getting closer. At present,
the research on the relationship between companies in the insurance market is mainly divided into
two aspects. On the one hand, the optimal investment-reinsurance between two insurance companies
is studied in the framework of zero-sum game or non-zero-sum game (e.g., Zeng [7], Li et al. [8],
Bensoussan et al. [9], Pun and Wong [10], Pun et al. [11], Pun [12], Deng et al. [13], Wang et al. [14],
and so on). On the other hand, the interests of both insurance companies and reinsurance companies
have gradually been studied since any reinsurance contract is obviously a mutual agreement
between the insurer and reinsurer, strategies that consider only the unilateral interest of the insurer
are likely to be unacceptable to the reinsurer. When the reinsurance company and insurance
company are independent individuals, some literature regarded them as the leader and follower
of the Stackelberg game, and studied the optimal reinsurance problem (e.g., Chen and Shen [15] and
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Chen and Shen [16], etc.). When the reinsurer and insurer belong to two different divisions of the
same large insurance company, some scholars studied the optimal investment-reinsurance problem by
targeting the common interests of the two divisions (e.g., Wang et al. [17], Chen et al. [18], Li et al. [19],
Zhou et al. [20], etc.).

Nowadays, many large financial companies, in addition to insurance departments, also have
reinsurance departments, such as the American International Group, Starr Insurance and Reinsurance
Limited, China Reinsurance (Group) Company, Zurich Financial Services and so on. Therefore, it is
of great practical significance to study the investment-reinsurance optimization problem for a large
insurance company with both insurer and reinsurer sectors. Li et al. [19] studied the management of
an insurance company that includes both insurer and reinsurer sectors, with the aim of maximizing
the expected utility of the weighted sum of the terminal wealth of the two sectors. Zhou et al. [20]
and Huang et al. [21] researched robust optimal reinsurance and investment problems under different
objective functions for an ambiguity-averse manager (AAM) who holds shares of an insurance company
and a reinsurance company. Zhao et al. [22] studied time-consistent investment-reinsurance strategies
towards the joint interests of the insurer and the reinsurer.

However, most of the research on investment-reinsurance optimization is studied under the
continuous-time framework, the research in discrete-time is rare. Actually, the discrete-time setting
is more reasonable for decision makers because they will not trade continuously, otherwise it will
cause plenty of transaction costs. Brandt [23] also pointed out that the continuous-time strategies
are often inadmissible in discrete time because they may generate a negative wealth. Especially for
special institutional investors, such as insurers and reinsurers, their wealth values are more likely to
be negative, because in addition to investment risks, they also need to face random claim risk in the
future (see Zhou et al. [24]).

Therefore, compared with the optimal investment-reinsurance research in continuous time,
it is more appropriate and practical to study the optimal investment-reinsurance strategy under
the framework of discrete-time. Xiao et al. [25] first studied a generalized multi-period
investment-reinsurance optimization problem in discrete time, in which the insurer and reinsurer
were studied as two independent individuals. In view of the fact that many large financial institutions
include both insurance and reinsurance sectors, we investigate the optimal investment-reinsurance
optimization problem under the discrete-time framework when the reinsurer and insurer have common
interest objectives.

As we all know, mean-variance and expected utility preference are the most commonly used
optimization objectives in the research of investment-reinsurance optimization. The classical
mean-variance model was proposed by Markowitz [26], which measures the return and risk by
expectation and variance respectively. However, in the traditional expected utility theory, investment
risk cannot be directly quantified separately from returns. The strategies obtained under the
mean-variance model may be more popular with investors who prefer to quantify the investment
risk and return. But the classical mean-variance model only considers the terminal performance
and ignores the intermediate performance, which leads to a high probability of bankruptcy in the
early stage of investment (refer to Zhu et al. [27], Zhou et al. [28]). For more literature of portfolio
optimization considering intertemporal restrictions can be referred to Costa and Nabholz [29], Costa
and Araujo [30], Costa and de Oliveira [31], Cui et al. [32], Zhou et al. [28] and Xiao et al. [25], and so
on. Most of the above literature that considers the intertemporal restrictions generally directly believes
that the intertemporal restrictions will lead investors to avoid risks and adopt more conservative
investment strategies, but does not give the corresponding results in theory. In this paper, we
will theoretically study the effect of intertemporal restrictions on investment-reinsurance strategies.
Consider whether the intertemporal restrictions will make the decisions more aggressive or more
conservative? Under the discrete-time framework, we will construct the generalized multi-period
mean-variance investment-reinsurance optimization model with intertemporal restrictions and the
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common interests of the reinsurer and insurer, which can be regarded as two different departments of
a large financial company.

Note that the dynamic programming approach cannot be directly used to solve the multi-period
mean-variance optimization problems because the dynamic variance measure violates the time
consistency. Usually, there exist two approaches to this problem. The first approach (called the
embedding method) is proposed by Li and Ng [33], and the corresponding optimal strategy is called the
pre-commitment strategy (or time-inconsistent strategy) due to the future changes are not considered.
To overcome the time-inconsistency, Basak and Chabakauri [34] and Björk and Murgoci [35] proposed
the second method, called as the game method, by which the time-consistent strategy can be obtained
for decision-makers. More precisely, the game method is to treat the mean-variance optimization
problem as a non-cooperative game, in which there is a separate player at every discrete time point.
The Nash equilibrium strategy obtained by this method satisfies the time consistency. Since then, based
on the game method, various multi-period mean-variance optimization problems have been studied,
such as Zhou et al. [28], Björk and Murgoci [36] and Zhou et al. [37] and so on. In the paper, we will
apply the game method to deduce the Nash equilibrium investment-reinsurance strategies under the
generalized multi-period mean-variance investment-reinsurance optimization model.

Inspired by the above literature, in a discrete-time setting, we build a generalized multi-period
mean-variance investment-reinsurance optimization model with consideration of intertemporal
restrictions and the common interests of the reinsurer and insurer. Both the reinsurer and insurer
can invest their idle assets in a risky asset and a riskless asset. The insurer can transfer claim risk by
purchasing a proportional reinsurance contract from the reinsurer. The common goal of the insurer
and the reinsurer is to maximize the expectation of the weighted sum of their wealth processes
and minimize the corresponding variance by finding the Nash equilibrium investment-reinsurance
strategies. We use the game method provided by Björk and Murgoci [35] to obtain the Nash equilibrium
investment-reinsurance strategies for the above optimization model, and deduce Nash equilibrium
strategies under the expected premium principle and variance premium principle, respectively.
In addition, we find out the Nash equilibrium investment-reinsurance strategies when unilateral
interest is considered. Furthermore, we study the effect of the intertemporal restrictions on the Nash
equilibrium strategies and perform corresponding numerical analyses to verify our theoretical results
and give some economic explanations.

Our paper differs from previous research in at least three respects. (i) We first build the
generalized multi-period mean-variance investment-reinsurance optimization model in discrete-time
framework for a large insurance company with both reinsurer and insurer sectors. We take the
weighted sum of the wealth processes of the insurer and reinsurer as their common optimization
objective. (ii) Under the framework of generalized multi-period mean-variance, we first deduce
Nash equilibrium investment-reinsurance strategies (which satisfy time consistency) rather than
the traditional pre-commitment strategy and obtain the equilibrium value function. (iii) We first
theoretically analyze the effect of intertemporal restrictions on Nash equilibrium strategies, and find
that it depends on the value of model parameters, which is different from the existing literature that
directly believes that the intertemporal restrictions can make investors avoid risks (e.g., [25,28], etc.).
In particular, we find that the effect of intertemporal restrictions on Nash equilibrium investment
strategies depends on the reduction speed of risk aversion parameters and the value of risk-free
benefits. When computing the reinsurance premium under the expected value premium principle, the
effect of intertemporal restrictions on Nash equilibrium reinsurance strategy depends not only on the
reduction speed of risk aversion parameters and the value of risk-free benefits but also on the weight
parameter. When computing the reinsurance premium under the variance value premium principle,
the effect of intertemporal restrictions on Nash equilibrium reinsurance strategy is related to a number
of other factors, in addition to those mentioned above.

The rest of the paper is constructed as follows. Section 2 formulates a generalized multi-period
mean-variance investment-reinsurance optimization model with consideration of intertemporal
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restrictions and the common objective. In Section 3, we obtain the Nash equilibrium strategies and
equilibrium value function by using the game method. Moreover, we deduce the Nash equilibrium
strategies in some special settings and discuss some properties of equilibrium strategies. Section 4
conducts some numerical examples to illustrate the effects of intertemporal restrictions on Nash
equilibrium strategies. Finally, Section 5 concludes the paper.

2. Model Setup

In this section, we consider a general insurance company with both insurer and reinsurer sectors.
Both the reinsurer and the insurer can invest their idle assets in the financial market. Meanwhile,
the insurer can purchase the reinsurance contract from the reinsurer to diversify its claim risk.

2.1. Financial Market and Wealth Processes Dynamics

Suppose that both the insurer and the reinsurer will join into the financial market at time 0 with
initial capital w1

0 and w2
0, respectively. They can engage in investment activities and reinsurance

business during the time horizon [0, T], where T > 0 is a constant. Both the insurer and the reinsurer
can invest their idle assets in a risk-free asset and a risky asset, where the risk-free asset has determinate
return st > 1. Note that we assume that the insurer and reinsurer focus on two different risk assets in
their investment, while the two risk assets with random return e1

t and e2
t , respectively. The amount

invested in the above two risk assets at the beginning of the t-th time period is denoted by u1
t and

u2
t , respectively. The remaining wealth (i.e., w1

t − u1
t and w2

t − u2
t ) is invested in the risk-free asset.

In addition to investment activities, the insurer can also buy a proportional reinsurance contract from
the reinsurer to diversify its claim risk. The proportion of claims borne by the insurer at time t is
recorded as qt, and qt ∈ [0, 1], t = 0, 1, · · · , T − 1. The reinsurer will cover the remaining (i.e., 1− qt)
at time t. For example, when facing policy-holder insurance claims zt, the insurer is only liable for
claim amount qtzt, and the rest of claim amount (1− qt)zt is undertaken by the reinsurer. In the
meantime, the reinsurance contract stipulates that the insurer has to pay the given premium δt(qt)

to the reinsurer from his/her own premium income ct, where ct is assumed to be a certain value.
Then, for t = 0, 1, · · · , T − 1, the dynamics of wealth for the insurer and the reinsurer are respectively
expressed as

w1
t+1 = stw1

t + P1
t u1

t + ct − δt(qt)− qtzt, (1)

and
w2

t+1 = stw2
t + P2

t u2
t + δt(qt)− (1− qt)zt, (2)

where P1
t = e1

t − st, P2
t = e2

t − st.
Analogue to the existing research, we give the following assumptions:

• Assumption 1. z0, z1, · · · , zT−1 are statistically independent.
• Assumption 2. For t = 0, 1, · · · , T − 1, et = [e1

t , e2
t ]
′, µi

t = E(Pi
t ), σi

t = Var(Pi
t ), θt = Cov(P1

t , P2
t ),

µ̃t = E(zt), ν̃t = E[(zt)2] and σ̃t = Var(zt), where i = 1, 2.
• Assumption 3. ∑l

t=k(·) = 0 and ∏l
t=k(·) = 1 for k > l.

2.2. Generalized Mean-Variance Model with Common Objective and Intertemporal Restrictions

Considering that both the insurer and the reinsurer belong to the same large insurance company,
they have a common interest goal, which is to achieve the maximum expectation of the weighted
sum of their wealth processes and minimum corresponding variance. Therefore, the interests of
both the insurer and the reinsurer should be considered when formulating investment-reinsurance
strategies. Supposing that the insurer and the reinsurer have the common optimization objective.
Based on the dynamic wealth processes (1) and (2), under the generalized mean-variance formulation,
the classical multi-period investment-reinsurance optimization problem with intertemporal restrictions
and common interests can be posed as follows
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maxπ

T
∑

t=1
ξt{E[αw1

t + (1− α)w2
t ]− ηtVar[αw1

t + (1− α)w2
t ]}

s.t.

{
w1

t+1 = stw1
t + ct + P1

t u1
t − δt(qt)− qtzt, t = 0, 1, · · · , T − 1;

w2
t+1 = stw2

t + P2
t u2

t + δt(qt)− (1− qt)zt, t = 0, 1, · · · , T − 1.

(3)

Note that π = (π0, π1, · · · , πT−1) and πk = (u1
k , u2

k , qk), k = 0, 1, · · · , T − 1. In addition, the
α is the weighting efficient which satisfies α ∈ [0, 1]. The optimal solution of the multi-period
mean-variance model (henceforth, the pre-commitment strategy) is time-inconsistent. In other words,
the pre-commitment strategy is not updated with the information accumulated over time. However,
the objective in a pragmatic decision changes over time. Refer to Björk and Murgoci [35] and Basak
and Chabakauri [34], the time-varying mean-variance optimization objective function is given by

Jk(w1
k , w2

k , π) =
T

∑
t=k+1

ξt{Ek[αw1
t + (1− α)w2

t ]− ηtVark[αw1
t + (1− α)w2

t ]}. (4)

Definition 1. Given a fixed control law π̂ = (π̂0, π̂1, · · · , π̂T−1). For k = 0, 1, · · · , T − 1, denote

π(k) = (πk, π̂k+1, · · · , π̂T−1), π̂(k) = (π̂k, π̂k+1, · · · , π̂T−1),

where πk = (u1
k , u2

k , qk) is arbitrarily control variable. If for all k = 0, 1, · · · , T − 1, the following
conditions hold

max
πk

Jk(w1
k , w2

k , π(k)) = Jk(w1
k , w2

k , π̂(k)).

Then, π is called the Nash equilibrium strategy for model (3) and the equilibrium value function is given by

Vk(w1
k , w2

k) = Jk(w1
k , w2

k , π̂(k)).

According to Definition 1, we know that the Nash equilibrium strategy is time-consistent. Thus,
the Nash equilibrium strategy and the equilibrium value function can be called as the time-consistent
reinsurance-investment strategy and the optimal value function.

3. Nash Equilibrium Strategies and Equilibrium Value Function

Based on the definition of the Nash equilibrium strategies for k = 0, 1, · · · , T− 1, we can find the
equilibrium value function Vk(w1

k , w2
k) satisfies the following proposition.

Proposition 1. The equilibrium value function Vk(w1
k , w2

k) satisfies the following recursive formula.

Vk(w1
k , w2

k)

= maxπk

 Ek[Vk+1(w1
k+1, w2

k+1)]−
T
∑

m=k+2
ξmηmVark[ fk+1,m(w1

k+1, w2
k+1)]

+ξk+1Ek[αw1
k+1 + (1− α)w2

k+1]− ξk+1ηk+1Vark[αw1
k+1 + (1− α)w2

k+1]

 ,

k = 0, 1, · · · , T − 2,

(5)

and

VT−1(w1
T−1, w2

T−1) = max
πT−1

{
ξTET−1[αw1

T + (1− α)w2
T ]− ξTηTVarT−1[αw1

T + (1− α)w2
T ]
}

, (6)
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where

fk,τ(w1
k , w2

k) =

{
fk+1,τ(w1

k+1, w2
k+1), τ > k, τ, k = 0, 1, · · · , T − 1;

αw1
k + (1− α)w2

k , τ = k, k = 0, 1, · · · , T − 1.
(7)

Proof. Please refer to Appendix A for the specific proof process.

Based on Definition 1 and Proposition 1, we have the following theorem.

Theorem 1. If α ∈ (0, 1), Nash equilibrium investment-reinsurance strategies π̂t = (û1
t , û2

t , q̂t),
t = 0, 1, · · · , T − 1, for model (3) are shown as follows.

û1
t =

(µ1
t σ2

t − µ2
t θt)

T
∑

m=t+1
ξm

(
m−1
∏

i=t+1
si

)
2α(σ1

t σ2
t − (θt)2)

T
∑

m=t+1
ξmηm

(
m−1
∏

i=t+1
s2

i

) , (8)

û2
t =

(µ2
t σ1

t − µ1
t θt)

T
∑

m=t+1
ξm

(
m−1
∏

i=t+1
si

)
2(1− α)(σ1

t σ2
t − (θt)2)

T
∑

m=t+1
ξmηm

(
m−1
∏

i=t+1
s2

i

) , (9)

q̂t = arg max
0≤qt≤1


T
∑

m=t+1
ξm

(
m−1
∏

i=t+1
si

)
{(1− 2α)δt(qt)− µ̃t[αqt + (1− α)(1− qt)]}

−
T
∑

m=t+1
ξmηm

(
m−1
∏

i=t+1
s2

i

)
[αqt + (1− α)(1− qt)]2σ̃t

 , (10)

and the equilibrium value function Vt(w1
t , w2

t ) and the function ft,τ(w1
t , w2

t ) are given by

Vt(w1
t , w2

t ) =
T

∑
m=t+1

ξm

(
m−1

∏
i=t

si

)
[αw1

t + (1− α)w2
t ] + κt, (11)

ft,τ(w1
t , w2

t ) =
τ−1

∏
i=t

si[αw1
t + (1− α)w2

t ] + γt,τ , (12)

where κt and γt,τ satisfy the following equations.

κt =
T−1
∑

k=t

[ T
∑

m=k+1
ξm
( m−1

∏
i=k+1

si
)
{αck − µ̃k[αq̂k + (1− α)(1− q̂k)] + (1− 2α)δk(q̂k)}

]
+

T−1
∑

k=t

[(µ1
k)

2σ2
k−2µ1

k µ2
k θk+(µ2

k)
2σ1

k ]

4[σ1
k σ2

k−(θk)2]

T
∑

m=k+1
ξm
( m−1

∏
i=k+1

si

)
T
∑

m=k+1
ξmηm

( m−1
∏

i=k+1
s2

i

)
−

T−1
∑

k=t

[ T
∑

m=k+1
ξmηm

( m−1
∏

i=k+1
s2

i
)
[(1− α)(1− q̂k) + αq̂k]

2σ̃k

]
,

γt,τ =
τ−1
∑

k=t

[( τ−1
∏

i=k+1
si
)
{αck + (1− 2α)δk(q̂k)− µ̃k[αq̂k + (1− α)(1− q̂k)]}

]
+

τ−1
∑

k=t

[(µ1
k)

2σ2
k−2µ1

k µ2
k θk+(µ2

k)
2σ1

k ]

2[σ1
k σ2

k−(θk)2]

T
∑

m=k+1
ξm
( m−1

∏
i=k+1

si

)( τ−1
∏

i=k+1
si

)
T
∑

m=k+1
ξmηm

( m−1
∏

i=k+1
s2

i

) .

(13)

Proof. Please refer to Appendix B for the specific proof process.
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From Theorem 1, we can find that the equilibrium investment strategies of the reinsurer and the
insurer are both dependent on the weight coefficient α. In addition, we can find that |û1

t | is a decrease
function of α, while |û2

t | is an increase function of α. That is, with the increase of the weight coefficient α,
the insurer will shrink the investment position, and the reinsurer will expand the investment position
at each period time t. The larger weight coefficient α means that the common optimization objective
function is more sensitive to the insurer’s decision. In this case, the insurer and reinsurer will reach
a consensus, that is, shrinking the investment position of risk asset 1 and expanding the investment
position of risk asset 2 simultaneously.

From Theorem 1, we can find that the insurer and the reinsurer not only concern the terminal
performance but also concern the intermediate performance of their portfolio. However, when they
only concern the performance of terminal wealth, we only need to let ξt = 0 for t = 1, 2, · · · , T− 1 and
ξT = 1. In this situation, the Nash equilibrium investment strategies are given in the following remark.

Remark 1. If α ∈ (0, 1), ξt = 0 for t = 1, 2, · · · , T− 1, ξT = 1, the Nash equilibrium investment strategies
û1

t and û2
t for model (3) are given by

û1
t =

µ1
t σ2

t − µ2
t θt

2αηT [σ
1
t σ2

t − (θt)2]
T−1
∏

i=t+1
si

, (14)

û2
t =

µ2
t σ1

t − µ1
t θt

2(1− α)ηT [σ
1
t σ2

t − (θt)2]
m−1
∏

i=t+1
si

. (15)

At present, most of the literature considering intertemporal restrictions directly believe that
intertemporal restrictions will lead investors to avoid risks and adopt more conservative investment
strategies (for example, Zhou et al. [28], Xiao et al. [25], etc.), but they do not give corresponding
theoretical results. Next, we theoretically analyze the impact of intertemporal restrictions on the Nash
equilibrium investment strategies. Consider whether the intertemporal restrictions will make the
investment strategy more aggressive to obtain more wealth or make the investment strategy more
conservative to avoid investment risk?

Refer to Zhu et al. [27], the number of investment bankruptcies in the early stage is larger than
that in the later stage. Therefore, a larger penalty should be set for the earlier intertemporal restrictions
in the mathematical formulation. In other words, the investors have a higher risk aversion coefficient
in the initial stage of investment. Thus, the risk aversion coefficient is set to be in exponential form in
this paper. That is, ηt = ηTx(T−t), t = 0, 1, · · · , T− 1, where x > 1 and ηT is a positive constant given
arbitrarily. Then, we can draw the following conclusions.

Corollary 1. Suppose that α ∈ (0, 1), st = s > 1 and ηt = ηTx(T−t), where x > 1, x 6= s2, t =

0, 1, · · · , T − 1, ηT is a positive constant. We have the following conclusions.

• When x−s2

xT−t−s2(T−t) >
1−s

sT−t−1(1−sT−t)
, for t = 0, 1, · · · , T − 1, we have

|û1
t |with intertemporal restrictions > |û1

t |without intertemporal restrictions, (16)

|û2
t |with intertemporal restrictions > |û2

t |without intertemporal restrictions. (17)

• When x−s2

xT−t−s2(T−t) =
1−s

sT−t−1(1−sT−t)
, for t = 0, 1, · · · , T − 1, we have

|û1
t |with intertemporal restrictions = |û1

t |without intertemporal restrictions, (18)

|û2
t |with intertemporal restrictions = |û2

t |without intertemporal restrictions. (19)
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• When x−s2

xT−t−s2(T−t) <
1−s

sT−t−1(1−sT−t)
, for t = 0, 1, · · · , T − 1, we have

|û1
t |with intertemporal restrictions < |û1

t |without intertemporal restrictions, (20)

|û2
t |with intertemporal restrictions < |û2

t |without intertemporal restrictions. (21)

Proof. Please refer to Appendix C.

From Corollary 1, we note that the Nash equilibrium investment strategies are not influenced
by the intertemporal restrictions when the reduction speed of risk aversion parameters and the
return rate of the riskless asset meet the relationship x−s2

xT−t−s2(T−t) =
1−s

sT−t−1(1−sT−t)
. When x−s2

xT−t−s2(T−t) >
1−s

sT−t−1(1−sT−t)
, the intertemporal restrictions will stimulate investment. The insurer and the reinsurer

tend to take more investment risk in order to gain more wealth when the intertemporal restrictions
are considered. When x−s2

xT−t−s2(T−t) < 1−s
sT−t−1(1−sT−t)

, the intertemporal restrictions will discourage
investment. Investment strategies that consider the intertemporal restrictions are more conservative
than that without considering the intertemporal restrictions. In conclusion, when the risk aversion
coefficient is in exponential form, whether the intertemporal restrictions will make the investment
strategy more radical or more conservative depends on the reduction speed of risk aversion parameters
and the value of risk-free benefits.

Furthermore, we study some special cases of model (3). When we only consider the interest of the
insurer/reinsurer, that is, α = 1/α = 0, the Nash equilibrium investment-reinsurance strategies can be
deduced in a similar way.

Remark 2. If α = 1, i.e., only the insurer’s interest is considered, model (3) degenerates into the
classical investment-reinsurance optimization problem. In this case, the Nash equilibrium strategies (û1

t , q̂t),
t = 0, 1, · · · , T − 1, are given by

û1
t =

µ1
t

T
∑

m=t+1
ξm
( m−1

∏
i=t+1

si
)

2σ1
t

T
∑

m=t+1
ξmηm

( m−1
∏

i=t+1
s2

i
) , (22)

q̂t = arg max
0≤qt≤1

{
−

T
∑

m=t+1
ξm
( m−1

∏
i=t+1

si
)
[µ̃tqt + δt(qt)]−

T
∑

m=t+1
ξmηm

( m−1
∏

i=t+1
s2

i
)
(qt)2σ̃t

}
. (23)

The equilibrium value function becomes

Vt(w1
t ) =

T

∑
m=t+1

ξm
( m−1

∏
i=t

si
)
w1

t + κt, (24)

and the function ft,τ(w1
t ) is given by

ft,τ(w1
t ) =

τ−1

∏
i=t

siw1
t + γt,τ , (25)
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where 

κt =
T−1
∑

k=t

[ T
∑

m=k+1
ξm
( m−1

∏
i=k+1

si
)
(ck − δk(q̂k)− µ̃k q̂k)

]
+

T−1
∑

k=t

(µ1
k)

2

4σ1
k

T
∑

m=k+1
ξm
( m−1

∏
i=k+1

si

)
T
∑

m=k+1
ξmηm

( m−1
∏

i=k+1
s2

i

) − T−1
∑

k=t
(q̂k)

2σ̃k

( T
∑

m=k+1
ξmηm

m−1
∏

i=k+1
s2

i

)
,

γt,τ =
τ−1
∑

k=t

[ τ−1
∏

i=k+1
si(ck − δk(q̂k)− µ̃k q̂k)

]
+

τ−1
∑

k=t

(µ1
k)

2

2σ1
k

T
∑

m=k+1
ξm

(
m−1
∏

i=k+1
si

)(
τ−1
∏

i=k+1
si

)
T
∑

m=k+1
ξmηm

(
m−1
∏

i=k+1
s2

i

) .

(26)

Remark 3. If α = 0, i.e., only the reinsurer’s interest is considered, the Nash equilibrium strategies (û2
t , q̂t),

t = 0, 1, · · · , T − 1, are given by

û2
t =

µ2
t

2σ2
t

T
∑

m=t+1
ξm
( m−1

∏
i=t+1

si
)

T
∑

m=t+1
ξmηm

( m−1
∏

i=t+1
s2

i
) , (27)

q̂t = arg max
0≤qt≤1

{ T

∑
m=t+1

ξm
( m−1

∏
i=t+1

si
)
[δt(qt)− µ̃t(1− qt)]−

T

∑
m=t+1

ξmηm
( m−1

∏
i=t+1

s2
i
)
σ̃t(1− qt)

2
}

. (28)

The equilibrium value function becomes

Vt(w2
t ) =

T

∑
m=t+1

ξm

m−1

∏
i=t

siw2
t + κt, (29)

and the function ft,τ(w2
t ) is given by

ft,τ(w2
t ) =

T−1

∏
i=t

siw2
t + γt,τ , (30)

where 

κt =
T−1
∑

k=t

( T
∑

m=k+1
ξm
( m−1

∏
i=k+1

si
)
[δk q̂k − µ̃k(1− q̂k)]

)
+

T−1
∑

k=t

(µ2
k)

2

4σ2
k

T
∑

m=k+1
ξm

m−1
∏

i=k+1
si

T
∑

m=k+1
ξmηm

m−1
∏

i=k+1
s2

i

−
T−1
∑

k=t

( T
∑

m=k+1
ξmηm

m−1
∏

i=k+1
s2

i σ̃k(1− q̂k)
2
)

,

γt,τ =
τ−1
∑

k=t

τ−1
∏

i=k+1
si[δk(q̂k)− µ̃k(1− q̂k)] +

τ−1
∑

k=t

(µ2
k)

2

2σ2
k

T
∑

m=k+1
ξm
( m−1

∏
i=k+1

si

)( τ−1
∏

i=k+1
si

)
T
∑

m=k+1
ξmηm

m−1
∏

i=k+1
s2

i

.

(31)

As shown in Remarks 2 and 3, we can find that Vt(w1
t ) and ft,τ(w1

t ) only depend on w1
t , i.e., the

insurer’s wealth at time t; the function Vt(w2
t ) and ft,τ(w2

t ) only depend on w2
t , i.e., the reinsurer’s

wealth at time t. This is because in both cases only unilateral interests are targeted.
Note that model (3) is an investment-reinsurance optimization problem with a generalized

premium calculated principle. Next, we will find the corresponding Nash equilibrium strategies under
two classical premium calculation criteria principle (i.e., the expected value premium principle and
variance value premium principle). The results are presented in Sections 3.1 and 3.2.
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3.1. Nash Equilibrium Investment-Reinsurance Strategies under the Expected Value Premium Principle

In this subsection, we assume that the reinsurance premium is computed under the following
expected value premium principle, i.e., for t = 0, 1, · · · , T − 1,

δt(qt) = (1 + βt)(1− qt)µ̃t, (32)

where βt > 0 is the reinsurer’s safety loading. For t = 0, 1, · · · , T − 1, let

at = −
1− α

2α− 1
+

βtµ̃t

2(2α− 1)σ̃t

T
∑

m=t+1
ξm
( m−1

∏
i=t+1

si
)

T
∑

m=t+1
ξmηm

( m−1
∏

i=t+1
s2

i
) . (33)

Then, Nash equilibrium investment-reinsurance strategies shown in Theorem 1 can be reduced
as follows.

Corollary 2. Suppose that α ∈ (0, 1) and compute the reinsurance premium under the expected value premium
principle, the Nash equilibrium strategies {(û1

t , û2
t , q̂t), t = 0, 1, · · · , T − 1} can be derived for model (3),

where û1
t and û2

t are consistent with (8) and (9) in Theorem 1, respectively; q̂t can be shown as follows:

q̂t =




0, i f at < 0;

at, i f 0 ≤ at ≤ 1;

1, i f at > 1.

 , f or α 6= 1
2 ;

∀qt ∈ [0, 1], f or α = 1
2 .

(34)

As shown in Corollary 2, the Nash equilibrium reinsurance strategy depends on the weight
coefficient α when computing the reinsurance premium under the expected value premium principle.
In addition, we can find that the reinsurance strategy can be taken as any value within [0, 1] when
α = 0.5. This cause is that the common wealth αw1

t + (1− α)w2
t is independent with the weight

coefficient α if α = 0.5.
When the reinsurer and the insurer only concern the performance of terminal wealth, i.e., ξt = 0,

t = 1, 2, · · · , T − 1 and ξT = 1, at can be reduce as

at = −
1− α

2α− 1
+

βtµ̃t

2(2α− 1)ηT σ̃t

1
T−1
∏

i=t+1
si

, (35)

where t = 0, 1, · · · , T − 1, and then the detailed Nash equilibrium strategies are given by the
following remark.

Remark 4. If α ∈ (0, 1), ξt = 0 for t = 1, 2, · · · , T− 1, ξT = 1, and compute the reinsurance premium under
the expected value premium principle, then the Nash equilibrium investment strategies û1

t and û2
t for model (3)

are consistent with (14) and (15), respectively; the Nash equilibrium reinsurance strategy q̂t for model (3) can be
shown as follows.

q̂t =




0, i f at < 0;

at, i f 0 ≤ at ≤ 1;

1, i f at > 1.

 , f or α 6= 1
2 ;

∀qt ∈ [0, 1], f or α = 1
2 .

(36)
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Remark 4 shows that the insurer and the reinsurer only concern the performance of terminal
wealth, ignoring the intertemporal expectations and variances. Compared with Corollary 2 and
Remark 4, we note that the former strategy is related to the risk aversion coefficient in each period,
while the latter strategy only depends on the risk aversion coefficient at the terminal moment.

Furthermore, similar to Corollary 1, we want to study the effect of intertemporal restrictions
on equilibrium reinsurance strategy in the intermediate case when the risk aversion coefficient is
exponential and the reinsurance premium is computed under the expected value premium principle.

Corollary 3. Suppose that α ∈ (0, 1), st = s > 1 and ηt = ηTx(T−t), where x > 1 and x 6= s2,
t = 0, 1, · · · , T − 1, ηT is a positive constant; the reinsurance premium is computed under the expected
value premium principle.

If α > 0.5 and 0 ≤ at ≤ 1, we have the following conclusions.

• When x−s2

xT−t−s2(T−t) >
1−s

sT−t−1(1−sT−t)
, for t = 0, 1, · · · , T − 1, we have

q̂t |with intertemporal restrictions> q̂t |without intertemporal restrictions. (37)

• When x−s2

xT−t−s2(T−t) =
1−s

sT−t−1(1−sT−t)
, for t = 0, 1, · · · , T − 1, we have

q̂t |with intertemporal restrictions= q̂t |without intertemporal restrictions . (38)

• When x−s2

xT−t−s2(T−t) <
1−s

sT−t−1(1−sT−t)
, for t = 0, 1, · · · , T − 1, we have

q̂t |with intertemporal restrictions< q̂t |without intertemporal restrictions . (39)

If α < 0.5 and 0 ≤ at ≤ 1, we have the following conclusions.

• When x−s2

xT−t−s2(T−t) >
1−s

sT−t−1(1−sT−t)
, for t = 0, 1, · · · , T − 1, we have

q̂t |with intertemporal restrictions< q̂t |without intertemporal restrictions . (40)

• When x−s2

xT−t−s2(T−t) =
1−s

sT−t−1(1−sT−t)
, for t = 0, 1, · · · , T − 1, we have

q̂t |with intertemporal restrictions= q̂t |without intertemporal restrictions . (41)

• When x−s2

xT−t−s2(T−t) <
1−s

sT−t−1(1−sT−t)
, for t = 0, 1, · · · , T − 1, we have

q̂t |with intertemporal restrictions> q̂t |without intertemporal restrictions . (42)

Corollary 3 indicates that when computing the reinsurance premium under the expected value
premium principle, the influence of intertemporal restrictions on the Nash equilibrium reinsurance
strategy is not only related to the reduction speed of risk aversion parameters (i.e., x) and the value of
risk-free benefits (i.e., s), but also related to the weight parameter (i.e., α).

Remark 5. Assume that the reinsurance premium is computed under the expected value premium principle.
When α takes the boundary point, model (3) degenerates into investment-reinsurance optimization problems
considering unilateral interest, i.e., the insurer’s interest is considered when α = 1; the reinsurer’s interest is
considered when α = 0. The optimal investment-reinsurance strategies in both cases are given by Table 1.
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Table 1. Optimal strategy when the expected value premium principle and unilateral interests are considered.

Cases Optimal Investment Strategy Optimal Reinsurance Strategy

α = 1 û1
t =

µ1
t

T
∑

m=t+1
ξm

( m−1
∏

i=t+1
si

)
2σ1

t

T
∑

m=t+1
ξmηm

( m−1
∏

i=t+1
s2

i

) q̂t =
βt µ̃t
2σ̃t

T
∑

m=t+1
ξm

m−1
∏

i=t+1
si

T
∑

m=t+1
ξmηm

m−1
∏

i=t+1
s2

i

∧ 1

α = 0 û2
t =

µ2
t

2σ2
t

T
∑

m=t+1
ξm

( m−1
∏

i=t+1
si

)
T
∑

m=t+1
ξmηm

( m−1
∏

i=t+1
s2

i

) q̂t = 0∨

1− βt µ̃t
2σ̃t

T
∑

m=t+1
ξm

m−1
∏

i=t+1
si

T
∑

m=t+1
ξmηm

m−1
∏

i=t+1
s2

i

 ∧ 1

From Remark 5, we can find that û1
t and û2

t are consistent with (22) in Remark 2 and (27) in
Remark 3, respectively.

3.2. Nash Equilibrium Investment-Reinsurance Strategies under the Variance Value Premium Principle

In this subsection, we assume that the reinsurance premium is computed under the following
variance value premium principle, i.e., for t = 0, 1, · · · , T − 1,

δt(qt) = (1− qt)µ̃t + βt(1− qt)
2ν̃t. (43)

Let

ât = 1−
ασ̃t

T
∑

m=t+1
ξmηm

( m−1
∏

i=t+1
s2

i

)
(2α−1)σ̃t

T
∑

m=t+1
ξmηm

( m−1
∏

i=t+1
s2

i

)
+βt ν̃t

T
∑

m=t+1
ξm
( m−1

∏
i=t+1

si

) . (44)

Corollary 4. Suppose that α ∈ (0, 1) and the reinsurance premium is computed under the variance value
premium principle, we can obtain the Nash equilibrium strategies (û1

t , û2
t , q̂t), t = 0, · · · , T − 1, for model (3),

where û1
t and û2

t are consistent with (8) and (9) in Theorem 1, respectively; q̂t can be shown as follows:

q̂t =




0, i f ât < 0;

ât, i f 0 ≤ ât ≤ 1;

1, i f ât > 1.

 , f or α 6= 1
2 ;

∀qt ∈ [0, 1], f or α = 1
2 .

(45)

Comparing Corollary 2 and Corollary 4, we can find that the premium calculation principle does
not change the investment strategies, but only affects the reinsurance strategy.

Similarly, when they only concern the terminal wealth’s performance, that is, ξt = 0 for
t = 1, 2, · · · , T − 1 and ξT = 1, the results are as follows.

Remark 6. If α ∈ (0, 1), ξt = 0 for t = 1, 2, · · · , T − 1, ξT = 1, and the reinsurance premium is computed
under the variance value premium principle, we can obtain the Nash equilibrium strategies {(û1

t , û2
t , q̂t),

t = 0, · · · , T− 1} for model (3), where û1
t and û2

t are consistent with (14) and (15) in Remark 1, respectively;
q̂t can be shown as follows:

q̂t =




0, i f ât < 0;

ât, i f 0 ≤ ât ≤ 1;

1, i f ât > 1.

 , f or α 6= 1
2 ;

∀qt ∈ [0, 1], f or α = 1
2 .

(46)
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Here, the parameter ât is defined as ât =
βt ν̃t−(1−α)ηT σ̃t

T−1
∏

i=t+1
si

βt ν̃t+(2α−1)ηT σ̃t
T−1
∏

i=t+1
si

, t = 0, 1, · · · , T − 1.

Comparing with Corollary 4 and Remark 6, we note that the strategy considering intertemporal
restrictions is related to the risk aversion factors in the intermediate stage, while the strategy
only considering the terminal wealth performance is only related to the risk aversion factor at the
terminal stage.

Similar to Corollary 1 and Corollary 3, we want to study the effect of intertemporal restrictions
on equilibrium reinsurance strategy in the intermediate case when the risk aversion coefficient is
exponential and the reinsurance premium is computed under the variance value premium principle.

Corollary 5. Suppose α ∈ (0, 1), st = s > 1 and ηt = ηTx(T−t), where x > 1 and x 6= s2, t = 0, 1, · · · , T −
1, ηT is a positive constant; the reinsurance premium is computed under the variance value premium principle.
For t = 0, 1, · · · , T − 1, if 0 ≤ ât ≤ 1, we have the following conclusions.

• When sT−t−1

(2α−1)σ̃tηTsT−t−1+βt ν̃t
> (1−s)[xT−t−s2(T−t) ]

(2α−1)σ̃tηT(1−s)[xT−t−s2(T−t) ]+βt ν̃t(1−sT−t)(x−s2)
, we have

q̂t |with intertemporal restrictions> q̂t |without intertemporal restrictions . (47)

• When sT−t−1

(2α−1)σ̃tηTsT−t−1+βt ν̃t
= (1−s)[xT−t−s2(T−t) ]

(2α−1)σ̃tηT(1−s)[xT−t−s2(T−t) ]+βt ν̃t(1−sT−t)(x−s2)
, we have

q̂t |with intertemporal restrictions= q̂t |without intertemporal restrictions . (48)

• When sT−t−1

(2α−1)σ̃tηTsT−t−1+βt ν̃t
< (1−s)[xT−t−s2(T−t) ]

(2α−1)σ̃tηT(1−s)[xT−t−s2(T−t) ]+βt ν̃t(1−sT−t)(x−s2)
, we have

q̂t |with intertemporal restrictions< q̂t |without intertemporal restrictions . (49)

Remark 7. Assume the reinsurance premium is computed under the variance value premium principle. When α

takes the boundary point, model (3) degenerates into investment-reinsurance optimization problems considering
unilateral interest, i.e., the insurer’s interest is considered when α = 1; the reinsurer’s interest is considered
when α = 0. The optimal investment-reinsurance strategies in both cases are given by Table 2.

Table 2. Optimal strategy when the variance value premium principle and unilateral interests are considered.

Cases Optimal Investment Strategy Optimal Reinsurance Strategy

α = 1 û1
t =

µ1
t

T
∑

m=t+1
ξm

( m−1
∏

i=t+1
si

)
2σ1

t

T
∑

m=t+1
ξmηm

( m−1
∏

i=t+1
s2

i

) q̂t =

(
T
∑

m=t+1
ξm

m−1
∏

i=t+1
si

)
βt ν̃t(

T
∑

m=t+1
ξmηm

m−1
∏

i=t+1
s2

i

)
σ̃t+

(
T
∑

m=t+1
ξm

m−1
∏

i=t+1
si

)
βt ν̃t

α = 0 û2
t =

µ2
t

2σ2
t

T
∑

m=t+1
ξm

( m−1
∏

i=t+1
si

)
T
∑

m=t+1
ξmηm

( m−1
∏

i=t+1
s2

i

) q̂t = 1

From Remark 7, we can find that û1
t and û2

t are consistent with (22) in Remark 2 and (27) in
Remark 3, respectively. That is, the way premiums are calculated does not affect the form of the
optimal investment strategy. Furthermore, it is worth noting that the optimal reinsurance strategy
must be between 0 and 1 if α = 1 and the optimal reinsurance strategy is always 1 if α = 0. In other
words, when only the interest of the insurer is considered, the claim proportion borne by the insurer is
between 0 and 1; when only the interest of the reinsurer is considered, the reinsurer bears no claim risk
at all.
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4. Numerical Analysis

In this section, some numerical simulations are conducted to show the results presented in
Section 3. Given T = 100, w1

0 = w2
0 = 1. Referring to the parameter setting in Li and Ng [33] and

Xiao et al. [25], for t = 0, 1, · · · , T − 1, the model parameter values in this paper are given by Table 3.

Table 3. The model parameter values.

µ1
t µ2

t σ1
t σ2

t θt βt st

1.162 1.228 0.0146 0.0289 0.0145 0.8 1.09

The risk aversion coefficient is set to be in exponential form, ηt = ηT ∗ x(T−t), t = 0, 1, · · · , T− 1,
where x > 1 and ηT = 1. Next, we will show the evolutions process of the Nash equilibrium strategies
under different settings, and we assume that ξ1, ξ2, · · · , ξT have the following situations.

Case I in Table 4 indicates that decisions made by the reinsurer and the insurer will take all the
intertemporal restrictions into account. Case II in Table 4 means that the reinsurer and the insurer
only concern their terminal wealth’s performance. According to the parameter settings, we will
analyze the effect of the intertemporal restrictions on the Nash equilibrium strategies. Since the
premium principle does not affect the investment strategies, we will not repeatedly demonstrate the
influence of model parameters on the Nash equilibrium investment strategies under different premium
principles. However, the selection of premium principles will affect the formulation of a reinsurance
strategy, therefore it is necessary to discuss the effect of the premium principle on the Nash equilibrium
reinsurance strategies. The detailed simulations are shown in Sections 4.1 and 4.2.

Table 4. Parameter setting in two cases.

Case I ξt = 1, t = 1, 2, · · · , T

Case II ξt = 0 for t = 1, 2, · · · , T − 1 and ξT = 1

4.1. Simulations of the Nash Equilibrium Investment Strategies

The evolution of the Nash equilibrium investment strategies will be discussed when the insurer
and the reinsurer have the common optimization objective. Using the parameter settings shown above,
we can deduce the Nash equilibrium investment strategies’ path. For details, see Figures 1–4.
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The reinsurer’s investment strategy under Case I

The reinsurer’s investment strategy under Case II

(b)

Figure 1. Nash equilibrium investment strategies for (a) the insurer and (b) the reinsurer (α = 0.2 and
x = 1.2).

Figure 1 presents the evolution paths of the Nash equilibrium investment strategies when
x = 1.2 and the weight coefficient is α = 0.2. Figure 1a,b consider the effect of the intertemporal
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restrictions on the Nash equilibrium investment strategies (i.e., case I vs. case II). When x = 1.2,
the condition x−s2

xT−t−s2(T−t) ≤ 1−s
sT−t−1(1−sT−t)

in Corollary 1 is satisfied. By comparing the investment
strategies with and without intertemporal restrictions in Figure 1a,b, we can find that when the
investment decision-making process considers intertemporal restrictions, the investors will reduce
his/her investment position invested in the risk assessment (i.e., û1

t and û2
t will decrease) compared to

the investment strategy without intertemporal restrictions. This phenomenon is consistent with the
conclusions shown in Corollary 1. This means that intertemporal restrictions considerations will lead
to an increase in the amount of investment in the riskless asset (w1

t − û1
t and w2

t − û2
t ), indicating that

investors will adopt conservative strategies to reduce the investment risk.
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The reinsurer’s investment strategy under Case II

(b)

Figure 2. Nash equilibrium investment strategies for (a) the insurer and (b) the reinsurer (α = 0.2 and
x = 1.01).

Figure 2 depicts the evolution paths of the Nash equilibrium investment strategies when
x = 1.01 and the weight coefficient is α = 0.2. The effect of intertemporal restrictions on the Nash
equilibrium investment strategies is considered in this simulation (i.e., cases I and II). When x = 1.01,
the condition x−s2

xT−t−s2(T−t) ≥ 1−s
sT−t−1(1−sT−t)

in Corollary 1 is satisfied. As shown in Figure 2, when the
investment decision-making process considers intertemporal restrictions, investors will increase their
exposure to risky assets compared to the investment strategy without intertemporal restrictions,
which is consistent with the conclusions shown in Corollary 1. This means that the intertemporal
restrictions will encourage investors to adopt radical strategies to increase their wealth. Compared with
Figures 1 and 2, we note that the effect of intertemporal restrictions on the Nash equilibrium investment
strategies is related to the reduction speed of risk aversion parameters and the value of risk-free benefits.
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The reinsurer’s investment strategy under Case II

(b)

Figure 3. Nash equilibrium investment strategies for (a) the insurer and (b) the reinsurer (α = 0.8 and
x = 1.2).
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In Figures 1 and 2, we assume that the weight coefficient satisfies α < 0.5 (i.e., α = 0.2),
which means that the interest of the reinsurer is relatively important in consideration of the common
goal. Next, we want to test whether the above conclusions hold when the weight coefficient α > 0.5
(for example, α = 0.8 in Figures 3 and 4).

Comparing Figure 1 with Figure 3, Figure 2 with Figure 4, we find that the weight coefficient α can
not change the effect of intertemporal constraints on investment strategies. In other words, whether
the intertemporal restrictions will make the investment strategy more radical or more conservative
depends only on the reduction speed of risk aversion parameters and the value of risk-free benefits,
but not on the size of the weight parameter.
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Figure 4. Nash equilibrium investment strategies for (a) the insurer and (b) the reinsurer (α = 0.8 and
x = 1.01).

Moreover, in Figures 1–4, we note that the Nash equilibrium investment strategies are increasing
with respect to t. In other words, at the beginning of investment range, the insurer and the reinsurer
are relatively conservative in order to avoid bankruptcy; the later, the more money they invest in
risk assets. This phenomenon is because as time goes on, the insurer’s and reinsurer’s wealth keeps
accumulating and their risk aversion coefficient gradually decreases, so they have enough ability and
confidence to invest more funds in risky assets.

4.2. Simulations of the Nash Equilibrium Reinsurance Strategy

Next, we proceed to illustrate the evolution of the Nash equilibrium reinsurance strategy. On the
basis of the parameters given above, we deduce the corresponding path of the Nash equilibrium
reinsurance strategy. For details, see Figures 5–8.
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(b) x = 1.01

Figure 5. Nash equilibrium reinsurance strategy under the expected value premium principle (α = 0.2).
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Under the expected value premium principle, Figure 5 shows the evolution of the Nash
equilibrium reinsurance strategy when α < 0.5 (e.g., α = 0.2). As two different departments of
the same large insurance company, the insurer and the reinsurer have a common interest goal, but their
positions in the head office are different. α < 0.5 means that the interest of the reinsurer may be more
concerned than that of the insurer. Therefore, the reinsurer may not be willing to bear the risk of
claim, especially at the early stage. From Figure 5a, we can find that the reinsurer will not assume
any claim risk in the previous investment periods (i.e., qt = 1 when t ≤ 76 in case I and t ≤ 65 in
case II), and the reinsurer will only undertake the part or all of claim risk with the approach of the
end of period (Note that (1− qt) denotes the proportion of claim undertaken by reinsurer at time t,
where t = 0, 1, · · · , T − 1). A similar analysis can be obtained from Figure 5b.

In addition, in the case of α < 0.5, Figure 5a,b respectively describe the impacts of intertemporal
restrictions on the Nash equilibrium reinsurance strategy when the reduction speed of risk aversion
parameters takes different values. As shown in Figure 5a, we can find that the intertemporal restrictions
can cause the reinsurer to be more concerned about its performance in the various intermediate periods,
which will lead to longer time for the reinsurer not to bear the risk of claim (e.g., the reinsurance
strategy of case I is qt = 1 when t ≤ 76, while that of case II is qt = 1 when t ≤ 65, this indicates that the
reinsurer in the case I is less willing to take on the risk of claim compared to the reinsurer in the case II).
When x = 1.2, the condition x−s2

xT−t−s2(T−t) ≤ 1−s
sT−t−1(1−sT−t)

in Corollary 3 is satisfied. That is, when the
reinsurance strategy is between 0 and 1, the intertemporal restrictions reduce the underwriting ratio of
the reinsurer, i.e., (1− qt) decreases. That is to say, intertemporal restrictions restrain the reinsurer’s
enthusiasm to bear claim risk in this case.

From Figure 5b, we can find that intertemporal restrictions have a completely opposite effect on
the Nash equilibrium reinsurance strategy. Intertemporal restrictions will make the reinsurer more
confident about its own wealth level in this case and therefore more willing to take on claim risk as
early as possible (e.g., the reinsurance strategy of case I is qt = 1 when t ≤ 58, while that of case II is
qt = 1 when t ≤ 65, this indicates that the reinsurer in the case I is more willing to bear the claim risks
compared to the reinsurer in the case II). When x = 1.01, the condition x−s2

xT−t−s2(T−t) ≥ 1−s
sT−t−1(1−sT−t)

in
Corollary 3 is satisfied. That is, when the reinsurance strategy is between 0 and 1, the intertemporal
restrictions increase the underwriting ratio of the reinsurer, i.e., (1− qt) increases. In other words,
intertemporal restrictions stimulate the reinsurer to bear the claim risk when x = 1.01 and α < 0.5.
In summary, when the reinsurer’s interest is more valued, the impact of intertemporal restrictions
on Nash equilibrium reinsurance strategy is related to the values of reduction speed of risk aversion
parameters and the value of risk-free benefits.
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The reinsurance strategy under Case I

The reinsurance strategy under Case II

(b) x = 1.01

Figure 6. Nash equilibrium reinsurance strategy under the expected value premium principle (α = 0.8).

Figure 6 depicts the Nash equilibrium reinsurance strategy changes over time under expected
value premium principle when the insurer’s interest is more valued (i.e., α > 0.5. As an example,
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we take α = 0.8 here). Similar to the analysis in Figure 5, from Figure 6, we find the insurer might want
the reinsurer to assume more claim risks since the bankruptcy probability is higher in early stages of
investment. With the insurer’s wealth accumulating, the insurer gradually improves the retention
level qt of claim risk until it fully assumes all claim risk.

In addition, as shown in Figure 6a, we can find that, when the decision-making process does
not consider intertemporal restrictions, the insurer will increase the retention level qt after t = 65.
When the decision-making process considers intertemporal restrictions, the insurer will increase the
retention level qt after t = 76. When the reinsurance strategy falls between 0 and 1, the intertemporal
restrictions will reduce the insurer’s reservation level. In other words, the intertemporal restrictions
will aggravate the insurer’s degree of risk aversion and make the insurer more reluctant to bear
the claim risk prematurely when x = 1.2 and α > 0.5. This is the opposite of the effect shown in
Figure 6a. From Figure 6b, we can find that, when the decision-making process considers intertemporal
restrictions, the insurer is more willing to assume a certain percentage or all of the claim risk as early
as possible. Furthermore, the intertemporal restrictions will increase the insurer’s reservation level
when the reinsurance strategy falls between 0 and 1. That is to say, intertemporal restrictions make
the insurer more willing to take the claim risk when x = 1.01 and α > 0.5. Combining Figure 6a,b,
we find when the reinsurance premium is computed under the expected value premium principle,
the effect of intertemporal restrictions on the Nash equilibrium reinsurance strategies depends not
only on the reduction speed of risk aversion parameters and the value of risk-free benefits, but also on
the weight parameter.
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The reinsurance strategy under Case II

(b) x = 1.01

Figure 7. Nash equilibrium reinsurance strategy under the variance value premium principle (α = 0.2).

Figure 7 shows the Nash equilibrium reinsurance strategy changes over time under the variance
value premium principle in the case of reinsurer’s interest is more valued (i.e., α < 0.5. For example,
α = 0.2). From Figure 7, we can find that at the initial period, the reinsurer doesn’t want to take any the
claim risk (i.e., 1− qt = 0), and with the reinsurer accumulated to a certain degree of wealth, he/she
has enough ability to take on all claim risks (i.e., 1− qt = 1). As close to the end of investment, the
insurer also has some ability to take the claim risk, then the retention level of the insurer (i.e., qt) will
be increased from 0 to a higher level.

Figure 7a,b depict the impacts of intertemporal restrictions on Nash equilibrium reinsurance
strategy when x takes different values. As shown in Figure 7a, at the beginning of the period,
the intertemporal restrictions will cause the reinsurer to pay more attention to his/her performance,
which also lead to a longer time for the reinsurer to be unwilling to assume claim risk. At the end of
the investment, the reinsurance strategy is between 0 and 1, and the intertemporal restrictions will
increase the underwriting ratio of the reinsurer. From Figure 7b, at the beginning of the investment,
the intertemporal restrictions make the reinsurer more confident about its level of wealth and
therefore more willing to take on claim risk earlier. At the end of the investment, the reinsurance
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strategy is between 0 and 1, and the intertemporal restrictions will make the reinsurer reduce its
underwriting proportion.
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(b) x = 1.01

Figure 8. Nash equilibrium reinsurance strategy under the variance value premium principle (α = 0.8).

Figure 8 depicts the Nash equilibrium reinsurance strategies change over time under the variance
value premium principle in the case of the insurer’s interest is more valued (i.e., α > 0.5. For example,
α = 0.8). From Figure 8, we can find that the insurer will pass all claim risk to the reinsurer since
the bankruptcy probability is higher in the early stages of investment. With the insurer’s wealth
accumulating, the insurer has enough ability to bear claim risk; therefore, the insurer will gradually
increase the retention level qt. As shown in Figure 8a, the reinsurance strategy in case I will be shifted
to the right by some units compared to that in case II. This illustrates the intertemporal restrictions
will cause the insurer to pay more attention to its performance, which will lead to a longer time for
the insurer to be unwilling to assume claim risk. When the reinsurance strategy is between 0 and 1,
the intertemporal restrictions would encourage the insurer to reduce its reservation proportion. That is
to say, the intertemporal restrictions can make the insurer more cautious about claim risk when α = 0.8
and x = 1.2. From Figure 8b, we can find that the intertemporal restrictions make the insurer more
confident about its level of wealth and more willing to take claims early (e.g., as shown in Figure 8a,
the reinsurance strategy in case I will be shifted to the left by some units compared to that in case II).
When the reinsurance strategy is between 0 and 1, the intertemporal restrictions would encourage the
insurer to increase its reservation proportion. In other words, the intertemporal restrictions will make
the insurer more willing to bear claim risks in this case.

5. Conclusions

In the paper, under the discrete-time framework, we construct a generalized multi-period
mean-variance model to study the investment-reinsurance optimization problem of the reinsurer
and the insurer, which can be regarded as two different departments of a general insurance company.
The reinsurer and the insurer have a common interest goal to maximize the expectation of the weighted
sum of their wealth processes and minimize corresponding variance. In addition, the intertemporal
restrictions are considered in our model. By using the game method, we deduce the Nash equilibrium
investment-reinsurance strategies for the generalized premium calculated principle, and derive the
Nash equilibrium investment-reinsurance strategies under two special premium calculated principles
(i.e., the expected value premium principle and the variance value premium principle). Furthermore,
we theoretically analyze the effect of the intertemporal restrictions on Nash equilibrium strategies and
perform corresponding numerical analyses to verify our theoretical results.

We find that the effect of the intertemporal restrictions on Nash equilibrium strategies is related
to the setting of model parameters. (i) The effect of intertemporal restrictions on Nash equilibrium
investment strategies depends on the reduction speed of risk aversion parameters and the value of
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risk-free benefits. (ii) When computing the reinsurance premium under the expected value premium
principle, the effect of intertemporal restrictions on the Nash equilibrium reinsurance strategy depends
not only on the reduction speed of risk aversion parameters and the value of risk-free benefits but
also on the weight parameter. (iii) When computing the reinsurance premium under the variance
value premium principle, the effect of intertemporal restrictions on the Nash equilibrium reinsurance
strategy depends on a number of other factors, in addition to those mentioned above.

However, the research in this paper has some limitations. For example, this article studies
equilibrium investment-reinsurance strategies under general or special reinsurance premium
calculation rules but does not involve the pricing of reinsurance premiums. With the method in
Chen and Shen [15], Chen and Shen [16] and Anthropelos and Boonen [38], how to find a reasonable
reinsurance premium calculation formula to maximize the benefits of both the insurer and reinsurer in
the discrete-time framework is an urgent problem to be studied. Furthermore, with reference to the
methods of Bensoussan et al. [9], Pun and Wong [10], Pun et al. [11], and so on, the study of the game
problem between two insurance companies in discrete-time framework is also a good expandable
study direction of this paper in the future.
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Appendix A. The Proof of Proposition 1

When k = T − 1, from the definition of Jk(w1
k , w2

k , π), we have

VT−1(w1
T−1, w2

T−1) = max
πT−1

{
ξT [ET−1(αw1

T + (1− α)w2
T)− ηTVarT−1(αw1

T + (1− α)w2
T)]
}

.

Therefore, Proposition 1 holds for k = T − 1. For k = 0, 1, · · · , T − 2, Jk(w1
k , w2

k , π) can be
expressed as

Jk(w1
k , w2

k , π) =
T

∑
t=k+1

ξt[Ek(αw1
t + (1− α)w2

t )− ηtVark(αw1
t + (1− α)w2

t )]

=
T

∑
t=k+2

ξt[Ek(αw1
t + (1− α)w2

t )− ηtVark(αw1
t + (1− α)w2

t )] (A1)

+ξk+1[Ek(αw1
k+1 + (1− α)w2

k+1)− ηk+1Vark(αw1
k+1 + (1− α)w2

k+1)].

Based on the law of iterated expectations and the law of total variance, we obtain

Ek(αw1
t + (1− α)w2

t ) = Ek[Ek+1(αw1
t + (1− α)w2

t )], (A2)

Vark(αw1
t + (1− α)w2

t ) = Ek[Vark+1(αw1
t + (1− α)w2

t )] + Vark[Ek+1(αw1
t + (1− α)w2

t )]. (A3)
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Then, Jk(w1
k , w2

k , π) can be rewritten as

Jk(w1
k , w2

k , π) = Ek

{
T

∑
t=k+2

ξt[Ek+1(αw1
t + (1− α)w2

t )− ηtVark+1(αw1
t + (1− α)w2

t )]

}

−
T

∑
t=k+2

ξtηtVark[Ek+1(αw1
t + (1− α)w2

t )]

+ξk+1[Ek(αw1
k+1 + (1− α)w2

k+1)− ηk+1Vark(αw1
k+1 + (1− α)w2

k+1)], (A4)

= Ek[Jk+1(w1
k+1, w2

k+1, π)]−
T

∑
t=k+2

ξtηtVark[Ek+1(αw1
t + (1− α)w2

t )]

+ξk+1[Ek(αw1
k+1 + (1− α)w2

k+1)− ηk+1Vark(αw1
k+1 + (1− α)w2

k+1)].

Let fk,t(w1
k , w2

k) = Ek[αw1
t + (1− α)w2

t ]|π̂(k) = Ek[ fk+1,t(w1
k+1, w2

k+1)]. Additionally, due to the
fact that Vk(w1

k , w2
k) = max

πk
Jk(w1

k , w2
k , π(k)) = Jk(w1

k , w2
k , π̂(k)), then, for k = 0, 1, · · · , T − 2, we have

Vk(w1
k , w2

k)

= max
πk

 Ek[Vk+1(w1
k+1, w2

k+1)]−
T
∑

t=k+2
ξtηtVark[ fk+1,t(w1

k+1, w2
k+1)]

+ξk+1[Ek(αw1
k+1 + (1− α)w2

k+1)− ηk+1Vark(αw1
k+1 + (1− α)w2

k+1)]

 . (A5)

Hence, Proposition 1 is proved.

Appendix B. The Proof of Theorem 1

When t = T − 1, we obtain

VT−1(w1
T−1, w2

T−1)

= max
πT−1

{
ξTET−1[αw1

T + (1− α)w2
T ]− ξTηTVarT−1[αw1

T + (1− α)w2
T ]
}

= max
πT−1


αξT [sT−1w1

T−1 + µ1
T−1u1

T−1 + cT−1 − δT−1(qT−1)− qT−1µ̃T−1]

+(1− α)ξT [sT−1w2
T−1 + µ2

T−1u2
T−1 + δT−1(qT−1)− (1− qT−1)µ̃T−1]

−ξTηT{α2σ1
T−1(u

1
T−1)

2 + (1− α)2σ2
T−1(u

2
T−1)

2

+2α(1− α)θT−1u1
T−1u2

T−1 + [αqT−1 + (1− α)(1− qT−1)]
2σ̃T−1}

 .

Then, we have

û1
T−1 =

µ1
T−1σ2

T−1 − µ2
T−1θT−1

2ηTα[σ1
T−1σ2

T−1 − (θT−1)2]
, (A6)

û2
T−1 =

µ2
T−1σ1

T−1 − µ1
T−1θT−1

2ηT(1− α)[σ1
T−1σ2

T−1 − (θT−1)2]
, (A7)

and

q̂T−1 = arg max
0≤qT−1≤1

{
(1− 2α)δT−1(qT−1)− ηT [αqT−1 + (1− α)(1− qT−1)]

2σ̃T−1

− µ̃T−1[αqT−1 + (1− α)(1− qT−1)]
}

. (A8)
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Thus, the equilibrium value function VT−1(w1
T−1, w2

T−1) can be rewritten as

VT−1(w1
T−1, w2

T−1)

=


ξTsT−1[αw1

T−1 + (1− α)w2
T−1] + αξTcT−1 + ξT(1− 2α)δT−1(q̂T−1)

+
ξT [(µ

1
T−1)

2σ2
T−1+(µ2

T−1)
2σ1

T−1−2µ1
T−1µ2

T−1θT−1]

4ηT [σ
1
T−1σ2

T−1−(θT−1)2]

−ξT µ̃T−1[αq̂T−1 + (1− α)(1− q̂T−1)]− ξTηT [αq̂T−1 + (1− α)(1− q̂T−1)]
2σ̃T−1


= ξTsT−1[αw1

T−1 + (1− α)w2
T−1] + κT−1,

(A9)

and

fT−1,T(w1
T−1, w2

T−1)

= sT−1[αw1
T−1 + (1− α)w2

T−1] + αcT−1 + (1− 2α)δT−1(q̂T−1)

+
(µ1

T−1)
2σ2

T−1+(µ2
T−1)

2σ1
T−1−2µ1

T−1µ2
T−1θT−1

2ηT [σ
1
T−1σ2

T−1−(θT−1)2]
− µ̃T−1[αq̂T−1 + (1− α)(1− q̂T−1)],

= sT−1[αw1
T−1 + (1− α)w2

T−1] + γT−1,T .

(A10)

where

κT−1 = αξTcT−1 + (1− 2α)ξTδT−1(q̂T−1)− µ̃T−1ξT [αq̂T−1 + (1− α)(1− q̂T−1)]

+
ξT [(µ

1
T−1)

2σ2
T−1+(µ2

T−1)
2σ1

T−1−2µ1
T−1µ2

T−1θT−1]

4ηT [σ
1
T−1σ2

T−1−(θT−1)2]

−ξTηT [αq̂T−1 + (1− α)(1− q̂T−1)]
2σ̃T−1,

γT−1,T = αcT−1 + (1− 2α)δT−1(q̂T−1) +
(µ1

T−1)
2σ2

T−1+(µ2
T−1)

2σ1
T−1−2µ1

T−1µ2
T−1θT−1

2ηT [σ
1
T−1σ2

T−1−(θT−1)2]

−µ̃T−1[αq̂T−1 + (1− α)(1− q̂T−1)].

(A11)

Then, Theorem 1 holds for t = T − 1. Suppose Theorem 1 holds for t = j + 1, · · · , T − 2, then
when t = j, from the conclusion in Proposition 1, we have

Vj(w1
j , w2

j )

= max
πj

 Ej[Vj+1(w1
j+1, w2

j+1)]−
T
∑

m=j+2
ξmηmVarj[ f j+1,m(w1

j+1, w2
j+1)]

+ξ j+1Ej[αw1
j+1 + (1− α)w2

j+1]− ξ j+1ηj+1Varj[αw1
j+1 + (1− α)w2

j+1]



= max
πj



T
∑

m=j+2
ξm
( m−1

∏
i=j+1

si
)
Ej[αw1

j+1 + (1− α)w2
j+1] + κj+1

−
T
∑

m=j+2
ξmηm

( m−1
∏

i=j+1
s2

i
)
Varj[αw1

j+1 + (1− α)w2
j+1]

+ξ j+1Ej[αw1
j+1 + (1− α)w2

j+1]− ξ j+1ηj+1Varj[αw1
j+1 + (1− α)w2

j+1]



= max
πj



α
T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si
)
[sjw1

j + µ1
j u1

j + cj − δj(qj)− µ̃jqj]

+(1− α)
T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si
)
[sjw2

j + µ2
j u2

j + δj(qj)− (1− qj)µ̃j]

−
T
∑

m=j+1
ξmηm

( m−1
∏

i=j+1
s2

i
)
{α2σ1

j (u
1
j )

2 + (1− α)2σ2
j (u

2
j )

2

+2α(1− α)θju1
j u2

j + [αqj + (1− α)(1− qj)]
2σ̃j}+ κj+1


. (A12)
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Then, we have

û1
j =

(µ1
j σ2

j − µ2
j θj)

T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si
)

2α(σ1
j σ2

j − θ2
j )

T
∑

m=j+1
ξmηm

( m−1
∏

i=j+1
s2

i
) , (A13)

û2
j =

(µ2
j σ1

j − µ1
j θj)

T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si
)

2(1− α)(σ1
j σ2

j − θ2
j )

T
∑

m=j+1
ξmηm

( m−1
∏

i=j+1
s2

i
) , (A14)

q̂j = arg max
0≤qj≤1


T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si
)
{(1− 2α)δj(qj)− µ̃j[αqj + (1− α)(1− qj)]}

−
T
∑

m=j+1
ξmηm

( m−1
∏

i=j+1
s2

i
)
[αqj + (1− α)(1− qj)]

2σ̃j

 . (A15)

Thus, the equilibrium value function Vj(w1
j , w2

j ) can be rewritten as

Vj(w1
j , w2

j ) =
T
∑

m=j+1
ξm
( m−1

∏
i=j

si
)
[αw1

j + (1− α)w2
j ] +

T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si
)
{αcj + (1− 2α)δj(q̂j)}

+

T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si

)
[(µ1

j )
2σ2

j +(µ2
j )

2σ1
j −2µ1

j µ2
j θj ]

4
T
∑

m=j+1
ξmηm

( m−1
∏

i=j+1
s2

i

)
[σ1

j σ2
j −(θj)2]

+ κj+1 −
T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si
)
[αq̂j

+(1− α)(1− q̂j)]µ̃j −
T
∑

m=j+1
ξmηm

( m−1
∏

i=j+1
s2

i
)
[αq̂j + (1− α)(1− q̂j)]

2σ̃j

=
T
∑

m=j+1
ξm
( m−1

∏
i=j

si
)
[αw1

j + (1− α)w2
j ],

(A16)

and

f j,τ(w1
j , w2

j ) = Ej[ f j+1,τ(w1
j+1, w2

j+1)]

= [αw1
j + (1− α)w2

j ]
τ−1
∏
i=j

si + [αcj + (1− 2α)δj(q̂j)]
τ−1
∏

i=j+1
si

+

T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si

)( τ−1
∏

i=j+1
si

)
[(µ1

j )
2σ2

j +(µ2
j )

2σ1
j −2µ1

j µ2
j θj ]

2
T
∑

m=j+1
ξmηm

( m−1
∏

i=j+1
s2

i

)
[σ1

j σ2
j −(θj)2]

−[αq̂j + (1− α)(1− q̂j)]µ̃j
τ−1
∏

i=j+1
si + γj+1,τ

= [αw1
j + (1− α)w2

j ]
τ−1
∏
i=j

si + γj,τ ,

(A17)
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where

κj = κj+1 +
T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si
)
{αcj + (1− 2α)δj(q̂j)}

+

T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si

)
[(µ1

j )
2σ2

j +(µ2
j )

2σ1
j −2µ1

j µ2
j θj ]

4
T
∑

m=j+1
ξmηm

( m−1
∏

i=j+1
s2

i

)
[σ1

j σ2
j −(θj)2]

−
T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si
)
[αq̂j + (1− α)(1− q̂j)]µ̃j

−
T
∑

m=j+1
ξmηm

( m−1
∏

i=j+1
s2

i
)
[αq̂j + (1− α)(1− q̂j)]

2σ̃j,

γj,τ = γj+1,τ + [αcj + (1− 2α)δj(q̂j)]
τ−1
∏

i=j+1
si − [αq̂j + (1− α)(1− q̂j)]µ̃j

τ−1
∏

i=j+1
si

+

T
∑

m=j+1
ξm
( m−1

∏
i=j+1

si

)( τ−1
∏

i=j+1
si

)
[(µ1

j )
2σ2

j +(µ2
j )

2σ1
j −2µ1

j µ2
j θj ]

2
T
∑

m=j+1
ξmηm

( m−1
∏

i=j+1
s2

i

)
[σ1

j σ2
j −(θj)2]

.

(A18)

It also shows that

κj =
T−1
∑

k=j

[ T
∑

m=k+1
ξm
( m−1

∏
i=k+1

si
)
{αck + (1− 2α)δk(q̂k)− µ̃k[αq̂k + (1− α)(1− q̂k)]}

]

+
T−1
∑

k=j

[(µ1
k)

2σ2
k +(µ2

k)
2σ1

k−2µ1
k µ2

k θk ]

4[σ1
k σ2

k−(θk)2]

T
∑

m=k+1
ξm
( m−1

∏
i=k+1

si

)
T
∑

m=k+1
ξmηm

( m−1
∏

i=k+1
s2

i

)
−

T−1
∑

k=j

[ T
∑

m=k+1
ξmηm

( m−1
∏

i=k+1
s2

i
)
[αq̂k + (1− α)(1− q̂k)]

2σ̃k

]
,

γj,τ =
τ−1
∑

k=j
{αck + (1− 2α)δk(q̂k)− µ̃k[αq̂k + (1− α)(1− q̂k)]}

τ−1
∏

i=k+1
si

+
τ−1
∑

k=j

(µ1
k)

2σ2
k +(µ2

k)
2σ1

k−2µ1
k µ2

k θk
2[σ1

k σ2
k−(θk)2]

T
∑

m=k+1
ξm
( m−1

∏
i=k+1

si

)( τ−1
∏

i=k+1
si

)
2

T
∑

m=k+1
ξmηm

( m−1
∏

i=k+1
s2

i

) .

(A19)

Combining the above proofs, we have Theorem 1 holds for t = j. Based on mathematical
induction, Theorem 1 is proved.

Appendix C. The Proof of Corollary 1

When the riskless rate of return is constant and the risk aversion coefficient is in exponential form,
the Nash equilibrium investment strategies in Theorem 1 become

û1
t =

[µ1
t σ2

t − µ2
t θt]

2α[σ1
t σ2

t − (θt)2]

T
∑

m=t+1
ξmsm−t−1

T
∑

m=t+1
ξmηTxT−ms2(m−t−1)

, (A20)

û2
t =

µ2
t σ1

t − µ1
t θt

2(1− α)[σ1
t σ2

t − (θt)2]

T
∑

m=t+1
ξmsm−t−1

T
∑

m=t+1
ξmηTxT−ms2(m−t−1)

. (A21)

When considering the intertemporal restrictions, i.e., ξt = 1, t = 1, 2, · · · , T, from Equations (A20)
and (A21), we can get that

|û1
t |with intertemporal restrictions =

∣∣∣∣∣ µ1
t σ2

t − µ2
t θt

σ1
t σ2

t − (θt)2

∣∣∣∣∣ 1
2α

(1− sT−t)

(1− s)
1

ηT

x− s2

[xT−t − s2(T−t)]
, (A22)



Mathematics 2020, 8, 139 25 of 26

|û2
t |with intertemporal restrictions =

∣∣∣∣∣ µ2
t σ1

t − µ1
t θt

σ1
t σ2

t − (θt)2

∣∣∣∣∣ 1
2(1− α)

(1− sT−t)

(1− s)
1

ηT

x− s2

[xT−t − s2(T−t)]
. (A23)

When the intertemporal restrictions are not considered, i.e., ξt = 0, t = 1, 2, · · · , T − 1, ξT = 1,
from Equations (A20) and (A21), we can get that

|û1
t |without intertemporal restrictions =

∣∣∣∣∣ µ1
t σ2

t − µ2
t θt

σ1
t σ2

t − (θt)2

∣∣∣∣∣ 1
2α

1
ηTsT−t−1 , (A24)

|û2
t |without intertemporal restrictions =

∣∣∣∣∣ µ2
t σ1

t − µ1
t θt

σ1
t σ2

t − (θt)2

∣∣∣∣∣ 1
2(1− α)

1
ηTsT−t−1 . (A25)

Then,

|û1
t |with intertemporal restrictions − |û1

t |without intertemporal restrictions

=
∣∣∣ µ1

t σ2
t −µ2

t θt
σ1

t σ2
t −(θt)2

∣∣∣ 1
2αηT

{
(1−sT−t)
(1−s)

x−s2

[xT−t−s2(T−t) ]
− 1

sT−t−1

}
, (A26)

|û2
t |with intertemporal restrictions − |û2

t |without intertemporal restrictions

=
∣∣∣ µ2

t σ1
t −µ1

t θt
σ1

t σ2
t −(θt)2

∣∣∣ 1
2(1−α)ηT

{
(1−sT−t)
(1−s)

x−s2

[xT−t−s2(T−t) ]
− 1

sT−t−1

}
. (A27)

The condition (1−sT−t)
(1−s)

x−s2

[xT−t−s2(T−t) ]
− 1

sT−t−1 > 0 is equivalent to the condition x−s2

xT−t−s2(T−t) >

1−s
sT−t−1(1−sT−t)

. Then, three cases in Corollary (1) are proved.
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