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Abstract: A major neglected weakness of many ecological models is the numerical method used
to solve the governing systems of differential equations. Indeed, the discrete dynamics described
by numerical integrators can provide spurious solution of the corresponding continuous model.
The approach represented by the geometric numerical integration, by preserving qualitative
properties of the solution, leads to improved numerical behaviour expecially in the long-time
integration. Positivity of the phase space, Poisson structure of the flows, conservation of invariants
that characterize the continuous ecological models are some of the qualitative characteristics well
reproduced by geometric numerical integrators. In this paper we review the benefits induced by the
use of geometric numerical integrators for some ecological differential models.
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1. Introduction

Ecological modelling based on non linear differential systems of equations can be divided into
two main categories [1]. Predictive modelling aims to reproduce, based on the knowledge provided
by historical time series, the real observed phenomena and to predict their state in the future. Due to
the large amount of uncertainty contained in ecological data, however, the approach of conceptual
modelling is an effective alternative aimed to understand the main features of the ecological dynamics
by making scenario analysis [2]. In both approaches, the mathematical model is based on governing
laws described by non linear differential systems of equations. Their correct solution requires robust
and accurate numerical algorithms; nevertheless, numerical schemes for ecological models have
received little attention in the literature as most descriptions of models outline the governing equations
but do not discuss their numerical solution. Indeed, it seems reasonable to assume that, within a
predictive approach, numerical errors are always overwhelmed by uncertainties in the data and
governing equations and to pay attention to numerical robustness is, therefore, unwarranted. On the
other side, for conceptual modelling, first-order explicit numerical procedures are generally used in
the belief that they are sufficient to infer potential future scenarios.

However, in literature, a rigorous numerical analysis is a recognized need due to the often
neglected fact that the dynamics of the numerical flow can differ significantly from that of the original
differential system:

• ‘An inadequate choice of a numerical method may have a detrimental effect on the study by
making simulations costly and even producing wrong results’ [1];

• ‘Erroneous or misleading conclusions of model analysis and prediction arising from numerical
artifacts in hydrological models are intolerable’ [3];

• ‘The literature abounds with examples of spurious behavior of numerical solutions, e.g., spurious
fixed points, numerical ’chaos’, and spurious periodicity’ [4].
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In the last decades, the theory of numerical methods allowed excellent general-purpose codes,
mainly based on Runge Kutta methods or linear multistep methods. The born of the geometric
numerical integration operated in the literature a shift of view-point: a numerical method is viewed as
a discrete dynamical system which approximates the flow of the differential equation while preserving
some of its specific properties. These are crucial for a qualitatively correct simulation of the dynamics
and always improve long-time numerical behaviour [5].

In ecological modelling, the approximated solutions should be able to reproduce the main physical
qualitative characteristics of the observed quantities (e.g., positive concentrations, mass/energy
conservation) in order to make accurate previsions or outline realistic scenarios. For this reason,
geometric numerical integration plays a crucial role in the analysis of ecosystem models described
by systems of differential equations. The principal flow structures that arise in ecological modelling
and that have to be preserved are Poisson maps. By means of the Darboux-Lie theorem, it is possible
to find a transformation such that in the novel coordinates, a Poisson problem assumes a canonical
Hamiltonian form. Then, symplectic methods, as for example collocation methods [6], are convenient
for the structure preserving long-time integration. In this regard, as the order of the error of the
collocation method is basically the same as of the underlying quadrature rule, one can exploit the
Gaussian splines rules [7–9], for numerical integration to keep the same order of error, while requiring
fewer quadrature points [5]. Instead of trasforming Poisson maps in Hamiltonian maps, in this
review we will describe discrete dynamical systems that directly preserve the Poisson structure.
They will correspond to Poisson numerical integrators of Poisson ecological systems. We will show
their properties and the gain in performance with respect to classical procedures.

Other aspects that, in the nonlinear context, are alternative to the preservation of the structure of
the flow, but not less important, are the phase-space preservation [10] and the conservation of invariants
(see, for example, [11,12]). Indeed, since in computational ecology all involved quantities (i.e., densities,
masses or concentrations) should be nonnegative, is of outmost importance to preserve the positive
phase-space of the dynamics in order to produce physically valid numerical approximations. Moreover,
approximations that preserve linear invariants are able to provide more accurate description of
biogeochemical processes in ecosystem models [13].

In this paper, we will describe the application and the results of the analysis of geometric numerical
integration in the framework of ecological modeling. For both predictive and conceptual real world
modelling, the use of geometric numerical integration was indeed the favourite tool for making
accurate qualitative scenario analysis and saving computational time [14,15]. Limiting to first-order
procedures, we will illustrate the most suitable geometric numerical integrators for some ecosystem
dynamics models. For optimal control problems that model management policies, we will describe the
advantage of the symplectic Runge-Kutta pairs in order to get efficient methods easy to be implemented
within any numerical software [16]. Finally, as future perspective, we will present some examples of
ecological models featured by both Poisson and biochemical structure [17] and we will discuss about
some open questions related to their numerical approximation.

2. Poisson Integrators for Poisson Systems in Ecology

Ecosystem population dynamics, including organism such as algae, invertebrates, fish, large
herbivores and carnivores, are characterized by the interaction between predator and prey populations
that controls and drives changes in populations over time. When resources are limited, individuals
compete for access to resources, and populations decline. To survive and reproduce, they must
obtain sufficient food while simultaneously avoiding becoming food for a predator. To address
the trade-off between food intake and predator avoidance, ecologists have turned to mathematical
models to better understand foraging behavior and predator-prey dynamics. Lotka-Volterra models
provide the main tool to help population ecologists understand the factors that influence population
dynamics. Although the models greatly simplify actual conditions, they demonstrate that under
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certain circumstances, predator and prey populations can oscillate over time in a manner similar to
that observed in the real-word.

The Lotka-Volterra model falls in the more general class of ecological models called M-systems [18]
for which population dynamics is described by Poisson systems analogous to the Hamiltonian
formulation of classical mechanics. Other important examples of ecological differential models featured
by a Poisson structure can be found among multispecies Lotka-Volterra systems [19]. The classical
example is the Rock-Paper–scissor model based on relationships that characterize communities without
strict competitive hierarchies [20].

We will see that the geometric numerical integration of ecological models featured by a Poisson
dynamics, performed by means of Poisson integrators [5], especially over long time horizons, improves
the qualitative results and, consequently the analysis of ecosystems scenarios.

Before entering into the details, we recall that, given a vector-valued scalar function H = H(y; t),

called Hamiltonian function, a Poisson system is defined by the differential equation
dy
dt

= B(y)∇H,

where B(y) is a matrix skew-symmetric operator and satisfies

n

∑
l=1

(
∂bij(y)

∂yl
blk(y) +

∂bjk(y)
∂yl

bli(y) +
∂bki(y)

∂yl
bl j(y)

)
= 0 (1)

for all i, j, k ( the Jacobi identity). The flow ϕt(y) of a Poisson-system is a Poisson map i.e., its Jacobian
matrix φ′t satisfies

ϕ′t(y) B(y)ϕ′t(y)
T = B(ϕt(y)).

If the skew-symmetric operator B(y), which allows to define a Poisson bracket, is of constant
rank n− q = 2r, then there exist q functions C1(y), C2(y), . . . Cq(y) called Casimirs, which satisfy
∇Ci(y)T B(y) = 0. Consequently,

{Ci, H} {y} (= ∇Ci(y)T B(y)∇H(y) ) = 0,

resulting Casimirs first integrals of Poisson system for all Hamiltonian function H.
In the next section, we provide two model examples representative of Poisson dynamics in ecology

and we review the principal Poisson integrators developed in the recent literature for their numerical
approximation. Moreover, we will illustrate the rock-scissor-paper model and the Hirota’s algorithm
for its numerical approximation.

2.1. Dynamical M-System

There exists a wide class of systems in ecology, that are called M-systems, for which population
dynamics can be described by a phase-space theory analogous to the Hamiltonian formulation of
classical mechanics [18]. An M-system is a dynamical system defined by a given resource function
M (u, v; t) and equation of motions given by

u̇ = − u v
∂M
∂v

, v̇ = u v
∂M
∂u

.

By setting y = (u, v), it is easy to see that M-systems are special cases of Poisson systems
dy
dt

= B(y)∇M with Hamiltonian function M (y; t) and skew-symmetric matrix operator

B(y) =

(
0 −u v

u v 0

)
(2)
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which satisfies the Jacobi identity (1). By considering the change of variables: ũ = ln (u/σ), ṽ =

ln (v/ξ) where σ, ξ > 0, the class of M-system on R2
+ has an associated Hamiltonian system

˙̃u = −∂H
∂ṽ

, ˙̃v =
∂H
∂ũ

where H(ũ, ṽ; t) = M(u(ũ), v(ṽ); t) is the Hamiltonian function. Notice that, the relations comprise
the positive Poisson phase plane R2

+ into the Hamiltonian phase plane R2; conversely, the inverted
relations comprise the Hamilton phase space R2 into the positive Poisson phase plane R2

+.
The first example of a positive M-system is given by the Lotka-Volterra dynamics that, in

adimensional variables is written as

u̇ = (a − v) u, v̇ = (u − b) v.

In this case, the resource function M (u, v) is given by M(u, v) = −a ln v + v − b ln u + u (see
also [5], Sec VII.2.2). It represents an example of separable M-system as the resource function is
separable in two parts, one depending on u and the other on v i.e., M(u, v) = K(u) + L(v) with
K(u) = u− b ln u and L(v) = v − a ln v.

The second example of positive M-system considers a two-species system described by the
equations

u̇ = u (γ + µ v ln
u
us

), v̇ = v (k − µ v). (3)

where the second equation defines the logistic evolution, γ and k are the growing rate for the population
u and v respectively ; µ v represents the density dependent mortality rate, and us is a saturation constant.
The corresponding M -function is defined by

M = −γ ln v + k ln u − µ v ln
u
us

.

Notice that, in this case, M is not separable in two parts each depending on only one variable.

2.2. Poisson Integrators for M-Systems

Given a dynamical M-system, a numerical one-step method yn+1 = Φ∆t(yn) is called Poisson
integrator for a M -system if it is a Poisson map whenever applied to the M -system i.e., if the Jacobian
Φ∆t(yn)′ satisfies

Φ∆t(yn)
′B(yn)Φ∆t(yn)

′T = B(Φ∆t(yn)).

where B (of full rank) is defined in Equation (2).
The Symplectic Euler scheme

un+1 − un

∆t
= −un+1 vn ∂M

∂v
(un+1, vn),

vn+1 − vn

∆t
= un+1 vn ∂M

∂u
(un+1, vn)

is a Poisson integrator for separable M-system. It is implicit, it is not a Poisson integrator for general
non-separable M-system and, in general, starting from positive values, it does not provide positive
solutions without constraining the stepsize. This constraint, for Lotka-Volterra dynamics results
stronger than the condition required by the linear stability analysis [21].

The explicit variant of symplectic Euler [22]

un+1 − un

∆t
= −un vn ∂M

∂v
(un, vn),

vn+1 − vn

∆t
= un+1 vn ∂M

∂u
(un+1, vn)

is a Poisson integrator for a separable M-systems. As symplectic Euler is not a Poisson integrator
for general non-separable M-systems and in general, starting from positive solution, it does not
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provide positive solutions. When applied to Lotka-Volterra dynamics, the condition for positivity
for exponentially long-time intervals gained by means of backward error analysis, is stronger than
conditions given by the linear stability analysis [21]. The main advantage is its explicit functional form.

A Poisson integrator, suitable for positive M-systems, is Poisson Euler [5]:

un+1 = un e
−∆t vn

∂M
∂v

(un+1, vn)
, vn+1 = vn e

∆t un+1
∂M
∂u

(un+1, vn).
(4)

together with its adjoint. In the following, we recall the main properties proved in [23].

Theorem 1. The first-order method (4) is a Poisson integrator for M-systems for any resource M-function such

that 1 + ∆t un+1 vn ∂2M
∂u∂v

(un+1, vn) 6= 0. It provides positive solutions for all ∆t > 0 whenever v0, u0 are
positive. In case of separable M-systems it is also explicit.

Theorem 2. Provided that ∆t <
2√
a b

, the numerical scheme (4), linearized around the equilibria, has the

same stability properties of the Lotka-Volterra model i.e., it has a saddle point at the origin and a neutral center
at the internal equilibrium (b, a).

Form the above properties, Poisson Euler provides positive solutions without constraints on the
choice of the stepsize and has the same linear stability constraints of the Symplectic Euler method when
applied to Lotka-Volterra dynamics. For separable M-systems it is explicit while it results implicit for
non separable M-systems. This drawback is not overcome by the Explicit Variant of Poisson Euler
scheme, given by

un+1 = un e
−∆t vn

∂M
∂v

(un, vn)
, vn+1 = vn e

∆t un+1
∂M
∂u

(un+1, vn),

as it results a discrete Poisson map only in case of separable M-system. To illustrate the performance of
the methods, we approximate the solution of Equation (3) which represents a not separable M-system.
In Figure 1 the gain in performance of the Poisson Euler schemes with respect to Symplectic Euler
schemes is illustrated.
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Figure 1. Temporal dynamics of the error on the solution of (a) Equation (3) and (b) on the invariant.
Parameters: us = 1.55, k = 10, γ = 0, µ = 7.0922. Initial values: u0 = 1.1458, v0 = 0.14. Stepsize
∆t = 10−3.
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2.3. Positive Integrators for Generic Predator-Prey Dynamics

Consider a generic two-species predator-prey system

u̇ = f (u, v), v̇ = g(u, v).

The idea to perform the log transform, apply a symplectic Runge-Kutta scheme and then
transform back by the exponential, allows to build numerical integrators able to provide positive
approximations [23]. The first order variants of these schemes, that we continue to call Poisson Euler
as it generalizes the Poisson Euler for M-dynamics, are given by:

Φ[R]
∆t : un+1 = un e

∆t
f (un+1, vn)

un+1 , vn+1 = vn e
∆t

g(un+1, vn)

vn (5)

with its explicit variant

Σ(Φ[R]
∆t ) : un+1 = un e

∆t
f (un, vn)

un , vn+1 = vn e
∆t

g(un+1, vn)

vn , (6)

its adjoint

Φ[R]∗
∆t : vn+1 = vn e

∆t
g(un, vn+1)

vn+1 , un+1 = un e
∆t

f (un, vn+1)

un , (7)

and its explicit variant

Σ(Φ[R]∗
∆t ) : vn+1 = vn e

∆t
g(un, vn)

vn , un+1 = un e
∆t

f (un, vn+1)

un . (8)

Notice that, when f (u, v) = u F(v) then Poisson Euler method (5) results explicit; similarly, when
g(u, v) = v G(u) the adjoint method (7) results explicit too. In the sequel, the performance of these
positive schemes will be illustrated when applied to the approximation of the reaction semiflow of a
spatially explicit dynamics.

2.4. Comparison Among Integrators

In Table 1 we summarize the properties of the main first-order geometric numerical integrators
here proposed and we compare their computational complexity with respect to classical explicit and
implicit Euler schemes. To generalize the proposed approaches to 2N dimensional interactions with
N > 1, we refer to the solution of the ODE system

u̇ = f(u, v), v̇ = g(u, v)

where u, v, f, g ∈ RN . We leave out the costs due to the evaluation of N-dimensional vector functions
and we account only for the solution of systems of equations. We distinguish the methods according
to their functional form:

• explicit (E); at each step only function evaluations are performed;
• implicit (I); at each step the method requires the solution of a 2N-dimensional system of nonlinear

equations;
• semi-implicit (SI) at each step the method requires the solution of an N-dimensional system of

nonlinear equations;
• linearly semi-implicit (LSI); at each step the method requires the solution of an N-dimensional

system of linear equations.
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The method considered are listed below.

• Explicit Euler (EE)

un+1 − un

∆t
= f(un, vn),

vn+1 − vn

∆t
= g(un, vn);

• Implicit Euler (IE)

un+1 − un

∆t
= f(un+1, vn+1),

vn+1 − vn

∆t
= g(un+1, vn+1);

• Symplectic Euler (SE)

un+1 − un

∆t
= f(un+1, vn),

vn+1 − vn

∆t
= g(un+1, vn);

• Explicit Variant of Symplectic Euler (EVSE)

un+1 − un

∆t
= f(un, vn),

vn+1 − vn

∆t
= g(un+1, vn);

• Adjoint of Symplectic Euler (SE∗)

un+1 − un

∆t
= f(un, vn+1),

vn+1 − vn

∆t
= g(un, vn+1);

• Explicit Variant of the adjoint of Symplectic Euler (EVSE∗)

un+1 − un

∆t
= f(un, vn+1),

vn+1 − vn

∆t
= g(un, vn);

• Poisson Euler (PE)

un+1
i = un

i e
∆t

fi(un+1, vn)

un+1
i , vn+1

i = vn
i e

∆t
gi(un+1, vn)

vn
i , i = 1, . . . , N;

• Explicit Variant of Poisson Euler (EVPE)

un+1
i = un

i e
∆t

fi(un, vn)

un
i , vn+1

i = vn
i e

∆t
gi(un+1, vn)

vn
i , i = 1, . . . , N;

• Adjoint of Poisson Euler (PE∗)

un+1
i = un

i e
∆t

fi(un, vn+1)

un
i , vn+1

i = vn
i e

∆t
gi(un, vn+1)

vn+1
i , i = 1, . . . , N;

• Explicit Variant of the adjoint of Poisson Euler (EVPE∗)

un+1
i = un

i e
∆t

fi(un, vn+1)

un
i , vn+1

i = vn
i e

∆t
gi(un, vn)

vn
i , i = 1, . . . , N.
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Table 1. Comparison among first-order methods: properties (N = No, Y = Yes) and computational
complexity (E = explicit, I = implicit, SI = semi-implicit, LSI = linearly semi-implicit, see Section 2.4 for
further details). The symbol ◦ denotes the Hadamard (elementwise) product.

Methods EE IE SE EVSE SE * EVSE * PE EVPE PE * EVPE *

Unconditionally Positive

u̇ = f(u, v) N Y N N N Y Y Y Y Yv̇ = g(u, v)

Poisson Structure

u̇ = −u v
∂M
∂u

M sep. M sep. M sep. M sep. M sep. M sep.

v̇ = u v
∂M
∂v

N N Y Y Y Y Y Y Y Y

Functional Form

u̇ = f(u, v) E I SI E SI E SI E SI Ev̇ = g(u, v)

u̇ = u ◦ F(v) E I LSI E SI E E E SI Ev̇ = g(u, v)

u̇ = f(u, v) E I SI E LSI E SI E E Ev̇ = v ◦ G(u)

2.5. Hirota’s Scheme for Rock-Paper-Scissors Model

The classic system, that involves a community of three competing species satisfying a relationship
similar to the children’s game Rock-Paper-scissors, has been considered in [20] to study how local
dispersal promotes biodiversity for non-transitive communities, that is, those without strict competitive
hierarchies. Such relationships, where rock crushes scissors, scissors cuts paper, and paper covers rock
have been demonstrated in several natural systems (see for example [24,25]). The dynamical model is
described by a three species Lotka-Volterra system:

u̇ = u(z− v), ż = z(v− u), v̇ = v(u− z).

By setting y = (u, z, v), the three species model may be defined ad Poisson systems in two ways:

dy
dt

= B1∇H2 or
dy
dt

= B2∇H1,

where

B1(y) =

 0 −1 1
1 0 −1
−1 1 0

 , B2(y) =

 0 u z −u v
−u z 0 z v
u v −z v 0

 ,

and H1 = u + z + v, H2 = u z v. H1 is the Casimir w.r.t. the Poisson bracket defined by B1 and H2 is
the Casimir w.r.t. the Poisson bracket defined by B2.

A numerical one-step method yn+1 = Φ∆t(yn) is a Poisson integrator for the above three species
Lotka-Volterra system if the Jacobian Φ∆t(yn)′ is a Poisson map w.r.t. B1 which preserves the Casimir
H1 or is a Poisson map w.r.t. B2 which preserves the Casimir H2. Hirota’s algorithm given in [26] for
the above three-species example, is described by the following iterative scheme [19] :

un+1 − un

∆t
= unzn − un+1vn+1,

zn+1 − zn

∆t
= znvn − zn+1un+1,

vn+1 − vn

∆t
= vnun − vn+1zn+1.

It results that it is a Poisson integrator for
dy
dt

= B2∇H1 i.e., it is a Poisson map w.r-t B2 which
preserves the Casimir H2.
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Another important geometric aspect of the Hirota’s algorithm is the preservation of positivity.
Indeed, starting from positive values, it provides positive solutions without constraints on the choice
of stepsize. This can be shown by writing the Hirota’s algorithm as:

un+1 =
un(∆t2zn vn + ∆t zn + 1)

∆t2vn un + ∆t vn + 1
,

zn+1 =
zn(∆t2vn un + ∆t vn + 1)

∆t2un zn + ∆t un + 1
,

vn+1 =
vn(∆t2un zn + ∆t un + 1)

∆t2zn vn + ∆t zn + 1
.

3. Poisson Integrators for Spatially Extended Ecosystem Dynamics

In the previous section, we have recalled that the predator-prey interactions of different species,
are extremely important in some temporal ecological problems. Although the space has been neglected
so far, to describe the onset of important phenomena in some ecosystems dynamics, the spatial factors
should be included in the model.

3.1. Poisson Euler for Turing Patterns Occurrence in a Ratio-Dependent Phytoplankton-Zooplankton Model

When space is included in the models, the formation of spatial patterns constitutes a very active
research area in ecosystem modelling, based on the pioneering work of Turing [27]. There is a huge
literature on the subject; however, to show the benefits of using Poisson integrators for predicting the
onset of Turing patterns here we will focus on the specific model described in [28]. It is a three-chain
coupled map lattice model built for exploring the spatiotemporal complexity of a predator-prey system
with migration and diffusion. Based on Turing instability analysis, the authors derive pattern formation
conditions for the predator-prey system. Via numerical simulation, Turing patterns can be found
with subtle self organized structures under diffusion-driven and migration-driven mechanisms. It is
evident that, if the aim of numerical simulation is to establish the formation of patterns, it is crucial to
have numerical flows which share the same qualitative characteristics of the theoretical ones.

The model is a ratio-dependent phytoplankton- zooplankton model in a two dimensional space
Ω = [0, L]2. Periodic boundary conditions are set and dynamics is described by

∂P
∂t

= kP∇2P − Wg
∂P
∂x

+ r P
(

1 − P
k

)
− k P Z

Z + k P

∂Z
∂t

= kZ∇2Z +
k P Z

Z + k P
−mz Z.

(9)

Linear stability analysis established that (P1, Z1) = (k, 0) is an unstable equilibrium of the local
dynamics. Under the hypothesis that mz < 1 and r + k(mz − 1) > 0, the equilibrium (P2, Z2) =(

k(r + k(mz − 1))
r

,
k2(1−mz)(r + k(mz − 1)

mz r

)
is stable.

Given P(n)
i,j , Z(n)

i,j representing prey and predator density in the (i, j) spatial cell at the time
tn = t0 + n∆t, the discrete flow is split in advection–diffusion–reaction (ADR) semiflows:

1. discrete advection semiflow: given ΓdΨ(n)
i,j := Ψ(n)

i−1,j − Ψ(n)
i,j ,

P̃(n)
i,j = P(n)

i,j +
∆t
∆x

Wg Γd P(n)
i,j , Z̃(n)

i,j = Z(n)
i,j ,
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2. discrete diffusive semiflow: given ∆dΨ(n)
i,j := Ψ(n)

i+1,j + Ψ(n)
i−1,j + Ψ(n)

i,j+1 + Ψ(n)
i,j−1 − 4Ψ(n)

i,j ,

P(n)
i,j = P̃(n)

i,j +
∆t

∆x2 kP ∆d P̃(n)
i,j , Z(n)

i,j = Z̃(n)
i,j +

∆t
∆x2 kZ ∆d Z̃(n)

i,j ,

3. discrete reaction semiflow: advances in time with the explicit variant of (the adjoint of)
Poisson-Euler (8):

Z(n+1)
i,j = Z(n)

i,j exp

∆t G(P(n)
i,j , Z(n)

i,j )

Z(n)
i,j



P(n+1)
i,j = P(n)

i,j exp

∆t F(P(n)
i,j , Z(n+1)

i,j )

P(n)
i,j


In [28] the discrete reaction semiflow advances in time with explicit Euler. Here, we use Poisson

Euler scheme to investigate the performance of a geometric numerical integrator.

3.2. Turing Instability Analysis of ADR Discrete Semiflows

We consider a spatially heterogeneous perturbation of the stable equilibrium (P2, Z2) and we
consider the linearized solution (P̂(n)

i,j , Ẑ(n)
i,j ) of the discrete flow around (P2, Z2). As Γd, ∆d, and

Λd := ∆d Γd are commuting, they have a group of common eigenvalues in correspondence of
periodic boundary conditions. Assuming that Xi,j

ī, j̄ , with wavenumbers ī, j̄ = 1, . . . M, is the common

eigenfunction, the inner products Ẑ(n) = ∑
i,j=1 ...M

Xi,j
ī, j̄ , and Ẑ(n)

i,j , P̂(n) = ∑
i,j=1 ...M

Xi,j
ī, j̄ P̂(n)

i,j , satisfy(
Ẑ(n+1)

P̂(n+1)

)
= J̄

(
Ẑ(n)

P̂(n)

)
where

J̄ :=

(
a1,1 b1,1(ī, j̄) a1,2 b1,2(ī, j̄)
a2,1 b2,1(ī, j̄) a2,2 b2,2(ī, j̄)

)
.

Given λ+, and λ− the eigenvalues of J̄, the occurrence condition for Turing instability can be
written as

L = max
ī=1,...,M

L(ī) > 1, L(ī) := max
j̄=1,...,M

max( |λ+|, |λ−| ).

Consider that B(ī, j̄) =

(
b1,1(ī, j̄) b1,2(ī, j̄)
b2,1(ī, j̄) b2,2(ī, j̄)

)
is linked to the eigenvalues of the common

eigenfunctions of the discrete operators Γd, ∆d, Λd while A =

(
a1,1 a1,2

a2,1 a2,2

)
is the Jacobian evaluated

at (P2, Z2) of the discrete reaction semiflows defined by the numerical methods. It is evident that,
changing the numerical method used to discretize the reaction semiflow, changes the entries of the
matrix A and, consequently, the conditions for Turing instability. Of course, letting both the stepsizes
∆t and ∆x go to zero, all the numerical methods should predict the occurrence or non-occurence of
Turing instability for the continuous model (9).

In Figure 2, in correspondence of parameters kP = 0.02, kZ = 0.2, k = 1.15, mz = 0.6, r = 0.5 and
T = 2250, L = 100 we show the phytoplankton distribution P at T = 2250 of the discrete ADR model
which proceeds with ∆t = 0.05 in the square [0, 100]2 discretized with ∆x = 0.5: we can observe the
transition from hot spots-stripes to banded patterns obtained by increasing the advective coefficient
Wg. In the same Figure we show that, in correspondence of that values of Wg, there is always a
non empty set of wavenumbers where the occurrence condition for Turing instability is satisfied.
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In our simulations, we used Poisson Euler as discrete reaction semiflow; however, results remained
unchanged if, in the third step of the algorithm described in Section 3.1, we use Explicit Euler in place
of Poisson Euler to approximate the reaction step.

Now, set the parameters k = 0.96 and Wg = 0.01 and keep all the others unchanged. In Figure 3
we show the the Turing instability occurrence condition at T = 2250 of the discrete ADR model in the
square [0, 100]2 discretized with ∆x = 1 and Explicit Euler semiflow (left) that proceeds with three
different values of temporal stepsize ∆t = 0.1, 0.5, 0.9. While with larger values of the time step
the Turing instability occurrence condition is satisfied, with ∆t = 0.1 the condition is not satisfied.
This means that, if we want to infer the behaviour of the continuous model (9) with the ADR model,
the explicit Euler discrete semiflow can give a wrong prediction if the temporal stepsize is not chosen
sufficiently small.

(a) (b) (c)

0 50 100 150 200
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

L(
i)

Turing instability occurence

 

 

k
P
=0.02, k

Z
=0.2, k=1.15, m

z
=0.6, r=0.5, ∆t=0.05, ∆x=0.5, T=2250, L=100 

W
g
=0.001

W
g
=0.1

W
g
=0.5

(d)

Figure 2. From hot spots-stripes to banded patterns obtained by coefficient (a) Wg = 0.001, (b) Wg =

0.1, and (c) Wg = 0.5. (d) Turing instability occurrence condition with both Euler and Poisson
discrete semiflow.

With the same set of parameters, instead, Poisson Euler predicts the non occurrence of Turing
instability even in correspondence of the largest stepsize ∆t = 0.9 (Figure 3b). This seems to indicate
that using geometric numerical method to discretize a semiflow featured by a given structure (in this
case the reaction semiflow featured by a Poisson structure) produces solutions qualitatively more
similar to the solution of the theoretical flow.
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Figure 3. Occurrence Turing instability condition with explicit Euler (a) and Poisson Euler (b) for
decreasing values of time steps.

3.3. Geometric Integration for the Spatiotemporal Dynamics of Aquatic Ecosystems

The spatiotemporal complexity of plankton and fish dynamics is explored in the seminal
paper [29]. The authors show that the formation of a patchy spatial distribution of species can
be described by a two-species prey-predator (i.e., Phytoplankton-Zooplankton) interaction modelled
by the well-known Rosenzweig-MacArthur system [30], here given in non dimensional form:

∂u
∂t

= Du∆u + u ( 1 − u ) − u v
α + u

∂v
∂t

= Dv∆v +
β u v

α + u
− γ v.

(10)

The populations are supposed distributed in an horizontal two-dimensional domain where
zero-flux boundary conditions are set. The model (10) couples logistic prey growth with Holling II
functional predator response and shows a very rich dynamics. Indeed, for a purely homogeneous initial
distribution of species, the system stays homogeneous forever and no spatial pattern emerges; for a
very weakly perturbed initial distribution, a smooth pattern arises that is not persistent and gradually
evolves to the homogeneous distribution; for somehow stronger initial perturbations, the system
evolves to the formation of a jagged spatial pattern which is persistent in time. The formation of the
irregular patchy structure can be preceded by the evolution of a regular spiral spatial pattern.

Similarly to the well-known Rosenzweig-MacArthur model (10), the principal population
dynamics models are based on logistic prey growth and ‘Holling type’ functional response of the
predators [31]. They can exhibit spiral waves, target waves, and spatiotemporal chaos; for all those
complex dynamics, the geometric numerical approach can represent a powerful tool to reproduce the
correct behavior of the continuous solutions.

3.4. Positive Schemes for Spatially Extended Predator-Prey Dynamics

In this section, we focus on spatially-extended predator-prey models described by
reaction–diffusion systems in the following general form

∂u
∂t

= f (u, v) + Du∆u, (11)

∂v
∂t

= g(u, v) + Dv∆v, (12)
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where u(x, t) and v(x, t) represent population densities of prey and predators at time t and position x
and Du and Dv are positive constant diffusion coefficients. The equations evolve in ΩT := Ω× (0, T)
where the domain Ω is a bounded and open subset of Rd, d ≤ 3. The system is augmented with initial
conditions

u0(x) := u(x, 0), v0(x) := v(x, 0), x ∈ Ω, (13)

and homogeneous zero-Neumann boundary conditions. To assure the non-negativity of solutions
which correspond to biologically meaningful densities, the reaction kinetics have to satisfy [32]

f (0, v), g(u, 0) ≥ 0, ∀u, v ≥ 0. (14)

Consequently, if the initial data (u0(x), v0(x)) is chosen in [0,+∞)2 for all x ∈ Ω, then by a
maximum principle the solution (u(x, t), v(x, t)) also lies in [0,+∞)2, which is a positively invariant
region for the system. For the numerical approximation, in [23] a positive first order accurate integrator
is obtained by compositions of exact and numerical flow. Firstly, the spatial discretization of the
Laplacian operators transforms the problem (11) and (12) into the system

dy
dt

= Lhy + Fh(y) (15)

where Lh = diag(Du ∆h, Dv ∆h) represents an approximation of L = diag(Du ∆, Dv ∆) on a grid Ωh
with a mesh width h. The solution y := [uh, vh]

T represents an approximate function of [u, v]T such
that, for all t ∈ [0, T], y(t) = [uh(t), vh(t)]T ∈ Vh ×Vh, where Vh is the vector space of all the functions
from Ωh to R. For t ∈ [0, T] and Fh is the operator that associates to y(t) ∈ Vh × Vh the function
Fh(y(t)) ∈ Vh × Vh defined as Fh(y(t))(x) = [ f (uh(t)(x), vh(t)(x)) , g (uh(t)(x), vh(t)(x))]T :=
[ f (u(x, t), v(x, t)) , g (u(x, t), v(x, t))]T , for all x ∈ Ωh.

The diffusive flow
dy
dt

= Lhy is supposed to be exactly computed being ϕ
[D]
∆t the exact flow.

The reaction flow
dy
dt

= Fh(y) is approximated by Poisson Euler schemes Φ[R]
∆t in Equation (5), or the

adjoint Φ[R]∗
∆t in Equation (7). Then the methods:

Φ∆t = Φ[R]
∆t ◦ ϕ

[D]
∆t , Ψ∆t = ϕ

[D]
∆t ◦Φ[R]

∆t

together with their adjoints

Φ∗∆t = ϕ
[D]
∆t ◦Φ[R]∗

∆t , Ψ∗∆t = Φ[R]∗
∆t ◦ ϕ

[D]
∆t .

are first order positive schemes, here denoted as EXponential-Positive Poisson (EXPP) schemes.
For example, EXPP schemes defined by Φ∗∆t = ϕ

[D]
∆t ◦ φ

[R]∗
∆t , advances in time according to the steps:

un1
h (x) = un

h(x) e
∆t

f (un
h(x), vn1

h (x))
un

h(x) x ∈ Ωh, un+1
h = e∆t Du∆h un1

h ,

vn1
h (x) = vn

h(x) e
∆t

g(un
h(x), vn1

h (x))
vn1

h (x) x ∈ Ωh, vn+1
h = e∆t Dv∆h vn1

h

starting with u0
h(x) = uh(0)(x) := u(x, 0) = u0(x), and v0

h(x) = vh(0)(x) := v(x, 0) = v0(x) for
all x ∈ Ωh. The above method, when applied for solving Rosenzweig-MacArthur model (10) reads
as follows:
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un1
h (x) = e∆t un

h(x) e∆t (1 − un
h(x)) e

−∆t
vn1

h (x)
un

h(x) + α x ∈ Ωh, un+1
h = e∆t Du∆h un1

h ,

vn1
h (x) = e−∆t γ vn

h(x) e
∆t

β un
h(x)

un
h(x) + α x ∈ Ωh, vn+1

h = e∆t Dv∆h vn1
h .

(16)

As we will see in the following, EXPP schemes outperform, in qualitative comparison, any existing
scheme in detecting the onset of chaos predicted by model (10) for a test-case given in literature. A more
general investigation on efficient positive approximations of the exponential flow ϕ

[D]
t (perfomed

in [23] with polynomial Krylov approximation), together with a rigorous theoretical analysis, is
still missing.

3.5. Implicit-Symplectic Schemes for Spatially Extended Predator-Prey Dynamics

Implicit-symplectic (IMSP) schemes are numerical integrators based on an implicit scheme for
the stiff diffusive term and a geometric integrator for the reaction function. IMSP schemes were
proposed in [33], as novel numerical schemes for the simulation of population and metapopulation
predator–prey dynamics.

In order to illustrate the methods, consider the spatial semidiscretization of the Laplacian that
yields to the system (15). The IMSP schemes are based on the expression of Fh in (15) as the sum of
two operators Fh = fh + gh, where for all t, fh(y(t)), gh(y(t)) ∈ Vh ×Vh are defined as fh(y(t))(x) =
[ f (uh(t)(x), vh(t)(x)) , 0]T , gh(y(t))(x) = [0, g (uh(t)(x), vh(t)(x))]T , for all x ∈ Ωh. Then, for i =
1, 2, 3, define yi such that y = y1 + y2 + y3 and satisfy

d y1

dt
= Lh(y),

d y2

dt
= fh(y),

d y3

dt
= gh(y).

A partitioned Runge-Kutta scheme is employed to solve the previous system: the dynamics
of y1 is approximated by a diagonally implicit method, then the evolution of y2 and y3 variables is
approximated by a partitioned symplectic Runge-Kutta method defined as

0
β1 α1
...

...
. . .

β1 α1 . . . . . . 0
β1 α1 . . . . . . βs αs

β1 α1 . . . . . . βs αs

β1

β1 0
...

...
. . .

β1 α1 . . . . . . βs

β1 α1 . . . . . . βs 0
β1 α1 . . . . . . βs αs

(17)

In [33] the authors set s = 1 in (17) and apply the following two-stage schemes

0 0 0
α + β α β

α β

0 0 0
α + β β α

β α

β β 0
β β 0

β α

in order to approximate y1, y2 and y3, respectively. The resulting method for the approximation of
y = [uh, vh]

T is given by
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Yn,1
h − yn

h
∆t

= β gh(Y
n,1
h ),

Yn,2
h − Yn,1

h
∆t

− α Lh Yn,1
h = β fh(Y

n,1
h ),

Yn,3
h − Yn,2

h
∆t

− β Lh Yn,3
h = α fh(Y

n,3
h ),

yn+1 − Yn,3
h

∆t
= α gh(Y

n,3
h ).

(18)

where yn ∈ Vh approximates y(tn), for tn = t0 + n ∆t and Yn,1
h , Yn,2

h , Yn,3
h ∈ Vh are intermediate steps.

For β = 1 and α = 0 this scheme is featured by first order approximation; when β = α = 1/2, then
it is a second order accurate method. Moreover, under the assumption that diffusivity coefficients Du

and Dv nullify, the first order scheme represents a symplectic Euler scheme which handles the variable
uh in an explicit way and the variable vh implicitly. The second order approximation reduces to the
classical Störmer–Verlet scheme when it is written as a partitioned Runge-Kutta method exploiting the
trapezoidal rule in order to approximate the stiff diffusive term.

In terms of uh and vh, the first order IMSP scheme, when applied to the Rosenzweigh–MacArthur
model (10) reads

un1
h (x)− un

h(x)
∆t

= un
h(x) (1 − un

h(x)) − un
h(x) vn1

h (x)
α + un

h(x)
x ∈ Ωh,

un+1
h − un1

h
∆t

= Du ∆h un+1
h ,

vn1
h (x)− vn

h(x)
∆t

= β
un

h(x) vn1
h (x)

α + un
h(x)

− γvn1
h (x) x ∈ Ωh,

vn+1
h − vn1

h
∆t

= Dv ∆h vn+1
h .

(19)

3.5.1. A Linear Stability Analysis

A stability analysis of IMSP schemes in terms of the diffusion and the reaction time-scales was
recently developed in [34]. Their numerical simulations reveal that IMSP schemes provide the best
choice for spatio-temporal dynamics of standing oscillations around an equilibrium of centre type.
Their dissipation analysis is based on the application of IMSP schemes to the ODE test system:

du
dt

= − β v + λ u,
dv
dt

= β u + λ v.

The first order IMSP scheme (19), introduced in [33], which approximate the diffusive term related
to the coefficient λ with implicit Euler and the reaction term with symplectic Euler, can be written as

un1 − un

∆t
= − β vn1 ,

vn1 − vn1

∆t
= β un

un+1 − un1

∆t
− λun+1 = 0,

vn+1 − vn1

∆t
− λvn+1 = 0.

By eliminating un1 and vn1 and setting ξ = λ ∆t, ν = β ∆t the numerical solution can be written as(
un+1

vn+1

)
= M

(
un

vn

)
, M =

1
1− ξ

(
1− ν2 −ν

ν 1.

)

By denoting with λ±M = ρMe±i θM the eigenvalues of M, and comparing the numerical with the
exact solution written as(

u(tn+1)

v(tn+1)

)
= eξ

(
cos(ν n) −sin(ν n)
sin(ν n) cos(ν n)

)(
u(tn)

v(tn)

)
,
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where the quantities δ(ξ, ν) = eξ − ρM(ξ, ν) and φ(ξ, ν) = ν − θM(ξ, ν) represent the dissipative
and dispersion errors, respectively. Since ξ < 0, we require that the IMSP method is dissipative i.e.,
ρM(ξ, ν) < 1. Since the eigenvalues of M are

λ±M =
2− ν2 ±

√
(ν2 − 2)− 4

2(1− ξ)

then ρM(ξ, ν) < 1 if and only if ν2 <
(ξ − 2)2

1− ξ
.

To study the dispersion properties of the IMSP method firstly we notice that λ±M = ρMcos(θM) ±
i sin(θM) with cos(θM) =

trace(M)

2
√

det(M)
. The dispersion error is calculated by

φ(ξ, ν) = ν − arccos
trace(M)

2
√

det(M)
= ν − arccos

2− ν2

2
√

1− ξ

It results that φ(ξ, ν) = −ν3/24 + O(ν5) for ξ → 0, with a constant error smaller than that of the
explicit ADI scheme and of IMplicit-EXplicit (IMEX)-Euler scheme [34].

3.5.2. Analysis of Semi-Discrete in Time IMSP First Order Scheme in Weak Form

The results of a more technical methodology based on the analysis of a semi-discrete in time
formulation of IMSP schemes has been performed in [32]. Let D = diag( Du, Dv ) be a linear matrix
operator and consider the vector G(y) = [ f (u, v), g(u, v)]T . With the previous notations, the system
(11)–(12) leads to the following continuous-in-time weak formulation: find y(·, t) = [u(·, t), v(·, t)] ∈
H1(Ω)× H1(Ω) such that (

yt, χ
)
+ (D∇y,∇χ) = (G(y), χ) (20)

for all χ ∈ H1(Ω)× H1(Ω) and for almost every t ∈ (0, T). Define the vectors G(u) = [ f (u, v), 0]T

and G(v) = [0, g(u, v)]T ; then IMSP scheme (in weak form) is defined as follows: for n = 0, . . . , N− 1,
find yn1 , yn2 , yn3 , yn+1 ∈ H1(Ω)× H1(Ω) such that ∀χ ∈ H1(Ω)× H1(Ω):(yn1 − yn

∆t
, χ
)
= β

(
G(v)(yn1), χ

)
(yn2 − yn1

∆t
, χ
)
+ α(D∇yn1 ,∇χ) = β

(
G(u)(yn1), χ

)
(yn3 − yn2

∆t
, χ
)
+ β(D∇yn3 ,∇χ) = α

(
G(u)(yn3), χ

)
(yn+1 − yn3

∆t
, χ
)
= α

(
G(v)(yn3), χ

)
.

For β = 1 and α = 0 we recover the first-order accurate IMSP scheme. In terms of the variables u
and v, it can be written as follows. For n = 0, . . . , N − 1, find vn1 , un1 , vn+1, un+1 ∈ H1(Ω) such that
for all χ ∈ H1(Ω)

(
un1 − un

∆t
, χ

)
=
(

f (un, vn1), χ
)
,

(
vn1 − vn

∆t
, χ

)
= (g(un, vn1), χ)

(
un+1 − un1

∆t
, χ

)
+ Du(∇un+1,∇χ) = 0,

(
vn+1 − vn1

∆t
, χ

)
+ Dv(∇vn+1,∇χ) = 0,

(21)
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where we adopted a uniform mesh grid of N + 1 points tn = n∆t, n = 0, . . . , N with constant time
step ∆t = T/N to discretize the temporal horizon (0, T). Moreover, v0 = v0(·) and u0 = u0(·) are the
initial densities of predators and prey respectively.

We summarize the main theoretical results proven in [32] obtained under the assumptions that
f (u, v) has logistic dominated growth in the first variable, namely

f (u, v) ≤ u(1− u), ∀u, v ≥ 0, (22)

and the function g satisfies a sub-linear growth in the second variable, i.e., there exists Cg > 0 such that

g(u, v) ≤ Cgv, ∀u, v ≥ 0. (23)

Theorem 3 (Positivity). Assume the time step ∆t < 1/L and Ω is a domain of class C1. Provided that the
initial conditions are positive, i.e., u0(x) = u(x, 0) > 0, v0(x) = v(x, 0) > 0, for all x ∈ Ω, then the solutions
un(x), vn(x) of the first-order scheme (21) are positive for all n ≥ 0.

Theorem 4 (Stability). Assume the time step satisfies ∆t ≤ 1/ max
{

1, 2Cg
}

. Then the solution to (21)
satisfies the following energy estimate:

‖uN‖2 + ‖vN‖2 +
N−1

∑
n=0

(
‖un+1 − un‖2 +

1
2
‖vn+1 − vn‖2

)
(24)

+ ∆t
N−1

∑
n=0

(
2Du‖∇un+1‖2+Dv‖∇vn+1‖2

)
≤ exp

(
2∆tN

∆ts − ∆t

)(
‖u0‖2 + ‖v0‖2

)
.

Theorem 5 (Error estimate). Let εn
u, εn

v ∈ (H1(Ω))′ denote the following local truncation errors for scheme
(21), satisfying

〈εn
u, χ〉 := 1

∆t
〈u(tn)−u(tn−1), χ〉 − 〈 f (u(tn−1), v(tn)), χ〉+ Du(∇u(tn),∇χ),

〈εn
v, χ〉 :=

1
∆t
〈v(tn)− v(tn−1), χ〉 − 〈g(u(tn−1), v(tn)), χ〉+ Dv(∇v(tn),∇χ),

where χ ∈ H1(Ω). Furthermore, let en
u, en

v ∈ H1(Ω) denote the point-wise errors

en
u = u(tn)− un, en

v = v(tn)− vn,

satisfying the following equations:

en+1
u − en

u
∆t

− Du∆hen+1
u = f (u(tn), v(tn+1))− f (un, vn1) + εn+1

u ,

en+1
v − en

v
∆t

− Dv∆hen+1
v = g(u(tn), v(tn+1))− g(un, vn1) + εn+1

v .

Assume the classical solution of (11) and (12) has the following regularity:

du
dt

,
dv
dt

,
d2u
dt2 ,

d2v
dt2 ∈ L2(0, T, (H1(Ω))′).

and assume the nonlinearities f , g are globally Lipschitz, i.e., there exists L > 0 such that

| f (u1, v1)− f (u2, v2)|+ |g(u1, v1)−g(u2, v2)| ≤ L(|u1−u2|+ |v1−v2|)
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for all ui and vi in a compact subset of R+ ×R+. Then, there exists a constant C(u, v) > 0 such that

max
0≤n≤N

(‖en
u‖+ ‖en

v‖) +
(

∆t
N−1

∑
n=0

(
Du‖∇en+1

u ‖2 + Dv‖∇en+1
v ‖2

)) 1
2

≤ C(u, v)
(
‖e0

u‖+ ‖e0
v‖+ ∆t

)
.

The above error estimate implies convergence and first-order accuracy in time for the solution
un, vn of Equation (21) with the assumption that e0

u, e0
v are also of order ∆t.

3.6. Numerical Comparison between IMEX and Geometric Integrators

Consider the dynamics of Equation (10) evolving in the horizontal layer Ω = [0, 900] × [0, 300]
with parameters α = 0.4, β = 2, γ = 0.6. Initial conditions are set as

u0(x) = u0(X, Y) = 6/35 − 2 · 10−7 (X − 180)(X − 720) − 6 · 10−7 (Y − 90)(Y − 210)
v0(x) = v0(X, Y) = 116/245 − 3 · 10−5 (X− 450) − 6 · 10−5 (Y− 135).

The five-point central difference approximation of the Laplacian in two dimensions on a grid Ωh
with stepsize h = 1 was used. The spatially explicit dynamics of the phytoplankton-zooplankton
model is shown in Figure 4 where the prey (u) approximations obtained with first order EXPP method
given in Equation (16) are plotted. We see that spirals appear with their centers located in the vicinity
of equilibria u∗ = 6/35 and v∗ = 116/245 of the dynamics. At t = 300 (see Figure 4) we observe the
onset of destruction of the spirals which leads to the formation of two growing embryos of the patchy
spatial pattern and finally, at t = 1200, the irregularities occupy the whole domain. In [29] the onset of
the spatial patterns near the critical points is already evident at t = 120.

Figure 4. Prey densities approximation with EXPP first order scheme for different temporal horizons:
t = 0, 120, 160, 300, 400, 1200.
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To explain such a difference in the transient to the formation of irregular patchy spatial patterns
the dynamics evolution in the temporal interval [0 120] in a smaller domain Ω = [0, 300] × [0, 300]
was considered. The IMEX first order scheme

un1
h (x)− un

h(x)
∆t

= un
h(x) (1 − un

h(x)) − un
h(x) vn

h(x)
α + un

h(x)
x ∈ Ωh,

un+1
h − un1

h
∆t

= Du ∆h un+1
h ,

vn1
h (x)− vn

h(x)
∆t

= β
un

h(x) vn
h(x)

α + un
h(x)

− γvn
h(x) x ∈ Ωh,

vn+1
h − vn1

h
∆t

= Dv ∆h vn+1
h .

(25)

was compared with EXPP in (16) and IMSP given in (19). The results are shown in Figures 5–7 and
summarized below.

• For IMEX and IMSP schemes (Figures 5 and 6) we start with a temporal stepsize ∆t = 1/3 (in
order to have convergence) and then we reduce the stepsize. As ∆t is reduced, the initial spiral
patterns generated by the IMEX scheme with large temporal stepsize disappear, thus confirming
that the spiral pattern in [29] is a numerical artifact.

• This is not the case of EXPP method (Figure 7), which exhibits no spiral, even with the larger initial
stepsize ∆t = 1. By reducing the stepsize the solution does not change significantly, with this
meaning that convergence is reached and no artifacts arised.

Figure 5. Prey densities approximation with IMEX scheme at t = 120 for different temporal stepsize:
from left to right ∆t = 1/3, 1/24, 1/384.

Figure 6. Prey densities approximation with IMSP scheme at t = 120 for different temporal stepsize:
from left to right ∆t = 1/3, 1/24, 1/384.

Figure 7. Prey densities approximation with EXPP scheme at t = 120 for different temporal stepsize:
from left to right ∆t = 1, 1/3, 1/24.

As a conclusion, we have observed that a numerical method applied to the
Rosenzweig-MacArthur model (10), may alter the solution in the short run. To make correct
qualitative considerations on the transient dynamics, classical methods as IMEX scheme need a very
small stepsize. Geometric IMSP and EXPP schemes both show a more stable behaviour; however,
the positive EXPP scheme provides the best performance.
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4. Symplectic-Exponential Lawson Integration for the Control of Invasive Population

Mathematical modeling and optimization play an important role in improving strategies for the
control and eradication of invasive species [15,35,36], a crucial aspect in nature conservation [37].

In [16], a reaction-diffusion partial differential equation models the spatiotemporal dynamics
of the invasion of alien fish population inside a very complex geometry representing a realistic
lake and the optimal control theory has been applied to obtain the optimal management strategy
with a given budget constraint. The model describes a complex and realistic situation by including
a control term that has Holling-II type behavior, a budget constraint and the habitat suitability
function which represents the suitability of habitat for a given species based on known affinities with
environmental parameters.

The goal is to minimize the environmental damage over time at the minimum cost, in terms of the
resources allocated to the species harvesting. The objective function is a sum of three terms. The first
term takes into account of the environmental damage through the function ω(x, t) > 0 over Ω× [0, T],
ω ∈ L∞(Ω× [0, T]), which is assumed to have a cost which increases with the presence of the invasive
species:

J1 =
∫

Ω×[0,T]
e−δtω (x, t) u dx dt +

∫
Ω

ν (x) u (x, T) dx.

where u(x, t) represents the population density at time t ∈ [0, T] and (vector) position x in an open
bounded ν ∈ L∞(Ω), ν(x) ≥ 0 is a weight for the final population density and δ ∈ (0, 1) is the discount
factor. The second term is the cost due to the control effort:

J2 =
∫

Ω×[0,T]
e−δt E (x, t)2 dx dt.

The third term accounts for the budget constraint 0 < E < B introduced as a penalty term with
weight c ≥ 0;

J3 = c
∫

Ω×[0,T]
e−δt

(
E (x, t)

B

)3
dx dt.

The optimal control model searches for a control

E∗ ∈ U = {E ∈ L∞(Ω× [0, T]) : 0 ≤ E(x, t) ≤ B for all (x, t) ∈ Ω× [0, T]}

such that J(E∗) = minE∈U J (E), subjects to the state equation

∂u
∂t

(x, t) − D ∆u(x, t) = r u(x, t)
(

ρ(x) − u(x, t)
k

)
− µ u(x, t) E(x, t)

1 + h µ u(x, t)
,

u(x, 0) = u0(x), on Ω, ∇u(x, t) · n̂ = 0, on ∂Ω× [0, T],

where D > 0 represents the constant diffusion coefficient and n̂ is the outward normal vector on ∂Ω.
The term ρ(x) represents the habitat suitability function which is bounded ρ(x) ∈ [0, 1] for each x ∈ Ω;
that implies ρ ∈ L∞(Ω) and ‖ρ‖L∞(Ω) ≤ 1. Under the assumption that u0 ∈ H1(Ω) the usual Sobolev
space (with its dual H1(Ω)∗), the solution of the problem (26)-(26), is to be considered in week sense
that is u ∈ L2(0, T; H1(Ω)) such that ∂u

∂t ∈ L2(0, T; H1(Ω)∗) and

∫
Ω

∂u
∂t

χ dx +
∫

Ω
D∇u · ∇χ dx =

∫
Ω

(
r ρ − r u

k
− µ E(x, t)

1 + h µ u

)
u χ dx,

for almost every t ∈ [0, T] and for any test function χ ∈ H1(Ω) [16].
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The optimality conditions yield the following boundary value system

∂u
∂t

= D ∆u + r u
(

ρ− u
k

)
− µ u E

1 + h µ u
,

∂λ

∂t
= −D ∆λ + (δ− r ρ) λ +

2 r u λ

k
+

µ λ E
(1 + h µ u)2 −ω,

u (x, 0) = u0 (x) , on Ω, ∇u · n̂ = 0, on ∂Ω× [0, T],

λ (x, T) = ν (x) , on Ω, ∇λ · n̂ = 0, on ∂Ω× [0, T],

(26)

equipped with
E(x, t) = min{max{ϕ(u(x, t), λ(x, t)), 0}, B}, on Ω× [0, T],

where

ϕ(u, λ) =



B3

3 c

(√
1 +

3 c µ u λ

B3 (1 + h µ u)
− 1

)
, if c > 0,

µ u λ

2 (1 + h µ u)
, if c = 0.

(27)

As before, the approximation process of the whole dynamics assumes a semi-discretization in the
space variable; the resulting procedure leads to a boundary value problem governed by the ordinary
differential system (15) in the time variable, which can be numerically integrated by a partitioned
method which consists of a Runge-Kutta scheme and the exponential Lawson algorithm [38] related to
the symplectic counterpart [39].

4.1. Exponential Lawson Symplectic Integration of the Reaction Semiflow

We illustrate the advantage of using a symplectic numerical scheme when we approximate the
boundary value problem described by the reaction semiflow. For simplicity, we assume ρ = 1 and
ν > 0 and ω > 0 as constant functions. Consider the boundary value ODE system:

du
dt

= r u
(

1− u
k

)
− µ u E

1 + hµ u
, (28)

dλ

dt
= δλ +

(
−r +

2 r u
k

+
µ E

(1 + hµu)2

)
λ − ω, (29)

with u(0) = u0 and λ(T) = ν, equipped with

E = min {max {ϕ(u, λ), 0} , B} , for t ∈ [0, T],

and ϕ(u, λ) is defined in (27). We use the forward-backward sweep approach described in [40] joint
with an exponential Lawson symplectic scheme [39]. This choice is motivated by the fact that, for all
x ∈ Ωh the ODE system (28) and (29) is what is referred in literature as a nearly Hamiltonian system :

du
dt

=
∂H(u, λ)

∂λ
,

dλ

dt
= δλ − ∂H(u, λ)

∂u
.

where

H(u, λ) =

(
r u
(

1− u
k

)
− µ u E

1 + hµ u

)
λ + ω u.
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It has been proven that a partitioned method which consists of a Runge-Kutta scheme for the
state variable and the exponential Lawson [38] symplectic counterpart for the current costate, is an
effective alternative to the standard ODE solvers in the framework of optimal control [39].

In more details, given a Runge-Kutta scheme defined by coefficients ai,j, bi, with bi 6= 0 and
its symplectic counterpart defined by coefficients âi,j, bi, with bk bj = bk âkj + bj ajk for each k, j and
ck = ĉk = ∑s

j=1 âk,j with cs = 1, the scheme applied to (28) and (29) proceeds according to the
following steps:

• make an initial guess for λnk on the mesh time tnk = tn + ck∆t for n = 0, . . . N − 1 and k = 1, . . . s,
with ∆t = T/N;

• using initial conditions u0, final condition λ(T) = ν and the guess values λnk , solve u forward in
time according to the Runge-Kutta scheme:

unk = un + ∆t
s

∑
j=1

akjF(u
nj , λnj), k = 1, . . . , s,

un+1 = un + ∆t
s

∑
k=1

bkF(unk , λnk ) n = 0, 1, . . . N − 1

where

F(u, λ) = r u
(

1− u
k

)
− µu ϕ(u, λ)

1 + hµu
; (30)

• using the transversality condition λN = ν, solve λ(t) backward in time by means of the
exponential Lawson symplectic counterpart

λnk = eδ∆t (ck−1)λn+1 + ∆t
s

∑
j=1

(bj − âkj)e
δ∆t (ck−cj)G(unj , λnj)

λn = e−δ∆t λn+1 + ∆t
s

∑
k=1

bke−δ∆tck G(unk , λnk ).

for n = N − 1, N − 2, . . . , 0 and k = s, . . . , 1, where

G(u, λ) = rλ− 2r
k

u λ− µλ ϕ(u, λ)

(1 + hµu)2 + ω; (31)

• check for convergence;
• evaluate E = min {max {ϕ(un, λn), 0} , B} that approximates the values of the control function

E(t) at the temporal grid tn = n ∆t.

Notice that, for k = s, since cs = 1, it results that λns = λn+1. Moreover, (bj − âkj) =
bj

bk
ajk. This

implies that, if the Runge-Kutta scheme used on the state variable u is explicit (i.e., ajk = 0 for j ≤ k),
the corresponding Lawson backward scheme for the costate variable λ(t) is explicit too:

λnk = eδ∆t (ck−1)λn+1 + ∆t
s

∑
j=k+1

bj

bk
ajk eδ∆t (ck−cj)G(unj , λnj)

for n = N − 1, N − 2, . . . , 0 and k = s− 1, . . . , 1.
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4.2. Implicit-Exponential Lawson Euler Integration

By using the previous notations, the spatial discretization of the Laplacian operator transforms
the problem (26) into the BVP problem

duh
dt

= D ∆huh + Fh(uh, λh), uh(0)(x) = u(x, 0) = u0(x), x ∈ Ωh

dλh
dt

= −D ∆hλh + δ λh − Gh(uh, λh), λh(T)(x) = λ(x, T) = ν, x ∈ Ωh.

(32)

where ∆h represents an approximation of ∆ on Ωh. The solution y := [uh, λh]
T represents an

approximate function of [u, λ]T such that, for all t ∈ [0, T], uh(t) and λh(t) belongs to Vh, the vector
space of all the functions from Ωh to R. For t ∈ [0, T] and Fh is the operator that associates to
uh, λh ∈ Vh the function Fh(uh, λh) ∈ Vh defined as Fh(uh(t), λh(t))(x) = F(uh(t)(x), λh(t)(x)) =

F(u(x, t), λ(x, t)) where F is defined in (30). Similarly, Gh(uh(t), λh(t))(x) = G(uh(t)(x), λh(t)(x)) =

G(u(x, t), λ(x, t))) for all x ∈ Ωh where G(u, λ) is defined in (31). Consider the splitting

dy
dt

= f [D](y) + f [R](y),

with f [D](y) denoting the diffusion semiflow and f [R](y) the reaction semiflow. We want to solve
the diffusion semiflow with implicit Euler and the reaction semiflow with the exponential Lawson
symplectic scheme [39] and apply the schemes within a forward-backward procedure [40] for solving
the boundary value problem (32). In details, set λN

h = ν and make an initial guess for λn
h for n =

0, . . . , N − 1 on the mesh time tn = tn−1 + ∆t. Evaluate un
h with the forward formula

ūn−1
h (x)− un−1

h (x)
∆t

= F(un−1
h (x), λn

h(x)), x ∈ Ωh,
un

h − ūn−1
h

∆t
= D ∆h un

h , n = 1, . . . , N.

Then, the backward formula proceeds evaluating λn−1
h starting from λN

h = ν,

λ̄
n
h(x)− e−δ∆t λn

h(x)
e−δ∆t ∆t

= G(un−1
h (x), λn

h(x)), x ∈ Ωh,
λ̄

n
h − λn−1

h
∆t

= −D ∆h λ̄
n
h , n = N, . . . , 1,

(33)
Finally, check for the convergence and evaluate En

h (x) = min
{

max
{

ϕ(un
h(x), λn

h(x)), 0
}

, B
}

, for
x ∈ Ωh and n = 0, . . . N.

4.3. Simulation of an Optimal Abatement Program

In [16] a control action over a time horizon with length T = 4 for the invasion of an alien fish
population inside the hypothetical lake is simulated. A penalty term weighted by coefficient c = 0.22
for the budget constraint 0 ≤ E ≤ B = 0.5 was set. A spatial mesh Ωh consisting of 692 triangles and
427 nodes was used and a time-step ∆t = 1/36 was chosen for the temporal procedure. The parameters
for fish population are set to r = k = 1, µ = 20, h = 1, with a diffusivity coefficient D = 0.05; the
parameters related to control dynamics are set as ν = 5 e−0.4, δ = 0.1, ω = 1. The dynamical evolution
at t = 1, 2, 3, 4 , starting at t0 with a uniform population distribution corresponding to the maximum
density n0(x, t) = 1, is shown in Figure 8.

The optimal control tends to nullify the fish population almost everywhere except for some small
areas where it gets its maximum allowed value. Fish population tends to a final distribution with mean
value 0.0012, integrated over the whole spatial domain. The maximum allowed value E = B = 0.5 is
achieved in the areas where the sensitivity function gets its largest values.
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Figure 8. Density of fish population u(x, t) (on the left column) and optimal control E(x, t) (on the
right column). The dynamics is evaluated at different times: t = 1, 2, 3, 4. For each time t, the results
are shown on the corresponding row.

5. Future Challenge: Geometric Numerical Integrators for Multi-Structured Systems

A simplified spatiotemporal model developed in [41] to study the implication of the
destabilization of phytoplankton dynamics due to rising temperatures, is motivating the future
research on geometric numerical schemes for dynamical flows featured by multiple structures.

Here we will focus on systems which fall in the class of both Poisson and biochemical systems.
We recall the definition of biochemical system and the main qualitative properties associated to their
dynamics. A biochemical system consists of a set of M reactions of the type

Rj :
N

∑
i=1

σ−ij Xi −→
N

∑
i=1

σ+
ij Xi, j = 1, . . . , M
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where Xi are the chemical species in the system, σ−ij and σ+
ij are the stoichiometric coefficients of the

reactants and products, respectively. The dynamics is governed by the ODE system

ẏ = f(y) = S r(y), y(0) = y(0) (34)

where y = (y1, . . . , yN)
T is the vector of the concentration of chemical species, y0 > 0 is the fixed

vector of initial concentrations, S− =
(

σ−i,j
)

and S+ =
(

σ+
i,j

)
are N × M negative and positive

parts of the N × M stoichiometric matrix S =
(
σi,j
)

i.e., S = S+ − S−. The reaction function
r(y) = (r1(y), . . . , rM(y))T is defined elementwise as

rj(y1, . . . , yn) =
N

∏
i=1

k j(y) y
σ−ij
i j = 1, . . . , M.

Well-posedness and positivity of the solution are guaranteed under the assumptions stated in [17].
All linear functions

gv(y) = vT y, v ∈ ker(ST) =
{

v ∈ RN : STv = vTS = 0M

}
are first integrals for (34), since

dgv

dt
= vT dy

dt
= vT S r(y) = 0. Let {e1, . . . , eK} a basis of ker(ST),

with K = N − rank(S), and define the K× N matrix E such that ET = [e1, . . . , eK]. Then E S = 0 and
gi(y) := eT

i y for i = 1, . . . K, are K independent linear invariants [42].

5.1. Biochemical-Poisson System for Modelling the Oceanic Deep Chlorophyll Maximum (DCM)

To study the implication for oceanic primary production, species composition and carbon export
of the destabilization of phytoplankton dynamics due to rising temperatures, a simplified version of
the vertical water column model given in [41] is here described.

Let x indicate the depth in the water column. The population dynamics of the phytoplankton
population P and nutrient N is described by a reaction–advection–diffusion system:

∂N
∂t

= kN
∂2N
∂x2 − q gp F(N, I) P + q mp P

∂P
∂t

= kP
∂2P
∂x2 − Wg

∂P
∂x

+ gp F(N, I) P −mp P,

(35)

where the specific growth rate of the phytoplankton is proportional through a costant gp to an
increasing saturating function F(N, I) of nutrient availability N and light intensity I, mP is the specific
loss rate of the phytoplankton, q is the nutrient content of the phytoplankton, Wg is the phytoplankton
sinking velocity and kP and kN are the vertical turbulent diffusivity of phytoplankton and nutrient,
respectively. In this simplified model we assume that all the nutrient in dead phytoplankton is recycled.

In an operator splitting perspective, to construct approximated solutions of (35), which separate
diffusive and advection semiflows from reaction, a step requires the numerical integration of the
reaction semiflow. For for constant value of light intensity I, the reaction semiflow is given by the
autonomous and spatially homogeneous system

∂N
∂t

= − q gp F(N, I) P + q mp P

∂P
∂t

= gp F(N, I) P −mp P.

(36)
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It results that (36) is an example of biochemical-Poisson system. Indeed, by neglecting the
dependence on the spatial coordinate and setting y = [N, P], system (36) possess two main structures:

• Biochemical structure: ẏ = Sr(y) with r(y) =
[
gp F(N, I) P, mp P

]T , and

S =

(
−q q
1 −1

)

is the stoichiometric matrix with rank(S) = 1.
• Poisson structure: ẏ = B(y)∇H with H (y) = N + q P and

B(y) =

(
0 −(gp F(N, I) − mp) P

(gp F(N, I) − mp) P 0

)

is a full rank matrix which satisfies the Jacobi identity (1).

5.2. Geometric Integrators for Biochemical-Poisson Systems

With the aim of constructing geometrical numerical integrators for a biochemical-Poisson systems,
we need to enumerate all the desired characteristics. In general, an ideal geometric numerical integrator
yn+1 = Φh(yn) for an (autonomous) biochemical-Poisson system ẏ = f(y), with y ∈ Rn should:

1. preserve positivity as negative concentrations are non-physical;
2. preserve n− s linear invariants (as biochemical system) where s is the rank of the stoichiometrix

matrix S ∈ Rn×m,
3. preserve the Hamiltonian and n− q Casimirs as Poisson system where q is the rank of B ∈ Rn×n ;
4. preserve the Poisson structure of the flow i.e.,

Φ′∆t(yn)B(yn)Φ′∆t(yn)
T = B(Φ∆t(yn));

where Φ′∆t(yn) denotes the Jacobian of the discrete flow.

For a generic biochemical-Poisson systems, a numerical integrator cannot be featured by all the
above properties (it is enough to consider that, in general, for a Poisson system a numerical integrator
cannot be both a Poisson and an Hamiltonian-preserving map); hence, an ideal geometric numerical
integrator cannot be constructed.

For example, the application of Poisson Euler in the form (7) to the biochemical-Poisson system
(36) leads to the numerical method

Pn+1 = Pn e∆t (gp F(Nn, I)−mp), Nn+1 = Nn e
∆t
−q gpF(Nn, I) Pn+1 + q mPPn+1

Nn

which is a positive explicit integrator for the system (36). However, it does not preserve linear invariants
nor the Hamiltonian and the question if it is a Poisson integrator in correspondence of the above matrix
B(y) is still an open question as it depends on the functional form of the function F.

The most recent numerical integrators developed with the aim of preserving the qualitative
features of a biochemical dynamics are gBBKS schemes [43]. They provide positive approximations
and preserve all linear invariants of the continuous flow. The first-order variant applied to ẏ = f(y)
is given by

y(n+1) = y(n) + ∆t

∏
j∈Jn

y(n+1)
j

y(n)j


1
q

f(y(n)), Jn =
{

i : fi(y(n)) < 0, i ∈ {1, . . . , N}
}

,
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with q ≥ card(Jn). The application of the above method for solving (36) guarantees preservation of
positivity, preservation of Hamiltonian which is a linear invariant, and again is still an open question if
there exists a class of function F for which gBBKS scheme may result also a Poisson map.

In the following, we suggest two test models, one linear and one nonlinear, that can be useful in
order to compare the performance of existing numerical methods and can provide the basis for the
construction of novel geometrical integrators for biochemical-Poisson dynamics [44].

5.3. Biochemical-Poisson Test Models

In order to compare the schemes when applied to biochemical-Poisson systems, a possible
way is to evaluate their performances on solving the two test problems we are going to describe in
the following section. We will see that in the general framework of non-standard finite difference
approximation [45], their exact solutions can be reproduced by suitable non-standard numerical
procedures. These have been the basis for the construction of novel geometrical schemes for
biochemical systems which, despite their explicit fuctional form, are able to preserve both positivity
and linear invariants [44].

As linear test problem we consider the two-dimensional system

u̇ = − q a u + q b v
v̇ = a u − b v

with a, b, q > 0. Having set y = [u, v]T , is is easy to see that the above test system is a
biochemical-Poisson system since it can be written both as ẏ = S r(y) with

S =

(
−q q
1 −1

)
r(y) =

[
a u
b v

]

and as ẏ = B(y)∇H with H (y) = u + q v and

B(y) =

(
0 −(a u− b v)

a u− b v 0

)
,

a skewsymmetric matrix which satisfies the Jacobi identity (1). The stoichiometric matrix S has rank
one, hence there exists a unique linear invariant given by H (y). On the other side B has full rank, this
implying that there are no Casimirs.

The theoretical solution can be written as follows (see [45]):

u(t) = u(t0) +
1− e−(q a+b) (t−t0)

q a + b
(−q a u(t0) + q b v(t0)),

v(t) = v(t0) +
1− e−(q a+b) (t−t0)

q a + b
(a u(t0) − b v(t0)),

where u(0) = u0 and v(0) = v0 denote the initial values. Then, the exact scheme corresponds to the
non-standard procedure

un+1 = un + φ(∆t) (−q a un + q b vn), vn+1 = vn + φ(∆t) (a un − b vn),

where φ(∆t) =
1− e−∆t (q a+b)

q a + b
.

As nonlinear test system we consider

u̇ = − q u v
v̇ = u v
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with q > 0. Having set y = [u, v]T , is is easy to see that the above test system is a biochemical-Poisson

system since it can be written both as ẏ = Sr(y) with S =

(
−q

1

)
with r(y) = u v and result an

M-system ẏ = B(y)∇M with M(y) = u + q v and B given in (2). The stoichiometric matrix S has
rank one, hence there exists a unique linear invariant given by M(y). On the other side B has full
rank, this implying that there are no Casimirs. The unique invariant is given by the Hamiltonian M(y)
which results to be linear.

The theoretical solution can be explicitly written as

u(t) =
u0 (u0 + q v0)

u0 + q v0e(u0 + q v0) t
, v(t) =

u0 + q v0 − u(t)
q

=
v0 (u0 + q v0) e(u0 + q v0) t

u0 + q v0e(u0 + q v0) t
.

Then, the exact scheme corresponds to the non-standard procedure

un+1 = un − φ(∆t) q un vn, vn+1 = vn + φ(∆t) un vn,

where φ(∆t) =
e(un + q vn)∆t − 1

un + q vn e(un + q vn)∆t
.

6. Conclusions

In ecological modelling, the approximated solutions should be able to reproduce the main physical
qualitative characteristics of the observed quantities (e.g., positive concentrations, mass/energy
conservation) in order to make accurate previsions or outline realistic scenarios. For this reason,
geometric numerical integration should play a crucial role in the analysis of ecosystem models
described by systems of differential equations. Nevertheless, numerical schemes for ecological models
have received little attention in the literature as most descriptions of models outline the governing
equations but do not discuss their numerical solution. Unfortunately, an inadequate choice of a
numerical method may have a detrimental effect especially within a conceptual modelling which is
thought to make scenario analysis.

In this paper, we detect the more frequent flow structures that characterize some ecological
models encountered in our research activity. Flow structures that more frequently arise in ecological
modelling and that have to be preserved are Poisson maps, dynamics evolving in positive phase-space,
preservation of invariants. We have described the application and the results of the analysis of
geometric numerical integration in the framework of ecological modeling, focusing on first-order
procedures. In general, what we experienced is that the mechanism that produces positive solutions,
as in case of Poisson Euler scheme, is also able to produce more stable solutions. This produces some
benefits not only in the long run but even in the transient phase. For optimal control problems that
model management policies, we have described how to use a Lawson symplectic Runge-Kutta pairs in
order to get an efficient method for solving the boundary value problem for the nearly Hamiltonian
system that provides optimality conditions.

As future perspective, for dynamical flows which are featured by multiple structures,
the identification of the main qualitative properties that are crucial to preserve in order to have
the best performances, will deserve a deep investigation.
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