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Abstract: Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely
distributed over a geographical region that is completely randomized for monitoring, identifying,
and analyzing physical events. The crucial challenge in wireless sensor networks is the very high
dependence of the sensor nodes on limited battery power to exchange information wirelessly as
well as the non-rechargeable battery of the wireless sensor nodes, which makes the management
and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear
under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the
comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption
should be taken to detect the early faults in the network, despite the limitations of the sensor nodes.
Machine learning methods include solutions that can be used to detect the sensor node faults in
the network. The purpose of this study is to use several classification methods to compute the
fault detection accuracy with different densities under two scenarios in regions of interest such as
MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM
and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head
(SCH) selection has been performed to detect node faults in the network. The simulation outcomes
demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of
fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared
to other classification methods.

Keywords: wireless; wireless sensor networks; WSN; fault detection system; super cluster head;
support vector machines; mobile networks; IoT; soft computing; machine learning; smart sensors

1. Introduction

Wireless sensor networks (WSNs) are one of the most prominent tools for information acquisition
and understanding of the region that has led to extensive research [1]. WSNs include a number of sensor
nodes that are typically small and inexpensive. Much progress in the field of wireless communication
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systems and digital electronics technology has occurred, expanding the use of small-size multipurpose
sensor nodes. In most applications of wireless sensor networks, the nodes are randomly located in a
physical region, and there is no specific, predetermined map. Sensor nodes automatically compose
the sensor network structure after being placed in the region. These networks interact severely
with the physical region. It is possible to collect information on wireless sensor networks through
the collaborative work of sensor nodes without human intervention. In a wireless sensor network,
the radius of data transmission is determined by the radio frequency. Each sensor node communicates
with its neighboring sensor nodes in the network so that the memory, computing power, and energy
resources for this node are limited [2].

One of the crucial difficulties in advancing the wireless sensor networks is that power supplies are
significantly narrower than wired networks, causing sensor nodes to consume energy when receiving,
processing, and transmitting information to other nodes in a WSN, and the energy required to do so
is provided by the batteries embedded in each node independently. WSNs are typically located in
high-risk regions where it is almost impossible to recharge or replace the battery. The performance of
these networks is severely dependent on the network’s lifetime and the scale of its coverage. The use
of energy-aware algorithms in the design of long-life sensor networks is crucial [3].

Therefore, the lifetime of the network is completely dependent on the power source of its sensor
nodes. This limitation creates problems that are the origin of many research debates regarding nodes’
lifetime and energy consumption. To preserve energy in sensor nodes, a cluster-based approach has
been developed in which only some nodes are allowed to communicate with the base station to save
energy. Selecting a suitable cluster head (CH) is one of the solutions that can saliently reduce energy
consumption. Clustering improves the scalability of the wireless sensor network. This is the reason
that clustering minimizes the direct dependence of the sensor nodes on the base station and numerous
traffic loads, as well as expands local decision making for transmitting information.

Considering that the purpose of this study is to detect the fault in a distributed system, the presence
of a fault in wireless sensor data may increase network traffic, communication overhead, and reduce
the fault detection efficiency for the base station, and eventually lead to the loss of battery power, high
energy consumption, and decreased network lifetime. Faults should be detected early to optimally
preserve battery power. So, fault detection is associated with the energy consumption of sensor nodes
in the network, which is a crucial cluster head selection approach for optimizing energy consumption.

In this study, the MB-FLEACH algorithm [4] was used to select the cluster head according to the
scenarios defined in [4] for the proposed method, which is called FCS-MBFLEACH.

The proposed FCS-MBFLEACH method has been compared with MB-FLEACH, one support vector
machine (SVM), and fuzzy one SVM methods in terms of the false-positive rate (FPR), the accuracy of
fault detection, the average of the remaining energy, and the network lifetime.

Other sections of the article are organized as follows. The second section deals with related work.
The third section includes a discussion of the proposed algorithm and other classification algorithms.
The fourth section contains the experiments, and in the fifth section, we evaluate the results. Finally,
the sixth section describes the conclusions and future research work.

2. Related Works

Fault detection in wireless sensor networks has been accomplished with many research efforts in
a variety of ways, including centralized detection, distributed, and hybrid detection [5]. In general,
for a low-traffic small-scale load, the centralized fault detection method is very effective. However,
using this method creates a bottleneck due to the dependence of the sensor nodes to a central node, in
which the node density is too high to capture information resources. In this situation, the scalability of
the system will decrease. However, for large-scale wireless networks, due to the limitations of sensor
nodes, the distributed fault detection method is used to reduce the energy consumption, increase
the network lifetime, and reduce the traffic load in the network. In the distributed fault detection
method, the decision is made to detect locally so that each node conducts the fault detection function
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independently. Therefore, the measure of information generated by the data sent to the central node is
further reduced. It also reduces the energy consumption and congestion of the network; in addition,
it increases the lifetime of the entire network [6,7]. Finally, a hybrid method for fault detection consisting
of the statistic with the neighborhood and multi-tiered methods [5].

Since the purpose of this study is to detect the distributed fault, we review recent works done by
researchers on distributed methods.

Chen et al. [6] have presented a distributed fault detection (DFD) algorithm for wireless sensor
networks that determines the initial state of the sensor node, whether it has a fault or not. They use
mutual testing of the relevant node and its node neighbors using the DFD algorithm. In fact, the
final state of the node is determined based on the initial state of the sensor node. The advantages of
this algorithm are its higher detection accuracy and lower fault alarm rate. The disadvantage of this
algorithm is that it requires at least two interconnections between neighboring nodes, which results
in high energy consumption. In another research, Jiang in [8] proposed an improved distributed
fault detection algorithm. If the number of neighboring nodes and the failure rate are high, the fault
detection accuracy is reduced in traditional distributed fault detection, and the complexity and energy
consumption are increased. However, he improved the traditional DFD algorithm by refining the fault
detection criterion to identify the final state of the node so that the false alarm rate was reduced. It also
increased the accuracy of fault detection. However, the problem of high energy consumption is one of the
challenges of this algorithm. Kai and Li in [9] suggested a cluster-based fault detection algorithm to detect
the fault nodes from the cluster head node in the target cluster and employed the optimum threshold
value to improve the fault detection accuracy and reduced the effect on the fault nodes according to the
probability of sensor node fault. However, there is still the problem of high energy consumption in this
algorithm. Feng et al. [10] proposed a distributed fault detection method based on weighted distance.
To evaluate the fault nodes, their measured value of a sensor node is compared with the initial measured
value. The weighted distance between a node and its neighbor node is computed. Then, the obtained
value is compared with the value of the original data with a fixed parameter. If this value is less than its
parameter value, then the node is safe; otherwise, it is faulty.

A distributed algorithm called distributed self-fault diagnosis (DSFD) by Panda and Khilar based
on a modified three-sigma edit test [11] was proposed to detect the soft and hard faults [12]. The DFSD
algorithm conducts a normal workload for a node to determine its status. In this algorithm, each node
can learn its own fault status by gathering information from neighboring nodes, and then the node
status is checked. If the sensor node detects its own status as a fault, then it is stopped in network
activity. However, if the density of the node increases, the network performance for fault detection by
the node is reduced.

Another algorithm called low energy consumption distributed fault detection (LEDFD) was
proposed by Xu et al. in [13], which uses the temporal correlation characteristics of the data collected
to detect some fault nodes and eliminates them. This algorithm reduces the communication time
between the sensor nodes, and it reduces the energy consumption in the network. It also uses spatial
characteristics to detect the remaining fault nodes that were not detected in the previous diagnosis.
If the measured value of the nodes is similar or close to the measured value of the neighboring nodes
so that its previous state is normal for the node, then the node is considered to be a safe node. However,
in this system, as the node density increases, the network performance decreases.

Artail et al. in [14] proposed a distributed fault detection method based on the clustering structure
in a sensor network. In this method, a Markov chain controller is used to detect the fault node in a base
station so that in each cluster is used for data exchange between cluster heads (CHs) and neighboring
cluster head nodes to complete the cluster head fault detection. In this clustering method, the cluster
head node is responsible for data transmission, fault detection, and the location of the sensor nodes.

Hosseini et al. [4] proposed the MB-FLEACH algorithm for selecting a super cluster head in
wireless sensor networks to optimize energy consumption reduction and increase the network lifetime.
In fact, the purpose of this algorithm is to reduce energy consumption and increase network lifetime
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by assuming that the base station is mobile and it moves in different time rounds. The computational
complexity of this algorithm is very low. However, using this algorithm, node fault detection is
not performed.

Saeedi and Mazinani in [15] used SVM and a density-based spatial clustering of applications with
noise (DBSCAN) algorithms to detect anomalies in wireless sensor networks. They use the DBSCAN
algorithm to detect anomalies in low-density data points in the network, and they use SVM to improve
detection accuracy. They did not compute the measure of the remaining energy after the fault detection
in their study. Other studies in [16,17] also used SVM-based methods to detect anomalies in wireless
sensor networks.

Cheng et al. [7] proposed a distributed fault detection algorithm based on support vector regression
for wireless sensor networks, which is a fault detection mechanism based on support vector regression
and neighbors’ collaboration. Based on the data collected by several sensors, the fault prediction model
is constructed using the SVM regression algorithm, and thus the remaining sequences are obtained.
Then, the status of the node—whether it has a fault or not—is determined by mutual testing between
valid neighbor nodes. The proposed algorithm is suitable for low-density nodes with a high failure
rate. It also reduces the network traffic created by the sensor nodes and increases the accuracy of
fault detection.

Therefore, according to the literature review, data-based learning classification methods and
statistical learning techniques can quickly determine the fault data points for different classes.

One of these methods is the SVM; because it provides an optimal solution for data classification,
the algorithm is very crucial. The disadvantage of SVM is that it performs the same role with all the
training points in different classes. However, in many applications, the effects of training data points in
the classes are different. Nevertheless, sometimes the training points are more important than other points
in the classification problem. We need the training points to be separated in terms of importance from
other points such as noises, faults, and outliers. So, in practice, SVM lacks this ability to separate non-fault
data points or safe nodes from faulty nodes. In fact, SVM cannot discard faulty nodes. One solution is to
use fuzzy membership functions that are suitable for sensor nodes so that we apply fuzzy membership to
each sensor node to correctly classify the data points by creating the fit model.

In this study, we use a fuzzy one SVM classification algorithm [18,19] with MB-FLEACH
algorithms [4] and one SVM for sensor node fault detection and compare these algorithms. It should
be noted that the scenarios are as defined in [4].

Therefore, the motivation of this study is to increase the accuracy of fault detection in a class,
and with the fast detection of fault nodes, we have the least losses in the network. We also obtain the
least positive fault rate, the highest average remaining energy, and the longest lifetime of the network
using the FCS-MBFLEACH method compared to other classification methods.

3. Distributed Fault Detection Algorithm (FCS-MBFLEACH)

In this section, we first describe the classification algorithms including SVM, one SVM, fuzzy one
support vector machine, and MB-FLEACH algorithms. Second, we explain the proposed method of
fuzzy one SVM by selecting the suitable super cluster head called FCS-MBFLEACH.

3.1. Support Vector Machine

SVM is a supervised learning algorithm based on statistical learning theory and structural risk
minimization [20]. Vapnic proposed a region separation algorithm called SVM so that only the data
assigned in the support vectors are based on machine learning and model building [20,21]. So, we
consider the SVM in two states: linear and nonlinear. In these states, it is assumed that there is a set
of training data x1, x2, . . . , x3 ∈ Rn with class y1 ∈ {1, −1} that are binary (xi, yi), (i = 1, 2, . . . n), and
show that n is the number of training data points.
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3.1.1. Linear-SVM

In the linear state, the SVM algorithm creates an optimized hyperplane that separates the data
points of the two classes. The basic principle for an SVM is the definition of a decision function or
separator function for the linear state as follows [18,22,23]:

f (xi) = sign(〈w, xi〉+ b) =
{

1 i f yi = 1
−1 i f yi = −1

. (1)

In Equation (1), w ∈ Z and b ∈ R such that w is the weight of inertia, and b is the width of the
origin point. As shown in Figure 1, there is an optimized hyperplane that can separate the data from
two classes [22,23].
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vector machine.

According to Figure 1, x1 is the data points of the two classes labeled y1 = {1,−1} such that 〈w, x〉+
b = 0 is the optimal hyperplane assigned in the middle of the other two lines, i.e., {x|〈w, x〉 + b = +1}
and {x|〈w, x〉 + b = −1}, so that w is a normal vector for the optimal hyperplane, and also, b represents
the offset between the hyperplane and the origin plane. Furthermore, margin M = 2/w of the separator
is the distance between support vectors. As a result, the maximum margin can be expressed in the
form of the following constraint optimization equation [18,22–24]:

Minimize :
1
2
|w|2 subjected to : yi(w.x + b) − 1 ≥ 0, ∀i. (2)

To solve the optimization problem, the simplest way is to turn it into a dual problem. To obtain the
dual form of the problem, the positive Lagrangian coefficients are multiplied by αi ≥ 0 and subtracted
from the objective function, resulting in the following equation called a primal problem (Lagrange’s
initial equation, Lp) [18,23,24]:

Lp =
1
2
|w|2 −

∑
i

αi(yi(w.x + b)) − 1. (3)

To solve the above equation, we need to apply the KKT conditions, which perform an important
role in constraint optimization problems [18]. These conditions express the necessary and sufficient
conditions for optimal response to constraint equations and must be a derivative of the function
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concerning the variables equal to zero. By applying KKT conditions to Lp and if it is derived from w
and b and set to zero, we will have [19,23,24]:

∂
∂wv

Lp = wv −
∑

i

αiyixiv = 0, v = 1, . . . , d. (4)

∂
∂b

Lp = −
∑

i

αiyi = 0. (5)

αi(yi(w.x + b)) − 1 ≥ 0, i = 1, . . . , l, αi ≥ 0, ∀i. (6)

αi(yi(w.x + b)) − 1 ≥ 0, ∀i. (7)

With placement in Equation (3), we will have [19]:

Maximize : LD =
∑

i

αi −
1
2

∑
i

∑
j

αiα jyiy j(xi.x j). (8)

Equation (8) is called the dual problem. Lp and LD are both computed from the same condition,
so the optimal problem can be solved by computing the minimum Lp or the maximum Lp, which is the
Lp double (with the condition α1 >= 0.

3.1.2. Nonlinear SVM

While data are not easily separated, a linear separator cannot be effective. However, if we transmit
the data in a space with more dimensions, a solution can be found to separate them [18,22]. In the state
mentioned in the previous section (Linear SVM), in fact, the inner product of the input training data
in the support vectors of Equation (8) is used to form a linear separator in the form of a hyperplane.
However, in the nonlinear state, we first map the data to a feature space or Hilbert H space with
higher dimensions and then use the inner product of the obtained elements and linearly separate them.
Figure 2 illustrates the above problem.
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Here, we assume: φ : Rp
→ H; xi → φ(xi)

Challenges transforming data to Hilbert space is as follows:

(1) Performing computation in the feature space “Hilbert” can be costly because it has more dimensions.
(2) In general, the dimensions of this space are infinite, so working with this space is difficult.
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(3) In addition to the problem of increasing the computational cost, the generalization problem may
also occur from very high dimensional spaces when analyzing and organizing data.

To overcome the feature space problem, a kernel trick is used. Therefore, in the learning algorithm,
we use a kernel function k

(
xi, x j

)
instead of the inner product < φ(xi),φ(x j) > in the Hilbert H space.

It has been shown in [21] with this indirect mapping that if the kernel function has Mercer’s condition,
the kernel used is suitable, and the inseparable data in the mapped space will be separable, so replacing
the kernel can generate a nonlinear algorithm from the linear algorithm mentioned. The kernel function
k
(
xi, x j

)
is as follows [18,23]:

k(xi, x j) = (1 + xi.x j)
d, (9)

where d represents the dimension. So, to create a nonlinear SVM, we need to find a nonlinear separator
hyperplane providing a solution as follows [18]:

Maximize :

w(α) =
l∑
i
αi −

1
2

l∑
i=1

l∑
j=1

αiα jyiy jk(xi, x j),
(10)

where αi and α j are positive Lagrangian coefficients. With this condition [18]

l∑
i=1

yiαi = 0, 0 ≤ αi ≤ c, i = 1, . . . , l, (11)

“c” is a penalty factor or an additional cost for training faults, so that the “c” value is randomly
selected by the user. A large “c” value means more penalties for faults. Finally, the decision function or
separator function for the nonlinear SVM is as follows [18,22]:

f (xi) = sign(< w, xi > +b) =
∑
i∈SV

αiyik(xi, x), (12)

where SV are the support vectors. In this study, the radial basis function (RBF) [23,25] is selected as the
kernel function, as shown below:

k(xi, x j) = exp(−
‖xi − x j‖

2σ2

2

) = exp(−γ‖xi − x j‖
2), (13)

where σ is the base radius of the kernel function. In addition, the kernel parameter is γ. The value of
the kernel parameter affects the training speed and the test speed so that this parameter is randomly
selected as the base radius of the kernel function “σ” and the penalty factor “c”. It should be noted that
the performance of SVM in terms of the accuracy of fault detection and generalization power severely
depends on the state of the penalty factor “c” and the kernel parameter “γ”.

3.2. One-Class SVM

In one-class SVM or one SVM classification, the problem is to determine one class or one of the
data from the rest of the feature space. In many applications, it is crucial that one of the classes is
determined. Meanwhile, for the other class, no measurement is available [19]. It should be noted that
the purpose of this study is to use a class of data to detect fault nodes.

Therefore, in this classification, it is assumed that we only have instances of one class called the
target class, and all the other possible data, as well as outlier data, are distributed uniformly on the
sides the target class. This one SVM classification problem is often unraveled by computing the target
density or by a fit model for the SVM classifier.

According to the theory of Scholkopf et al. [26,27], it is presumed that there exist some data sets
with a probability distribution “P”, and we want to estimate a “simple” subset of the input space,
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so that the probability of a test point of “P” assigned outside the set “S” is equal to a predetermined
value between 0 and 1. Therefore, they proposed a one-class classification method for solving the
problem, trying to determine the decision function “F” which is positive on set “S” and negative on
complement “S”. The functional form “F” is given by creating a kernel function for a small subset of
the training data points.

Assuming the training data x1, x2, . . . , xn ∈ Rn, let “n” be the number of data points. There is also
a mapping “φ” of a feature map Rn

→ f , such as a map to the point product space, so that the result
of the point product < φ(xi),φ(x j) > in the image can be obtained by evaluating the kernel function
according to Equation (13).

In fact, in the one-class classification method of the SVM model, the origin is the only member of
the class assigned second, after transformation of the training data through a feature map “φ”. Then,
using the kernel parameters “γ” and the penalty factor “c”, the target class is separated from the origin
with the highest margin. The one SVM algorithm returns a decision function “F” that gives the “+1”
value in a region with the most data points; otherwise, “−1”.

For a new point “xi”, the value of the decision function “f(x)” is obtained by evaluating which
side of the hyperplane is assigned to it in the feature space. To separate the dataset from the origin,
we solve the following convex programming equation [19]:

Minimize
w,b,ξi

:
1
2
‖w‖2 + c

n∑
i=1

ξi + b (14)

with the constraint that:
〈
w.φ(xi)

〉
+ b ≥ 0 − ξi, ξi ≥ 0, i = 1, . . . , n, where “ξi” is a positive slack

variable that is defined in the problem constraints. Given the weight vector “w” and the width of the
origin “b” to solve the problem in Equation (14), the decision function or separator function is obtained
as follows [19]:

f (x) = sign
(〈

w.φ(x)
〉
+ b

)
(15)

Using the Lagrange theorem, we can obtain the dual problem of Equation (14) as follows [19]

Minimize
αi

:
1
2

n∑
i=1

n∑
j=1

αiα jk(xi, x j) (16)

with the constraint that:
i = 1, . . . , n, 0 ≤ αi ≤ c,

∑
i

αi = 1.

Whether the value of the penalty “c” is large or small, this random parameter is a constant value
during the one SVM learning process. That is, all training data are performed equally during one SVM
learning process. So, it leads to a higher sensitivity to faults related to points. In addition, the decision
function “ f (x)” for a one-class SVM is a “+1” or “−1” value, meaning that each data point is divided
into two groups: the membership and non-membership of the relating class. There is a clear and
unambiguous distinction between members and non-members of a set. Although, when modeling a
system in which human determination is influenced, we observe this set as an inaccurate separation
line. The decision function should be generalized so that the values allocated to the penalty and kernel
random parameters are determined within a specific range and the degree of membership of these
parameters is indicated in the set.

3.3. Fuzzy One-Class SVM

In some applications, the effects of training data on the learning model are different. In these
applications, it is observed that some points are more important than others in the classification model.
We need the more crucial and valuable points to be properly classified and some training points such
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as noises, whether they are incorrectly classified or not, to not pay attention. This means that each
training point can not exactly belong to one of the two classes. The majority of these points (90%) may
belong to a class and 10% may be worthless, or 20% may belong to a class and 80% may be worthless.

As previously mentioned, one of the major challenges of an SVM is the lack of ability to separate
accurate data points or safe nodes from faulty nodes [18,19]. In fact, SVM cannot discard faulty nodes.
One solution is to consider fuzzy membership 0 < µi ≤ 1 for each training point “xi”. This fuzzy
membership of “µi” can be considered as the status of the training point of a class in the classification
problem, and the value (1 − µi) can be considered as a meaningless status. As a result, the same
behavior across all data points may lead to inadequate compatibility with SVM. Hence, the fuzzy
one SVM method assigns each data point to a membership value due to its proportional importance
in the class and the behavior of the training data points with varying measurements of importance
in the learning process [19]. We assume to have a set of training data points with the relating fuzzy
membership: (x1,µ1), . . . , (xn,µn).

Each training point xi ∈ Rn has a fuzzy membership of 0 < µi ≤ 1. Since the fuzzy membership
“µi” is the point state of “xi” relative to the target class and parameter “ξi” is a fault rate in one-class
SVM, the expression “µi ξi” is the fault rate with various weighting. Then, the optimization problem
based on a constraint for the fuzzy one SVM is demonstrated as follows [19]

Minimize
w,b,ξi

:
1
2
‖w‖2 + c

n∑
i=1

µξi + b (17)

with the constraint that: 〈
w.φ(xi)

〉
+ b ≥ 0− ξi, ξi ≥ 0, i = 1, . . . , n.

We can solve this optimization problem by Equation (17) in the dual variable by determining
the point at which the bivariate function has partial derivatives equal to zero. However, in it, the
function has neither the maximum nor the least value for the Lagrangian equation. Then, we can find
out according to the following Lagrangian equation [19]:

L =
1
2
‖w‖2 + c

n∑
i=1

µξi + b−
n∑

i=1

αi(〈w.φ(xi)〉+ b + ξi) −
n∑

i=1

βiξi, (18)

where “αi” and “βi” are positive Lagrangian coefficients. By deriving “L” with “w, b” and “ξi” equal to
zero assigns, the result is obtained as follows [19]:

∂l
∂w

= w−
n∑

i=1

αiφ(xi) = 0⇒ w =
n∑

i=1

αiφ(xi), (19)

∂l
∂b

= 1−
n∑

i=1

αi = 0⇒
n∑

i=1

αi = 1, (20)

∂l
∂ξi

= cµi − αi − βi = 0⇒ αi = cµi − βi, αi ≤ cµi. (21)

By replacing Equations (19)–(21) in the Lagrange equation, the dual problem is obtained as
follows [19]

Minimize
αi

:
1
2

n∑
i=1

n∑
j=1

αiα jk(xi, x j) (22)

with the constraint that:
0 ≤ αi ≤ cµi, i = 1, . . . , n,

∑
i

αi = 1.
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Considering the above equation, it should be addressed that the only difference between the fuzzy
one SVM and the initial one-class model is the upper boundary of the “αi” Lagrangian coefficient for
each training point, in which “xi” means “cµi”. The fuzzy decision function is also as follows [19]:

f (xi) = sign(< w, xi > +b) =
∑
i∈SV

αiyik(xi, x). (23)

For “yi”, consider the fuzzy membership of 0 < µi ≤ 1.
For the proposed method in this study, the fuzzy decision function is as follows:

f (xi) = sign(〈w, xi〉+ b) =
{

Yes (sa f e node), i f yi = 1− µi
No (Fault node), i f yi = −µi

. (24)

3.4. MB-FLEACH Algorithm

The proposed MB-FLEACH algorithm in [4] is a new way to select a super cluster head (SCH)
in WSNs, as this SCH is the node that creates optimal energy consumption in the network, and
this procedure leads to an increase of the network lifetime. This algorithm, in terms of energy
consumption and network lifetime has the best performance with the constraint of the mobility of the
base station compared with the other algorithms in a distributed system with two defined scenarios.
The MB-FLEACH algorithm is shown in Figure 3.
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Using the MB-FLEACH algorithm in scenarios defined for sensor nodes in a distributed wireless
network across all rounds has the least energy consumption. It should be noted that for this algorithm,
the detection of fault nodes has not been performed. In this study, we apply the fuzzy one SVM
algorithm to the MB-FLEACH algorithm of the fault node detection in the network.

3.5. The Proposed Method

As mentioned in the preceding section, the MB-FLEACH algorithm is suitable for selecting an
SCH to reduce the energy consumption for a distributed system. Hence, in this study, we decide
to apply the MB-FLEACH algorithm to a proposed method called the FCS-MBFLEACH of the fault
detection to compute the fault detection rate by analyzing the nodes in the network. We will observe
that this approach will have a very crucial impact on the early detection of the fault, as it reduces energy
consumption compared to the MB-FLEACH, one SVM, and fuzzy one SVM methods. As a result, with
this method, the network lifetime will be increased. The proposed algorithm of SCS-MBFLEACH is
illustrated in Figure 4.

Figure 4. The proposed FCS-MBFLEACH algorithm.

4. Experiments

In this section, first, fault detection algorithms such as one SVM, fuzzy one SVM, and the fuzzy
one SVM by applying the MB-FLEACH algorithm, namely FCS-MBFLEACH, are evaluated in terms
of criteria regarding the accuracy of fault detection, false-positive rate (FPR), the average remaining
energy, and network lifetime. These scenarios are described below:
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(1) The first scenario: The nodes are randomly distributed with 50 sensor nodes in a 100 square meter
region so that the base station location changes randomly. It is given that the base station’s initial
location is assigned in the 30 m × 30 m coordinate.

(2) The second scenario: In this scenario, the density of the node changes. It is given that 100 nodes
are randomly distributed in the same first scenario space so that the probability of the base station
arriving at the next location is randomly determined based on the appropriate location of the
base station with respect to the selected SCH.

The network parameters are the same as those in Table [4], as shown in Table 1.

Table 1. Network parameters.

Parameter Values

Platform Windows 10
Tool used Opnet vs. 14.5

Network size 100 m × 100 m
Maximum number of rounds 800

Base station location 30 m × 30 m
Mobility of base station Random

Node distribution Random
Energy startup 1 J
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The proposed solution for fault detection in the wireless sensor network consists of two phases:
one is used to train the models, which we call the learning phase, while the other phase is called the
testing phase, which is used to test the models.

4.1. Learning Phase

In this study, we carry out the defined scenarios so that the set of training samples is the same as
the number of randomly located sensor nodes in the network space. In this phase, the classification
of models is based on learning data points as sensor nodes. This method allows us to use expert
knowledge in decision making. In this phase, data is the most important element in the fault node
detection process in WSNs.

As stated, these data are the same sensor nodes that the proposed method model FCS-MBFLEACH
should build in the learning phase. Therefore, the suitable SCH between CHs should first be generated
by the MB-FLEACH algorithm [4]. Then, the proposed model for the MB-FLEACH algorithm is
applied to the FCS paradigm. The nodes in the network can play a crucial role as the cluster heads as
well as the suitable supercluster head for solving problems that appear as faults in wireless sensor
networks. Finally, the learning stage of the sensor nodes in the distributed network is completed as
shown in Figure 5.

In this phase, the propose is to create a fuzzy decision function that can be used at different time
rounds to classify any new sensor nodes in the network as faults by the fault detection model. The solution
of learning data as a node in the proposed method is based on the statistical learning technique. Then,
the fuzzy decision function created according to Equation (24) in the super cluster head will be applied
to classify the nodes. The set of sensor nodes is used as the learning dataset according to the defined
scenario. The learning phase was implemented using the 10-fold cross-validation technique. It should be
noted that the sensor nodes are initially randomly distributed as a set of normal nodes in the network.
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4.2. Testing Phase

We used Opnet modeler simulator vs. 14.5 to test and evaluate the proposed method and other
classification methods including one SVM, fuzzy one SVM, and MB-FLEACH. These models, which
were all trained in the learning phase set, can be compared in the test set. Considering the performance
of the proposed method in the test set, we try to deduce suitable values of fuzzy parameters including
the penalty factor “c” and kernel parameter “γ”. It should be noted that in the testing phase, the nodes
are tested. In fact, nodes are tested to estimate the accuracy of fault detection. Initially, the best SCH is
selected between different CHs by the MB-FLEACH algorithm. Then, the proposed FCS-MBFLECH
model is applied to detect the fault sensor node in the set of nodes relating to the SCH according to
the fuzzy decision function. Regarding the test phase, the fault detection process as a comprehensive
detection system is shown in Figure 6.
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5. Results

As we mentioned in the previous section, from the scenario defined in this study, the nodes
are randomly distributed in the regions. A 10-fold cross-validation technique was used to evaluate
the performance of the proposed method to obtain the average detection accuracy for the methods.
The simulation results were performed using Opnet software for the desired models. For each scenario,
simulations were performed on average for 40 minutes 10 times so that at each time pried for each
scenario, the fault node detection was based on the fault detection system. It should be noted that for
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each scenario, we set values of “1.0” and “0.5” for the kernel function parameters based on Equation
(13), such as the penalty factor “c” and base radius “σ”, respectively. So, the value of “γ” should be
optimized. Finally, to evaluate the proposed FCS-MBFLEACH method, this method was compared with
fault detection methods such as one SVM, fuzzy one SVM, and MB-FLEACH. Two criteria were used
to evaluate the fault node detection by comparing these methods. These criteria include the detection
accuracy (DA) and the false-positive rate (FPR) described below and in the following subsections.

Given that after fault detection for the sensor nodes in the network, other criteria such as
the remaining energy consumption and network lifetime were examined to observe which of the
methods with the measure of diagnosis made have the least energy consumption and the highest
network lifetime.

In the proposed FCS-MBFLEACH method, we first have the number of cluster heads created
by the MB-FLEACH algorithm so that the suitable supercluster head is selected between the cluster
heads [4].

5.1. Fault Detection Accuracy

Detection accuracy (DA) [5] refers to the number of correctly detected faulty nodes to the total
number of actual fault nodes, and it is given below:

DA =
number of correctly detected faulty nodes

total number of actual faulty nodes
. (25)

Based on the average of fault detection accuracy, the fault node detection methods were compared
according to the defined scenarios. The crucial note about this criterion is that if the fault detection is
correctly and quickly performed with high accuracy, the least energy is consumed for the node in the
network. As a result, it increases the lifetime of the network. Detection accuracy criteria were also
computed based on densities of five and 10 for sensor nodes in rounds 1, 57, 112, 342, 678, and 800.
The fault detection accuracy is computed for the two scenarios.

5.1.1. Fault Detection Accuracy for the First Scenario

The average of fault detection accuracy against the probability of sensor node fault for the first
scenario with densities equal to 5 and 10 is shown in Figures 7 and 8. Based on these figures, it can be
concluded that a common feature among the methods is that with the increasing probability of sensor
node fault, the average of the accuracy of detection decreases.

According to Figure 7, the proposed FCS-MBFLEACH method at different time points has the
highest detection accuracy compared to other methods. When the probability of fault is equal to
5%, the average fault detection accuracy for the proposed FCS-MBFLEACH method compared with
one SVM, fuzzy one SVM, and MB-FLEACH is improved 10.11%, 7.69%, and 3.15%, respectively.
In addition, for the highest probability of fault (45%), the detection accuracy of the proposed method
compared to one SVM, fuzzy one SVM, and MB-FLEACH has preference with the values of 22.03%,
16.12%, and 5.88%, respectively.

In Figure 8, the accuracy of node fault detection in the network for the mentioned methods in
different scheduling is computed. The accuracy of the proposed FCS-MBFLEACH detection method
for the 5% fault probability compared to the one SVM, fuzzy one SVM, and MB-FLEACH methods
was improved, with values of 9.30%, 5.61%, and 2.17%, respectively. In addition, for the highest fault
probability of 45%, the detection accuracy of the proposed method was improved by 16.07%, 10.16%,
and 6.55% for one SVM, fuzzy one SVM, and MB-FLEACH, respectively.
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5.1.2. Fault Detection Accuracy for the Second Scenario

The average fault detection accuracy against the probability of the fault node for the second
scenario with densities of five and 10 is shown in Figures 9 and 10.

Considering Figure 9, the accuracy of fault detection for the methods with the 5% fault probability
is computed. Hence, the accuracy of the FCS-MBFLEACH method compared to one SVM, fuzzy one
SVM, and MB-FLEACH methods was improved by 7.60%, 6.45%, and 3.12%, respectively. So, for
the highest probability of 45%, the detection accuracy of the proposed method was improved by
22.95%, 19.04%, and 5.63% for one SVM, fuzzy one SVM, and MB-FLEACH, respectively. For Figure 10,
the accuracy of fault detection with the 5% fault probability is computed so that the accuracy of the
FCS-MBFLEACH method was denoted with this method compared to the one SVM, fuzzy one SVM,
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and MB-FLEACH methods, which was improved by 6.59%, 5.43%, 3.19%, respectively. In addition, for
the highest probability of 45%, the average accuracy of the proposed method compared with the other
methods such as one SVM, fuzzy one SVM, and MB-FLEACH was improved by 20.33%, 16.39%, and
2.89%, respectively.
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5.2. False-Positive Rate

The false-positive rate (FPR) is one of the crucial criteria for detecting node faults in WSN [5];
it is also called the false alarm rate. This criterion is defined as the ratio of the number of safe nodes
detected as a fault to the total number of sensor nodes faults, which is as follows:

FPR =
Number of safe nodes detected as a fault

Total number of fault nodes
. (26)

The FPR criterion has been examined based on different rounds for the one SVM, fuzzy one SVM,
MB-FLEACH, and FCS-MBFLEACH methods in both scenarios with five and 10 node densities.

5.2.1. False-Positive Rate for the First Scenario

The average false-positive rate criterion against the probability of sensor node faults for the first
scenario with densities of five and 10 is shown in Figures 11 and 12. Given these figures, in both
scenarios, the performance of each algorithm can be observed in rounds defined by node densities of
five and 10, so that one common feature among the methods is that the increasing probability of sensor
node fault in the network increases the average FPR. Clearly, in both scenarios with different densities,
the FPR for the proposed method is lower than those of the other methods.

According to Figure 11, in the first scenario for the proposed method with a 5% fault probability,
the false positive rate is 3%. In contrast, the false positive rates for one SVM, fuzzy one SVM, and
MB-FLEACH were 25%, 18%, and 7%, respectively. This criterion is also 34% for the proposed method
with a 45% probability of fault compared with 65%, 59%, and 41% for one SVM, fuzzy one SVM, and
MB-FLEACH, respectively.

Thus, according to Figure 12, for the proposed method with a 5% fault probability, the average
false positive rate is 1%. While the average false positive rates for one SVM, fuzzy one SVM, and
MB-FLEACH methods are 22%, 15%, and 5%, respectively. In addition, this criterion for the proposed
method is 31% with a 45% probability of fault, which is 57%, 48%, and 36% higher than those for one
SVM, fuzzy one SVM, and MB-FLEACH, respectively.Mathematics 2019, 7, x FOR PEER REVIEW 18 of 25 
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5.2.2. False-Positive Rate for the Second Scenario

The false-positive rate against the probability of fault sensor nodes for the second scenario is
shown in Figures 13 and 14.

According to Figure 13, in the second scenario for the proposed method with a 5% fault probability,
the false positive rate is 2%. Meanwhile, the false positive rates for one SVM, fuzzy one SVM, and
MB-FLEACH are 23%, 16%, and 5%, respectively. In addition, the false positive rate for the proposed
method is 45% with a 31% probability of fault compared with those of one SVM, fuzzy one SVM, and
MB-FLEACH, which were computed as 56%, 54%, and 38%, respectively.

Thus, according to Figure 14, for the proposed FCS-MBFLEACH method with a 5% fault probability,
the false positive rate is null. Meanwhile, the false positive rates for one SVM, the fuzzy one SVM, and
MB-FLEACH methods are 20%, 12% and 3%, respectively. In addition, the false positive rate for the
proposed method with a 45% probability of fault is 28%, which is 51%, 43%, and 35% higher than those
for one SVM, fuzzy one SVM, and MB-FLEACH, respectively.
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5.3. Average Remaining Energy

The average remaining energy after detecting the sensor node fault in the network regarding the
cluster heads is crucial for selecting the super cluster head for the proposed FCS-MBFLEACH method
so that in both scenarios, the average of remaining energy in joules against different rounds after the
fault detection for the methods is computed, as shown in Figures 15 and 16. The values of the average
remaining energy for the algorithms are assigned for two scenarios in Tables 2 and 3.

Based on Tables 2 and 3 as well as Figures 15 and 16, it can be observed, on average, that the
remaining energy for the proposed FCS-MBFLEACH method is more than those of the other methods
for all the rounds in the network.Mathematics 2019, 7, x FOR PEER REVIEW 21 of 25 
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Table 2. Average remaining energy in different rounds for the first scenario.

Algorithms

Average Remaining Energy

Scenario 1

Round 1 Round 57 Round 112 Round 342 Round 678 Round 800

One SVM 0.7463 0.6231 0.4289 0.2893 0.1257 0.0893

Fuzzy one SVM 0.8435 0.7825 0.6791 0.5102 0.3974 0.1948

MB-FLEACH 0.9125 0.8516 0.7462 0.6318 0.5189 0.4215

FCS-MBFLEACH 0.9786 0.9215 0.8217 0.7029 0.6248 0.4951

Table 3. Average remaining energy in different rounds for the second scenario.

Algorithms

Average Remaining Energy

Scenario 2

Round 1 Round 57 Round 112 Round 342 Round 678 Round 800

One SVM 0.7921 0.7184 0.5249 0.4421 0.3514 0.2143

Fuzzy one SVM 0.8714 0.8146 0.7536 0.5978 0.4852 0.3610

MB-FLEACH 0.9412 0.8761 0.8053 0.6538 0.5549 0.4914

FCS-MBFLEACH 0.9873 0.9352 0.8624 0.7348 0.6534 0.5827

5.4. Network Lifetime

There is a concept of stability time in a wireless sensor network i.e., network lifetime, which
refers to the time between the death of the first node or FND to the death of half the nodes or HND;
this is called the lifetime of the network [4]. In addition, another concept that we will discuss later is
called half node alive, which has been much discussed and researched. The value of half node alive is
equal to the period in which half of the network nodes die. The results of the simulation show that
the proposed FCS-MFLEACH method has better performance than the other algorithms in terms of
FND and HND criteria. The first node deaths and half node deaths for all the methods are shown in
Figures 17 and 18 in both scenarios.
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5.5. Network Lifetime for the First Scenario

In the simulation performed, it was observed that the network lifetime based on first node
death criterion in Figure 17 illustrates a better performance in both scenarios for the proposed
FCS-MBFLEACH method than the other methods, as the first node death occurs for the first scenario
of the proposed method in round 673, and it occurs for the second scenario in round 718. The FND
and HND criteria considered in this study are described in Table 4.
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Table 4. A comparison between the proposed algorithms in terms of remaining energy, as well as FND
and HND criteria.

Algorithms
FND HND

Scenario 1 Scenario 2 Scenario 1 Scenario 2

One SVM 354 387 512 576
Fuzzy one SVM 412 432 594 645

MB-FLEACH 561 612 628 682
FCS-MBFLEACH 673 718 732 791

In addition, the network lifetime based on HND in Figure 18 shows better performance in both
scenarios for the proposed FCS-MBFLEACH method compared to the other methods. As for the
proposed method, HND will occur for the first scenario in round 732, and it will occur for the second
scenario in round 791. Finally, a comparison between the SVM, fuzzy one SVM, MB-FLEACH, and
FCS-MBFLEACH algorithms in terms of accuracy detection and FPR criteria is demonstrated for two
scenarios with densities equal to 5 and 10 in Table 5.

Table 5. A comparison between the proposed algorithms in terms of detection accuracy and FPR criteria.

Algorithms

Detection Accuracy (%) with
Density Equal to 5 FPR with Density Equal to 5 Detection Accuracy (%) with

Density Equal to 10 FPR with Density Equal to 10

Scenario 1
for Fault

Probability

Scenario 2
for Fault

Probability

Scenario 1
for Fault

Probability

Scenario 2
for Fault

Probability

Scenario 1
for Fault

Probability

Scenario 2
for Fault

Probability

Scenario 1
for Fault

Probability

Scenario 2
for Fault

Probability

5 45 5 45 5 45 5 45 5 45 5 45 5 45 5 45

One SVM 88.48 51.29 92.51 52.74 0.25 0.65 0.23 0.56 85.51 48.84 90.42 48.75 0.22 0.57 0.20 0.51

Fuzzy one SVM 90.90 57.20 93.01 56.65 0.18 0.59 0.16 0.54 89.20 54.75 91.58 52.69 0.15 0.48 0.12 0.43

MB-FLEACH 95.44 67.44 95.87 70.06 0.07 0.41 0.05 0.38 92.64 58.36 93.82 66.19 0.05 0.36 0.03 0.35

FCS-MBFLEACH 98.59 73.32 99.12 75.69 0.03 0.34 0.02 0.31 94.81 64.91 97.01 69.08 0.01 0.31 0.00 0.28

Based on Table 5, it can be deducted that the proposed method of FCS-MBFLEACH outperforms
the other classification methods in terms of detection accuracy and FPR criteria in both scenarios.

6. Conclusions and Future Work

In this paper, a machine learning classification method for computing the fault detection accuracy
with an effective energy-aware approach in mobile wireless sensor networks is proposed called
FCS-MBFLEACH. The investigated methods for fault detection including one SVM, fuzzy one SVM,
MB-FLEACH, and FCS-MBFLEACH were performed based on the defined scenarios [4]. One of
the problems with fault detection in WSNs is early fault detection so that we have the least energy
consumption for sensor nodes, so we used the MB-FLEACH approach to achieve this purpose. We first
used the MB-FLEACH algorithm to select the suitable SCH [4] with the most remaining energy, the
least distance to the mobile base station, and the greatest centrality of the node. Then, this algorithm
was applied to the fuzzy one SVM model based on the creation of the fuzzy decision function.

Finally, according to Tables 2–5, by comparing the proposed FCS-MBFLEACH method with
machine learning methods such as one SVM, fuzzy one SVM, and MB-FLEACH, we concluded that
FCS-MBFLEACH has the best performance in terms of detection accuracy, false positive rate, average
remaining energy, and network lifetime criteria.

In future work, we can use other algorithms in combination, including deep neural networks,
the genetic evolutionary algorithm, as well as the particle swarm optimization algorithm with other
scenarios and other datasets.
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