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Abstract: Underground gas hydrate storage of natural gas is a rather promising way of creating
underground storage facilities for hydrocarbon raw materials in porous reservoirs. This paper
presents a solution to the problem of the formation of CH4 hydrate in a porous medium during
the injection of methane into a reservoir at a temperature lower than the initial temperature of the
reservoir. Self-similar solutions of the problem in axisymmetric approximation are given, describing
the pressure and temperature distribution in separate reservoir regions at the formation of gas hydrate
on the frontal surface. On the basis of the method of sequential change of stationary states, an
analytical solution was obtained, which allowed us to determine the position of the methane hydrate
formation boundary depending on different parameters for any moment of time. The limits of the
applicability of the proposed model are also given. Thus, the analysis of the calculation results
showed that the constructed solution allows one to sufficiently and accurately determine the values of
parameters at the frontal surface for a highly permeable medium (k0 > 10−13 m2). It was proved that
in the case of a highly permeable medium, the methane hydrate formation intensity will be limited
by convective heat dissipation during hydrate formation.

Keywords: porous medium; nonisothermic filtration; gas hydrate; phase transition

1. Introduction

Natural gas (primarily methane) is currently considered to be one of the most widely used fossil
fuels [1,2]. An important issue when using this hydrocarbon raw material is the improvement in the
technology of storing natural gas. In other words, there is a need to establish gas storage facilities in
conditions that contribute to the effective preservation of gas reserves over a certain time period [2].
At present, underground hydrocarbon gas storage facilities created in porous reservoirs are quite
widespread (as a rule, these are depleted oil and/or natural gas deposits). In order to increase the
capacity of such underground reservoirs, it is possible to convert gas in porous reservoirs from a free
state to a gas-hydrate one.

Gas hydrates are non-stoichiometric solid compounds similar to ice crystals [3–5]. In these
compounds, water molecules form clathrate-like structures in which gases with low molecular weight
act as guest molecules [3,6]. Since there is no chemical bond between water and gas molecules,
gas extraction is possible by reducing the pressure and/or thermal effect on the deposit [7,8]. A number
of papers (for example, [9–15]) have presented theoretical approaches to solving these problems. That
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is, there is a great deal of attention given to the application of mathematical methods in solving practical
problems [16–18].

In [19], the authors in a plane-parallel formulation investigated the features of gas hydrate
formation in a porous medium when cold gas (with a temperature lower than the initial reservoir
temperature) is injected into a semi-infinite porous reservoir saturated in the initial state with methane
and water. Self-similar solutions of this problem are constructed in straight-parallel approximation,
describing the distribution of the main parameters in the reservoir of gas hydrate both on the frontal
surface and in the extended region. A similar problem was considered in [20]. In particular, it is shown
that there are three possible filtration modes in a porous medium, which differ qualitatively in the
fields of temperature and hydrate saturation, namely: filtration without the formation of a gas hydrate
in the porous medium; frontal mode of phase transitions; and the bulk mode of hydrate formation.
In [21], the process of gas hydrate formation was considered in a porous reservoir of finite length.
The numerical implementation of the mathematical model of the process under study presented in the
work was carried out using the method of catching the front into a grid node. In [22], a similar initial
and boundary value problem was solved by the finite difference method using the iterative algorithm
and the sweep method. However, in contrast to papers [19–21], a mathematical model was used, which
took into account a greater number of the main physical features of the process under study: the real
properties of the gas, the Joule-Thomson effect, and the joint movement of water and gas.

In our previous article [23], an approximate solution to the problem of the gas hydrate formation
in a porous medium was constructed in the form of an explicit functional dependence of the self-similar
coordinate of the hydrate formation boundary on the parameters of the porous medium and injected
gas. In papers [13–15,19,20], for similar problems, self-similar solutions were obtained that described
the distributions of pressure and temperature in a reservoir. However, when these solutions are
substituted into the relations on the moving boundaries of phase transitions, a system of transcendental
equations arises (resulting from the conditions of mass and energy balance), which in the general case
can be solved only by numerical methods. This greatly complicates the mathematical model analysis.
In this paper, in contrast to [13–18], for the plane-radial case, an analytical solution is obtained that
allows for each time point to find the coordinate of the methane hydrate formation boundary depending
on various parameters: mass flow rate and temperature of the gas injected into a reservoir, parameters
of the porous medium skeleton, porosity, and the initial reservoir water saturation. The obtained
solution allows for the analysis of the basic properties of a hydrate-containing system to determine
the possible structures of the mathematical solution of the problem, and also identify the conditions
and mechanisms that determine the possibility of implementing a particular mode of gas hydrate
formation in a natural reservoir.

This article is structured as follows. The problem statement, the basic equations, and the self-similar
solution of the problem are given, the system of equations is written to find the coordinates of the
hydrate formation boundary, and the values of the parameters on it. The numerical solution of the
above system of transcendental equations shows that at sufficiently high permeability values of the
porous medium, the temperature in a small section of the formation near the surface of methane
hydrate formation rises sharply (i.e., we can talk about a temperature jump [23]). For the case of a
temperature jump at the front of the gas hydrate formation using the method of sequential changes of
stationary states, an approximate analytical solution was constructed that allowed for any moment of
time to determine the position of the boundary of methane hydrate formation depending on various
parameters. Then, the results of comparing the numerical and constructed analytical solutions are
presented, which show the limits of applicability of the proposed model.

2. Mathematical Modeling of the Process of Gas Hydrate Formation in a Porous Medium

Figure 1 shows the scheme of the considered model problem of gas injection into a horizontal
porous layer of infinite length, constant thickness, and with an impermeable roof and bottom.
The porous collector is initially filled with methane and water. Injection of gas (methane) with a
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constant temperature Tw, lower than the initial reservoir temperature T0, occurs through a perfect well
(opening the porous layer for its entire thickness) at a constant mass (per unit height of the well) flow
rate Q: 

t = 0 : T = T0, p = p0, Sl = Sl0, Sg = 1− Sl0 (r ≥ rw) ,
r = rw : T = Tw, Q = −2πrwρgmSgvg (t > 0) ,

r→∞ : T = T0, p = p0 (t > 0) .
(1)

where p is the pressure; T is the temperature; ρg and vg are the density and gas phase velocity; m is the
reservoir porosity; Sj (j = g, l, h) is the pore saturation with j-th phase; and Sl0 is the initial reservoir
water saturation. Subscripts sk, h, l, and g refer to the parameters of the porous skeleton, gas hydrate,
water, and gas.
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Figure 1. (a) is the schematic representation of the studied process, (b) is the schematic representation
of the considered porous medium.

When gas is injected, its particles will move along horizontal trajectories radially emanating from
the well. The pattern of current lines, in this case, in any horizontal plane is the same, and for the
full flow characteristic, it suffices to study the motion in any horizontal plane [24,25]. In such a flow,
all parameters characterizing filtration at any point depend only on the distance r of a given point
from the well axis (i.e., the flow will be plane-radial (axisymmetric)).

This paper considered the frontal regime of methane hydrate formation (Figure 1a). For this
regime, there are two zones in the formation saturated respectively with methane and its hydrate (near
or first zone) as well as gas and water (far or second zone). It was assumed that hydrate is located
on the walls of the pore channel (Figure 1b), so the hydrate saturation Sh, is the fraction of the pore
volume occupied by hydrate, with the rest of the pore volume, equal to 1–Sh, saturated with mobile
gas. The same assumption was applied to water.

Assume that m, ρsk, ρh, ρl = const, υsk, υh, υl = 0, where ρj and vj (j = g, l, h) are the density and
velocity of the j-th phase [26]. Assuming also that gas is only in the gaseous and hydrated states,
and water is only in the liquid or hydrated states (i.e., ice and vapor formation processes are absent),
then for gas, we took the Clapeyron–Mendeleev equation as the equation of state.

In the considered problem, the velocity of the front of the phase transitions will be limited by
the rate of heat dissipation during the formation of a hydrate (i.e., heat transfer in a reservoir [27]).
This was due to the fact that heat transfer in extended natural reservoirs proceeds very slowly, therefore
the condition of phase equilibrium on the surface of phase transitions is met:

T(s) = T0 + T∗ ln
(
p(s)/ps0

)
, (2)

where ps0 is the equilibrium pressure corresponding to the initial temperature T0; T* is an empirical
parameter that has the dimension of temperature and depends on the natural gas composition;
and subscript s in brackets refers to the parameters at the border of hydrate formation.
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For the stated problem statement in [26,27], a system of nonlinear differential equations describing
the filtration flow of gas, taking into account the process of hydrate formation, was proposed on the
basis of the methods and approaches of the mechanics of multiphase media [28] for the plane-radial
case. Appendix A contains this system of basic equations, the self-similar solution of the problem,
and a system of transcendental equations to find the coordinate of the hydrate formation and the
values of parameters on it.

From the system of transcendental Equation (A7), taking into account Equation (2), by using a
numerical method, we can find the value of the self-similar coordinate of the gas hydrate formation
front ξ(s), and then the value of the physical coordinate of this front:

r(s) = ξ(s)

√
χ(T)t.

The solution of the above system of transcendental equations, and accordingly, finding the
coordinates of the gas hydrate formation front ξ(s) is possible only with the use of numerical methods.
However, in order to analyze the mathematical model of the process under study, it is of more interest
to obtain a solution in the form of a function of the coordinate of the hydrate formation boundary r(s),
from the parameters of the injected gas and porous medium. To construct such a solution, we used the
type of temperature distribution curve at sufficiently high permeabilities of a porous medium k0.

Figure 2 shows the temperature distribution in a reservoir at 10 h after the start of methane
injection. The original parameters used in the model are shown in Table 1 [3,19,26,29–31]:
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Table 1. Basic parameters for the model.

Variables Symbol Value Unit

Porosity m 0.1 -
Initial water saturation Sl0 0.2 -

Mass (per unit height of the well) flow rate Q 0.3 kg/(m·s)
Permeability k0 10−12 m2

Initial temperature T0 280 K
Injection temperature Tw 273 K

Initial pressure p0 4 MPa
Specific volumetric heat capacity ρC 2.0·106 J/(K·m3)

Thermal conductivity coefficient of water λl 0.58 W/(m·K)
Thermal conductivity coefficient of hydrate λh 2.11 W/(m·K)

Thermal conductivity coefficient of porous medium skeleton λsk 2 W/(m·K)
Mass concentrations of methane in hydrate G 0.12 -

Gas constant of methane Rg 520 J/(kg·K)
Density of methane hydrate ρh 900 kg/m3

Density of water ρl 1000 kg/m3

Density of porous medium skeleton ρsk 2500 kg/m3

Dynamic viscosity of methane µg 10−5 Pa·s
Heat of the formation of hydrate Lh 5·105 J/kg

Equilibrium pressure corresponding to the initial temperature ps0 5.5 MPa
Empirical parameter T* 10 K

Specific heat capacity of methane cg 1560 J/(kg·K)
Specific heat capacity of hydrate ch 2500 J/(K·kg)
Specific heat capacity of water cl 4200 J/(kg·K)

Specific heat capacity of porous medium skeleton csk 1000 J/(kg·K)
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Figure 2 shows that the temperature in a small section of the reservoir near the surface of the CH4

hydrate formation sharply rose from Tw to T(s) (i.e., we can talk about a temperature jump [23]). In this
case, to obtain an approximate analytical solution, it is possible to simplify the conditions at the phase
transition boundary by adopting a stepwise change in the temperature by coordinate r.

3. Construction of an Approximate Analytical Solution

For the case of a temperature jump at the gas hydrate formation front, the temperature field in the
vicinity of the phase transition boundary r(s) is determined by two temperatures: Tw and T(s) (Figure 3).
The step-by-step nature of the temperature distribution in the reservoir is determined by the following
factors: the given temperature of the gas pumped into the reservoir; heat release during the formation
of gas hydrate; and the determining role of the convective mechanism of heat transfer in a porous
medium in the considered case.
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Taking into account the accepted temperature distribution (Figure 3), we detail the conditions for
the balance of mass and heat for r = r(s):

mSg(2)ρg(s)

(
υg(2) −

.
r(s)

)
−mSg(1)ρg(s)

(
υg(1) −

.
r(s)

)
= 0,

mSg(1)ρg(1)

(
υg(1) −

.
r(s)

)
cgTw + mSh(1)ρhLh

.
r(s) + ρc

(
T(s) − Tw

) .
r(s) = mSg(2)ρg(s)

(
υg(2) −

.
r(s)

)
cgT(s),

where
.
r(s) is the speed of movement of the phase transition boundary. When writing the mass balance

equation, the term responsible for gas absorption was neglected due to its small influence (due to
continuous gas injection into a reservoir) on the pressure change in a reservoir.

Taking into account that mSg(i)υg(i) =
k(i)
µg

dp(i)
dr (i = 1, 2) and ρg(s) =

p(s)
RgT(s)

, the last equation will
take the form:

k(2)
T(s)

dp2
(2)

dr
−

k(1)
Tw

dp2
(1)

dr
= 2mµg

(
Sg(1)

p(s)
Tw
− Sg(2)

p(s)
T(s)

)
.
r(s), (3)

k(1)
dp2

(1)

dr
− k(2)

dp2
(2)

dr
= 2µg

(
Rgρc

cg

(
T(s) − Tw

)
+ mp(s)

(
Sg(2) − Sg(1)

)
+ mSh(1)ρhLh

Rg

cg

)
.
r(s), (4)

where i = 1 and 2 corresponds to the parameters of the first and second zones.
Multiplying Equation (3) by T(s) and adding up with Equation (4), we obtain:

k(1)

(
1−

T(s)

Tw

)dp2
(1)

dr
= 2µgRg

.
r(s)

(
ρc
cg

(
T(s) − Tw

)
−mSg(1)

p(s)
Rg

(
1−

T(s)

Tw

)
+

mSh(1)ρhLh

cg

)
.
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The following expression can be written from the last equation for the velocity of movement of
the gas hydrate formation boundary:

.
r(s) = −

dp2
(1)

dr

k(1)

2µgRg

(
ρcTw

cg
+ mSg(1)

p(s)
Rg
−

mSh(1)ρhTwLh

cg(Tw−T(s))

) . (5)

As seen from Equation (5), to find the velocity of the gas hydrate formation boundary,
.
r(s), we

need to know how the reservoir pressure changes. To find the pressure distribution p(r, t), we used the
method of successive change of stationary states [24]. We will assume that for each time moment, there
is a perturbed region of finite radius R(t), in which the stationary filtration of the gas takes place:

p(r, t) =

√
p2

0 +
p2

w − p2
0

ln(R(t)/rw)
ln(R(t)/r) , rw ≤ r ≤ R(t), (6)

where pw is the bottom hole pressure and p0 is the initial (undisturbed) pressure.
Outside the perturbed region, the pressure is equal to the initial: p(r, t) = p0 ( r > R(t)).
Let us express the pressure value through the mass flow rate Q. In the case of the steady-state flat

radial filtration, the expression for Q has the form [24]:

Q = −
πkgrw

µgRgTw

∂p2

∂r
=

πkg
(
p2

w − p2
0

)
µgRgTw ln(R(t)/rw)

. (7)

Hence:
p2

w − p2
0

ln(R(t)/rw)
=

QµgRgTw

πkg
.

Substituting the last expression into Equation (6), we get:

p(r, t) =

√
p2

0 +
QµgRgTw

πkg
ln(R(t)/r) . (8)

Thus, we obtained the pressure distribution expressed in terms of a given mass flow rate and
the reservoir parameters. To find the radius of the perturbed region R(t), we make use of the
mass-balance equation.

The initial gas reserve (at p = p0) in the reservoir zone of radius R(t) is equal to:

M0 = π
(
R2(t) − r2

w

)
HmSgρg0 = π

(
R2(t) − r2

w

)
HmSg

p0

RgT
, (9)

where H is the reservoir thickness.
The current gas reserve is expressed through the weighted average pressure p:

Mt = π
(
R2(t) − r2

w

)
HmSgρg = π

(
R2(t) − r2

w

)
HmSg

p
RgT

, (10)

where the weighted average pressure is determined by the equation of the flat-radial steady-state
filtration of a perfect gas:

p =
1

π
(
R2 − r2

w

)
HmSg

R∫
rw

2πrpHmSgdr = p0 +
p2

w − p2
0

4p0 ln(R/rw)
. (11)
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In the considered problem, gas injection occurs with a constant mass flow rate Q, therefore the gas
mass pumped into a reservoir at time t is equal to QHt. At the same time, the rate of increase in the
length of the perturbed region R(t) considerably exceeds the speed of movement of the gas hydrate
formation boundary. In this case, neglecting the absorption of gas at the phase transition boundary,
we have:

Mt −Mt = QHt.

Substituting Equations (9)–(11) into this equation, and taking into account Equation (7), we obtain:

R( t) =

√
r2

w +
4kgp0

µgmSg
t.

For time values for which
4kgp0
µgmSg

t >> rw, we have:

R( t) =

√
4kgp0

µgmSg
t.

Now, knowing the law of motion of the boundary of the perturbed region, from Equation (8) we
can find the pressure at each reservoir point at any time:

p(r, t) =

√√√√
p2

0 +
QµgRgTw

πkg
ln


√

4kgp0

µgmSg
t/r

 ,

r ≤

√
4kgp0

µgmSg
t

 . (12)

From this relation we have:

dp2
(1)

dr

∣∣∣∣∣∣∣∣
r=r(s)

= −
QµgRgTw

πk(1)

1
r(s)

. (13)

Substituting Equation (13) into Equation (5), we can write the following equation:

.
r(s) =

1
r(s)

QTw

2π
(
ρcTw

cg
+ mSg(1)

p(s)
Rg
−

mSh(1)ρhTwLh

cg(Tw−T(s))

) .

Integrating this equation, we get:

r(s) =

√√√√ QTw

π
(
ρcTw

cg
+ mSg(1)

p(s)
Rg
−

mSh(1)ρhTwLh

cg(Tw−T(s))

) t . (14)

To find the coordinate of the gas hydrate formation boundary from Equation (14), it is necessary
to know the values of pressure and temperature at this boundary. Figure 4 shows the dependences on
the permeability of the values of temperature and pressure at the gas hydrate formation boundary
obtained by numerically solving the system of Equation (A7).

From Figure 4, it can be seen that as the permeability k0 decreases, the pressure p(s) at the phase
transition boundary and the temperature T(s) connected with it by relation (2) increases. This increase in
p(s) with a decrease in k0 can be explained by the need to increase the well bottom pressure pw, because
in the problem it was assumed that the mass flow rate of gas injection Q is constant (Darcy’s law) [23].
Accordingly, the pressure in the near well area increases. Moreover, for the values of temperature and
pressure at the phase transition boundary, there are maximum values. The temperature increase is due
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to the release of the latent heat of gas hydrate formation and the maximum temperature at the gas
hydrate formation boundary is:

T(s)max = T0 +
mρhLhSh

ρc
= T0 +

mLhρlSl0

(1−G)ρc
.

Figure 4 shows that for a highly permeable medium (k0 > 10−13 m2), the pressure on the phase
transition surface asymptotically approaches p0, and the temperature on this surface approaches the
equilibrium phase transition temperature T(s)(p0), determined from Equation (2) for the pressure p0.
Thus, at sufficiently high permeability values (k0), the following conditions are met:

p(s) = p0, T(s) = T0 + T∗ ln(p0/ps0). (15)

Substituting Equation (15) into Equation (14), we obtain the following solution for the coordinate
of the hydrate formation boundary:

r(s) =

√√√ QTw

π
(
ρcTw

cg
+ mSg(1)

p(s)
Rg
−

mSh(1)ρhTwLh

cg(Tw−T0−T∗ ln(p0/ps0))

) t . (16)

Obtained solution (16) allows for any time point to determine the position of the methane hydrate
formation boundary depending on various parameters.
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4. Calculations Results Using Obtained Analytical Solution

Let us determine the applicability limits of the proposed mathematical model taking into account
a stepwise temperature distribution on coordinate z. For this purpose, we compared the results of
calculating the phase transition boundary coordinate according to Equation (16) with the solution of
the system of transcendental Equation (A7), taking into account Equation (2). This solution can only be
obtained using some numerical method (further referred to as “numerical solution”).

Figure 5 shows the change in the coordinate of the phase transition boundary depending on
permeability, mass flow rate (in 10 h after the start of gas injection), and time. The solid curve
corresponds to the numerical solution; the dashed curve corresponds to solution (16). The solution
with a temperature jump on the surface of methane hydrate formation (16) only takes into account the
convective heat transfer mechanism.

From the data presented in Figure 5c, it can be seen that over time, the hydrate formation boundary
r(s) moves deep into the reservoir. Additionally, with the increase in the mass flow rate Q of the
injected gas into the formation, the value of r(s) increases (Figure 5b). This is due to the following
factors. For the formation of gas hydrate, the value of the reservoir temperature should not exceed
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the equilibrium temperature T(s) (associated with pressure through relation (2)). However, the initial
reservoir temperature T0 in this case is higher than the temperature T(s). In addition, the process of
hydrate formation is accompanied by an increase in temperature due to the release of latent heat of
phase transitions. In this regard, to start and maintain the process of hydrate formation an increase
in temperature T(s) (through an increase in pressure) and the removal of heat released during phase
transitions are necessary. With increasing Q, the reservoir pressure increases, which means that the
equilibrium hydrate formation temperature T(s) associated with it through Equation (2) increases.
Additionally, with increasing Q, the intensity of convective heat transfer in a reservoir increases and,
accordingly, the rate of heat removal, released at the phase transition boundary, increases. Therefore,
large values of the mass flow rate Q correspond to large values of the coordinate of the gas hydrate
formation boundary r(s).
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Figure 5a shows that for sufficiently large permeabilities (k0 > 10−13 m2), the numerical solution
and solution (16) practically coincide. So, in the case of a highly permeable medium, the rate of hydrate
formation in a natural reservoir will be limited by convective heat removal generated during the
formation of CH4 hydrate.

Numerical solution of the system of Equation (A7) shows that as the permeability k0 decreases,
the phase transitions boundary r(s) moves farther and farther away from the well (Figure 5a). Such
an increase in r(s) with decreasing k0 and a constant mass flow rate Q is explained by the need to
increase the injection pressure, which in turn, leads to an increase in the pressure at the phase transition
boundary. Additionally, it accelerates the process of the formation of gas hydrate because it increases
the equilibrium temperature of hydrate formation T(s) connected with pressure through Equation (2).

The decrease in k0 does not affect the values of r(s) (Figure 5a) found from the approximate
analytical solution (16), which is due to the use of assumption (15) on the constancy of pressure at
the phase transition boundary as well as the constancy of the gas injection mass flow rate Q. Figure 5
shows that the constructed solution (16) well describes the movement of the gas hydrate formation
boundary for highly permeable media (k0 > 10−13 m2). It is also worth noting that as the permeability
k0 decreases, the value of r(s) found from solution (16) is increasingly different (becomes less) from the
value of the hydrate formation boundary coordinate found from the numerical solution. This difference
in the calculation results can be explained by the fact that, according to Figure 4, with a decrease
in permeability, the pressure at the gas hydrate formation boundary increases and therefore the use
of condition (15) introduces significant errors in the calculation of the value of r(s), according to the
approximate analytical solution (16).
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From Equation (12), the pressure values at the phase transition boundary take the form:

p(s) =

√√√√
p2

0 +
QµgRgTw

πk(1)
ln


√

4kgp0

µgmSg
t/r(s)

. (17)

On the basis of Equation (17) and using Equations (2) and (16), we can write approximate
analytical solutions for the pressure and temperature at the phase transition boundary in the form of
their explicitly defined functional dependence on the parameters of injected gas and porous medium:

p(s) =
√

p2
0 + Rg

{
ln

(
QTwµgp0
πk(1)mSg(1)

)
+ ln

(
ρcTw

cg
+ mSg(1)

p0
Rg
−

mSh(1)ρhTwLh

cg(Tw−T0−T∗ ln(p0/ps0))

)}
,

T(s) = T0 + T∗ ln
(
p(s)/ps0

)
.

(18)

Figure 6 shows the calculations of temperature and pressure at the gas hydrate formation boundary
made on the basis of a numerical solution of the system of Equations (A7) (solid curve) and analytical
solution (18) (dashed curve). The time of the injection of methane into a reservoir was 10 h; other
parameters correspond to Figure 5.
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Figure 6. Changes in pressure and temperature at the phase transition boundary depending on the
permeability (a) and mass flow rate (b).

From the data presented in Figure 6, it can be seen that for highly permeable media (k0 > 10−13 m2)
the constructed solution (18) allows one to accurately determine the values of pressure and temperature
at the phase transition boundary. Figure 6 shows that with a decrease in permeability k0 and an
increase in the gas injection mass flow Q, the values of pressure p(s) and temperature T(s), calculated
from the approximate analytical solution (18), increasingly differ (become larger) from the values p(s)

and T(s) found from the numerical solution. This is due to the fact that, according to Figure 5, with
a decrease in permeability and an increase in mass flow rate, the position of the surface formation
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of methane hydrate, found from solution (16), is increasingly different from the values of r(s) found
from the numerical solution. According to Equation (17), as the coordinate r(s) decreases (that is, as
it approaches the well), the pressure and, accordingly, the equilibrium temperature of gas hydrate
formation increases.

5. Conclusions

A mathematical model is presented that describes the flow in a natural reservoir, taking into
account the gas hydrate formation. Based on the method of the successive change of stationary states,
an approximate analytical solution was obtained with a temperature jump at the phase transitions
front. This solution allows for any time point to determine the position of the methane hydrate
formation boundary depending on various parameters. It was shown that this solution allows one
to accurately determine the values of pressure, temperature, and coordinate of the phase transition
boundary at sufficiently high permeability values (k0 > 10−13 m2). At sufficiently small values of
reservoir permeability k0 and sufficiently large values of the injected gas mass flow rate Q, the
coordinate r(s) of the methane hydrate formation surface, calculated using the constructed analytical
solution, has underestimated values compared to the coordinate r(s), found from the solution with
continuous temperature distribution at the boundary of phase transitions; moreover, with a decrease
in k0 and an increase in Q, this difference grows. Additionally, with a decrease in k0 and an increase
in Q, the values of pressure and temperature at the phase transition boundary, calculated from an
approximate analytical solution, become increasingly higher when compared to their values found on
the basis of the numerical solution.
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Appendix A. The System of Basic Equations, a Self-Similar Solution of the Considered Problem,
and System of Transcendental Equations for Finding the Coordinate of the Hydrate Formation
Boundary and the Values of Parameters on It

For the presented problem statement for the plane-radial case, a system of nonlinear differential
equations describing the gas flow in a porous medium can be represented in the form [26,27]:

∂p2
(i)

∂t
= χ

(p)
(i)

1
r
∂
∂r

r
∂p2

(i)

∂r

, (i = 1, 2) (A1)

∂T(i)

∂t
= χ(T)

1
r
∂
∂r

(
r
∂T(i)

∂r

)
+

cgk(i)ρg0

ρc · µg

∂p(i)
∂r

∂T(i)

∂r
, (A2)

χ
(p)
(i)

=
k(i)p0

mSg(i)µg
, χ(T) =

λ
ρc

, k(i) = k0S3
g(i), (i = 1, 2)

ρc = (1−m)ρskcsk + m
∑

j=g, l, h

ρ jS jc j, λ = (1−m)λsk + m
∑

j=g, l, h

S jλ j,
∑

j=g, l, h

S j = 1,

where χ(T) is the coefficient of thermal diffusivity (thermal conductivity coefficient) of a reservoir; ρj, cj
and λj (j = sk, h, l, g) are the true density, specific heat capacity, and thermal conductivity of the j-th
phase; and µg is the dynamic viscosity of gas phase.



Mathematics 2020, 8, 36 12 of 14

The formulated problem has an self-similar solution. We introduced an self-similar variable
ξ = r/

√
χ(T)t. Given that:

∂
∂t

=
d

dξ
∂ξ
∂t

= −
ξ
2t

d
dξ

,
∂
∂r

=
d

dξ
∂ξ
∂r

=
1√
χ(T)t

d
dξ

,
∂2

∂2r
=

1
χ(T)t

d2

d2ξ

we obtain the following system of ordinary differential equations:

− ξ
dp2

(i)

dξ
=

2η(i)
ξ

d
dξ

ξdp2
(i)

dξ

, (i = 1, 2) (A3)

− ξ
dT(i)

dξ
=

Pe(i)
p2

0

dp2
(i)

dξ

dT(i)

dξ
+

2
ξ

d
dξ

(
ξ

dT(i)

dξ

)
, (A4)

η(i) =
χ
(p)
(i)

χ(T)
, Pe(i) =

ρg0cgk(i)p0

λµg
, (i = 1, 2).

Integrating Equations (A3) and (A4), for the distribution of pressure and temperature in each of
the zones, we can write the following integral relations:

0 < ξ < ξ(s) :



p2
(1)

= p2
(s) +

QµgRgTw
πk(1)

ξ(s)∫
ξ

1
ξ exp

(
−

ξ2

4η(1)

)
dξ ,

T(1) = T(s) +

(Tw−T(s))
ξ(s)∫
ξ

1
ξ exp

− ξ2
4 −Pe(1)

p2
(1)

2p2
0

 dξ

ξ(s)∫
0

1
ξ exp

− ξ2
4 −Pe(1)

p2
(1)

2p2
0

 dξ

,

(A5)

ξ(s) < ξ < ∞ :



p2
(2)

= p2
0 +

(
p2
(s)
−p2

0

) ∞∫
ξ

1
ξ exp

(
−

ξ2
4η(2)

)
dξ

∞∫
ξ(s)

1
ξ exp

(
−

ξ2
4η(2)

)
dξ

,

T(2) = T0 +

(T(s)−T0)
∞∫
ξ

1
ξ exp

− ξ2
4 −Pe(2)

p2
(2)

2p2
0

 dξ

∞∫
ξ(s)

1
ξ exp

− ξ2
4 −Pe(2)

p2
(2)

2p2
0

 dξ

.

(A6)

Here, Rg is the specific gas constant and ξ(s) is the self-similar coordinate of the hydrate
formation boundary.

As also seen in [26,27], the system of equations was written to find the coordinate of the hydrate
formation boundary and the values of parameters on it. This system of equations follows from
the conditions of mass-heat balance on the frontal surface of phase transitions. After substituting
solutions (A5) and (A6), this system can be presented as follows:

k(2)
(

p2
0−p2

(s)

)
∞∫

ξ(s)

1
ξ exp

(
−

ξ2
4η(2)

)
dξ

exp
(
−
ξ2
(s)

4η(2)

)
+

QµgRgTw
π exp

(
−
ξ2
(s)

4η(1)

)
= KSh(1)ξ

2
(s) ,

(T(s)−Tw) exp

− ξ2
4 −Pe(1)

p2
(s)

2p2
0


ξ(s)∫
0

1
ξ exp

− ξ2
4 −Pe(1)

p2
(1)

2p2
0

 dξ

+
(T(s)−T0) exp

− ξ2
4 −Pe(2)

p2
(s)

2p2
0


∞∫

ξ(s)

1
ξ exp

− ξ2
4 −Pe(2)

p2
(2)

2p2
0

 dξ

= ∆T
2 Sh(1)ξ

2
(s) ,

(A7)
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K = mµgχ
(T)p0

(
ρhG
ρg0

+
ρh(1−G)

ρl
− 1

)
, ∆T =

mρhLh

ρc
,

where G is the mass concentration of gas in methane hydrate and Lh is the specific heat of
hydrate formation.
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