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Abstract: In many areas of applied sciences, the last step of a study often consists in analyzing in
depth the collected data. Among all the kinds of data, the lifetime data are well-known to convey
a great deal of information whose capture is necessary to identify one or more key phenomena.
In this regards, numerous mathematical models have been proposed, including those based on
lifetime distributions. In this paper, we introduce a new four-parameter lifetime distribution based
on the type II Topp-Leone-G family and the power Lomax distribution. In comparison to the
existing distributions, the new one is characterized by very flexible probability functions: increasing,
decreasing, J, and reverse J shapes are observed for the probability density and hazard rate functions,
giving first signs on the potential of adaptability of the related model. With this idea in mind, the new
distribution is studied in detail, from both the theoretical and applied sides. After showing its main
mathematical properties, the related model is investigated with estimation of the parameters by
the maximum likelihood method. We applied it to two practical datasets, including the well-know
aircraft windshield data. We show that the new model performs better than several modern adversary
models, motivating its use in an applied setting.

Keywords: mathematical model; probability distribution; power Topp-Leone distribution; estimation;
data analysis

MSC: 60E05, 62E15, 62F10

1. Introduction

1.1. From the Lomax Distribution to the Power Lomax Distribution

Over the last decades, the so-called Lomax distribution (introduced in [1]) was revealed to be
a goldest distribution for a plethora of applications in applied sciences. We refer the reader to the
works of [2] for applications in life testing, [3] for applications in queue service discipline, [4] for
applications in personal wealth, and [5] for applications in internet traffic, to name a few. The use
of the Lomax distribution is often motivated by its heavy tailed nature and the simplicity of the
related probability functions, providing an interesting polynomial alternative to the exponential-type
distributions (exponential, Rayleigh, Weibull, etc.) (see [6]). Indeed, the mathematical definition of the
Lomax distribution is based on the following cumulative distribution function (cdf):
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G∗(x; α, λ) = 1−
(

1 +
x
λ

)−α
, x > 0, (1)

with α, λ > 0. Thus, α is a shape parameter and λ is a scale parameter. The corresponding probability
function (pdf) is given by

g∗(x; α, λ) =
α

λ

(
1 +

x
λ

)−α−1
, x > 0. (2)

In view of this pdf, we can notice that the Lomax distribution naturally appears as a special case
of other well-known distributions, such as the Pareto type II, Pareto type IV, Feller-Pareto, Fisher and
beta of the second kind distributions.

However, the Lomax distribution has some limitations: beyond the data showing heavy tailed
features, the related model can lack of flexibility and be useless for a thorough analysis. For this
reason, numerous efforts have been launched to generalized these distributions in the best way
possible. Among these generalizations, we would like to mention the Marshall-Olkin extended
Lomax distribution by [7], the exponentiated Lomax distribution by [8], the McDonald Lomax
distribution by [9], the Poisson Lomax distribution by [10], the gamma Lomax distribution by [11],
the exponential Lomax distribution by [12], the transmuted Lomax distribution by [13], the weighted
Lomax distribution by [14], the Weibull Lomax distribution by [15], the Gompertz Lomax distribution
by [16], the Transformed-Transformer Lomax distribution by [17], and the power Lomax (PL)
distribution by [18].

For the purposes of this paper, let us now discuss the PL distribution. First, it is defined by the
following cdf:

Go(x; α, β, λ) = G∗(xβ; α, λ) = 1−
(

1 +
xβ

λ

)−α

, x > 0, (3)

with α, β, λ > 0. Thus, α and β are two shape parameters and λ is a scale parameter. The corresponding
pdf is given by

go(x; α, β, λ) =
αβ

λ
xβ−1

(
1 +

xβ

λ

)−α−1

, x > 0. (4)

The additional parameter β has a significant effect on the flexibility on the pdf. In particular,
one can show that go(x; α, β, λ) is increasing if β > 1 and decreasing if β ≤ 1. This generalization
thus reaches of new level of flexibility in term of modeling by keeping a relative simplicity for the
expressions of the corresponding probability functions.

1.2. On the Extensions of the PL Distribution through the Use of General Families of Distributions

In the recent literature, some recent extensions of the PL distribution have seen the light through
the use of general families of distributions. We refer to the exponentiated PL distribution introduced
by [19], the odds generalized exponential PL distribution proposed by [20], and the transmuted PL
distribution studied by [21]. The first one is a member of the exponentiated-G family by [22], the second
one is member of the odds generalized exponential-G family by [23], and the third one is a member of
the transmuted-G family by [24], all defined with the PL distribution as baseline distribution.

The main idea of these three extensions is to exploit the parameter(s) of the considered general
family as tuning parameter(s) to increase the desirable properties of the former PL distribution,
including more possibilities for the values of the mean, variance, mode, skewness and kurtosis.
The practical gain is flagrant, with better fits for various datasets in comparison to the former PL
distribution. Thus, the consideration of new powerful families of distributions can give desirable
extensions of the PL distributions, with possible new perspectives.
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With this idea in mind, let us now briefly present an emergent family of distributions: the
type II Topp-Leone-G (TIITL-G) family introduced by [25], known to be a suitable alternative to the
exponentiated-G, odds generalized exponential-G and transmuted-G families (among others). For the
mathematical backgrounds, the cdf of the TIITL-G family is given by

F(x; θ, ξ) = 1− [1− G(x; ξ)2]θ , x ∈ R, (5)

where θ is a positive shape parameter and G(x; ξ) is a cdf of a baseline continuous distribution which
may depend on a parameter vector ξ. The corresponding pdf is given by

f (x; θ, ξ) = 2θg(x; ξ)G(x; ξ)[1− G(x; ξ)2]θ−1, x ∈ R, (6)

where g(x; ξ) is the pdf corresponding to G(x; ξ). One can remark that the TIITL-G family is a
simplified version of the Kumaraswamy-G family by [26]. The role of the parameter θ is to create new
possible levels of skewness and tail weights from the cdf G(x; ξ). Therefore, the TIITL-G family was
naturally used to extend several well-known distributions, with applications. For instance, we refer
the reader to the works of [27,28] for extension of the inverse and generalized inverse Rayleigh
distributions and [29] for extension of the inverted Kumaraswamy distribution.

In this paper, a similar methodology is adopted but with a focus on the PL distribution. Indeed,
we extend the PL distribution through the TIITL-G family; the special member of the TIITL-G family
defined with the PL distribution as baseline distribution is considered.

1.3. Novelty and Contributions

Thus, we create a new four-parameter lifetime distribution, called the type II Topp-Leone power
Lomax (TIITLPL). The main contributions of this study are the followings:

• To improve the characteristics and flexibility of the PL distribution by using the TIITL-G family
(as motivated above). In particular, increasing, decreasing, J, and reverse J shapes are observed for
the probability density and hazard rate functions, illustrating this claim.

• To introduce an extended version of the PL distribution whose quantile function has a closed-form.
• To study important statistical properties of the TIITLPL distribution, including the skewness,

kurtosis, and various kinds of moments and order statistics.
• To explore the inferential features of the TIITLPL distribution through the use of the maximum

likelihood method, providing a comprehensive methodology for the practitioner.
• To provide better fits than the competing modified models. In this study, an exhaustive list of

such competitor models are considered (including those described in [11,19,21,30–33], to name a
few), with favorable results for the TIITLPL model.

All these points are developed in detail through the study, with discussions and comparisons to
the existing works.

1.4. Paper Organization

In Section 2, we define the TIITLPL distribution and present its main functions of interest.
Some mathematical properties of the distribution are investigated in Section 3. Section 4 focuses on
the inference of the TIITLPL model, with estimation of the unknown parameters by the method of
maximum likelihood. In Section 5, we illustrate the importance of the TIITLPL model by means of two
practical datasets: the well-known aircraft windshield and cancer patient datasets. A conclusion is
proposed in Section 6.

2. The TIITLPL Distribution

This section is devoted to the presentation of the TIITLPL distribution, including its main
probability functions with analytical and graphical studies.
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2.1. Definition

As developed in the Introduction, the cdf of the TIITLPL distribution is obtained by compounding
the cdf given by Equation (5) with the one given by Equation (3). Thus, it is given by

F(x; θ, α, β, λ) = 1−

1−
[

1−
(

1 +
xβ

λ

)−α
]2


θ

, x > 0, (7)

with θ, α, β, λ > 0. In addition, by Equations (6) and (4), the corresponding pdf follows:

f (x; θ, α, β, λ) =
2θαβ

λ
xβ−1

(
1 +

xβ

λ

)−α−1
1−

(
1 +

xβ

λ

)−α

1−

1−
(

1 +
xβ

λ

)−α
2


θ−1

,

x > 0.

(8)

Remark 1. The common brace term of the cdf and pdf can also be expressed as

1−
[

1−
(

1 +
xβ

λ

)−α
]2

=

(
1 +

xβ

λ

)−α
[

2−
(

1 +
xβ

λ

)−α
]

.

Thus, for instance, the pdf can be expressed as

f (x; θ, α, β, λ) =
2θαβ

λ
xβ−1

(
1 +

xβ

λ

)−θα−1 [
1−

(
1 +

xβ

λ

)−α
] [

2−
(

1 +
xβ

λ

)−α
]θ−1

,

x > 0.

Let us now study some analytical properties of f (x; θ, α, β, λ). When x → 0, by using standard
limited developments, we get f (x; θ, α, β, λ) ∼ (2θα2β/λ2)x2β−1. Hence, if β ∈ (0, 1/2), we have
limx→0 f (x; θ, α, β, λ) = +∞; if β = 1/2, we have limx→0 f (x; θ, α, β, λ) = θα2/λ2; and, i f β > 1/2, we
have limx→0 f (x; θ, α, β, λ) = 0.

In addition, when x → +∞, we have f (x; θ, α, β, λ) ∼ 2θθαβλαθ x−αθβ−1. That is, for all the values
of the parameters, we have limx→+∞ f (x; θ, α, β, λ) = 0.

The critical points of f (x; θ, α, β, λ) can be described analytically. Indeed, a critical point of
f (x; θ, α, β, λ), say xc, satisfies the non-linear equation given by {log[ f (x; θ, α, β, λ)]}′ |x=xc= 0 (where
the differentiation is according to x), with

{log[ f (x; θ, α, β, λ)]}′ = (β− 1)
1
x
− (α + 1)β

xβ−1

λ + xβ
+

αβ

λ

xβ−1
(

1 + xβ

λ

)−α−1

1−
(

1 + xβ

λ

)−α

− 2(θ − 1)αβ

λ

xβ−1
(

1 + xβ

λ

)−α−1
[

1−
(

1 + xβ

λ

)−α
]

1−
[

1−
(

1 + xβ

λ

)−α
]2 .

Then, the nature of xc can be determined by investigating the sign of the real number
ηc = {log[ f (x; θ, α, β, λ)]}′′ |x=xc . In view of the complexity of the equation above, there is no
closed-form for xc, but numerical solutions exist via the use of any mathematical software. To handle
the flexibility of f (x; θ, α, β, λ), Figure 1 shows some plots of this function for selected values of
θ, α, β, and λ. We observe that f (x; θ, α, β, λ) is left skewed, right skewed, J, reverse J, and near
symmetrical shaped.
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Figure 1. Plots of the pdf of the TIITLPL distribution for selected values of the parameters.

2.2. Common Reliability Functions

The survival function (sf), hazard rate function (hrf), reversed hazard rate function, and
cumulative hazard rate function of the TIITLPL distribution are given, respectively, by

S(x; θ, α, β, λ) =

1−
[

1−
(

1 +
xβ

λ

)−α
]2


θ

, x > 0, (9)

h(x; θ, α, β, λ) =
2θαβ

λ
xβ−1

(
1 +

xβ

λ

)−α−1 [
1−

(
1 +

xβ

λ

)−α
]1−

[
1−

(
1 +

xβ

λ

)−α
]2

−1

,

x > 0,

r(x; θ, α, β, λ) =
2θαβ

λ

xβ−1
(

1 + xβ

λ

)−α−1
[

1−
(

1 + xβ

λ

)−α
]{

1−
[

1−
(

1 + xβ

λ

)−α
]2
}θ−1

1−
{

1−
[

1−
(

1 + xβ

λ

)−α
]2
}θ

,

x > 0

and

C(x; θ, α, β, λ) = −θ log

1−
[

1−
(

1 +
xβ

λ

)−α
]2
 , x > 0.

Among them, the most informative function remains the hrf. Let us now study it analytically.
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When x → 0, we obtain h(x; θ, α, β, λ) ∼ (2θα2β/λ2)x2β−1. Hence, if β ∈ (0, 1/2), we have
limx→0 h(x; θ, α, β, λ) = +∞; if β = 1/2, we have limx→0 h(x; θ, α, β, λ) = θα2/λ2; and, i f β > 1/2, we
have limx→0 h(x; θ, α, β, λ) = 0.

In addition, when x → +∞, we get h(x; θ, α, β, λ) ∼ θαβx−1. Thus, for all the values of the
parameters, we have limx→+∞ h(x; θ, α, β, λ) = 0. We see that the parameters have no effect on the rate
of convergence of h(x; θ, α, β, λ), contrary to f (x; θ, α, β, λ).

Furthermore, the critical points of h(x; θ, α, β, λ) can be described analytically. Then, a critical point of
h(x; θ, α, β, λ), say xcc, satisfies the non-linear equation given by {log[h(x; θ, α, β, λ)]}′ |x=xcc= 0, with

{log[h(x; θ, α, β, λ)]}′ = (β− 1)
1
x
− (α + 1)β

xβ−1

λ + xβ
+

αβ

λ

xβ−1
(

1 + xβ

λ

)−α−1

1−
(

1 + xβ

λ

)−α

− 2(θ − 1)αβ

λ

xβ−1
(

1 + xβ

λ

)−α−1
[

1−
(

1 + xβ

λ

)−α
]

1−
[

1−
(

1 + xβ

λ

)−α
]2

+
2θαβ

λ
xβ−1

(
1 +

xβ

λ

)−α−1 [
1−

(
1 +

xβ

λ

)−α
]1−

[
1−

(
1 +

xβ

λ

)−α
]2

−1

.

Then, the sign of the real number ηcc = {log[h(x; θ, α, β, λ)]}′′ |x=xcc can inform us on the nature
of xcc. Again, no closed-form for xcc exist, but we can evaluate it numerically at least. The flexibility of
h(x; θ, α, β, λ) is illustrated in Figure 2 for selected values of θ, α, β, and λ. In particular, we observe
that h(x; θ, α, β, λ) is increasing, decreasing, upside-down bathtub, and constant shaped.
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Figure 2. Plots of the hrf of the TIITLPL distribution for selected values of the parameters.

3. Mathematical Properties

The main mathematical properties of the TIITLPL distribution are discussed in this section.
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3.1. Quantile Function and Applications

The quantile function of a distribution is useful to described important properties of the
distribution. Here, we present the quantile function of the TIITLPL distribution, as well as related
properties, applications, and functions.

3.1.1. Definition

The quantile function of the TIITLPL distribution is defined by Q(u; θ, α, β, λ) = F−1(u; θ, α, β, λ),
u ∈ (0, 1). After some algebraic manipulations, we get

Q(u; θ, α, β, λ) = λ1/β

{[
1−

√
1− (1− u)1/θ

]−1/α

− 1

}1/β

, u ∈ (0, 1).

In particular, the quartiles of the TIITLPL distribution can be expressed. Here, we just mention
the median (second quartile) given by

M = Q(0.5; θ, α, β, λ) = λ1/β

{[
1−

√
1− 0.51/θ

]−1/α
− 1
}1/β

.

Table 1 presents the numerical values of the median of the TIITLPL distribution for some values of
the parameters. We see that various values can be obtained, i.e., M ∈ (0, 1801), showing the flexibility
of the central tendency of the distribution.

Table 1. The numerical values of the median of the TIITLPL distribution for some values of
the parameters.

(θ, α, β, λ) M

(0.5, 0.5, 0.5, 0.5) 540.1999
(5.0, 0.5, 0.5, 0.5) 54019.99
(5.0, 1.0, 0.5, 0.5) 1800.6660
(5.0, 2.0, 0.5, 0.5) 232.4650
(5.0, 2.5, 0.5, 0.5) 141.8530
(5.0, 0.5, 1.0, 0.5) 1206.2180
(5.0, 2.0, 1.0, 0.5) 26.97185
(5.0, 2.0, 2.0, 0.5) 7.6697
(5.0, 2.0, 5.0, 0.5) 2.8015
(5.0, 2.0, 0.5, 1.0) 9.6382
(5.0, 2.0, 0.5, 5.0) 0.0358
(5.0, 2.0, 5.0, 5.0) 0.0282
(5.0, 5.0, 5.0, 5.0) 0.0077

3.1.2. Generated Values

The following result holds in our setting: For a random variable U following the uniform
distribution on (0, 1), the random variable X = Q(U; θ, α, β, λ) follows the TIITLPL distribution.
Hence, generated values from the TIITLPL distribution are obtained as follows. Let u1, . . . , un be n
independent realizations from U. Then, n values from the TIITLPL distribution are given by x1, . . . , xn,
where xi = Q(ui; θ, α, β, λ) for i = 1, . . . , n.
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3.1.3. Some Related Functions

Important functions can be derived from the quantile function. For instance, upon differentiation
of Q(u; θ, α, β, λ) according to u, the quantile density function is given by

q(u; θ, α, β, λ) =
λ1/β

2αβθ

(1− u)1/θ−1
[

1−
√

1− (1− u)1/θ

]−1/α−1
{[

1−
√

1− (1− u)1/θ

]−1/α

− 1

}1/β−1

√
1− (1− u)1/θ

,

u ∈ (0, 1).

In addition, the hazard quantile function is defined by H(u; θ, α, β, λ) = [(1− u)q(u; θ, α, β, λ)]−1, i.e.,

H(u; θ, α, β, λ) =
2αβθ

λ1/β

θ
√

1− (1− u)1/θ

(1− u)1/θ

[
1−

√
1− (1− u)1/θ

]−1/α−1
{[

1−
√

1− (1− u)1/θ

]−1/α

− 1

}1/β−1 ,

u ∈ (0, 1).

These functions are useful in reliability. In particular, H(u; θ, α, β, λ) can be interpreted as a certain
the conditional probability involving the 100(1− u)% point of distribution. In addition, the quantile
function is uniquely determined as the following integral expression:

Q(u; θ, α, β, λ) =
∫ u

0

1
(1− x)H(x; θ, α, β, λ)

dx.

We refer the reader to [34,35].

3.1.4. Skewness and Kurtosis Based on the Quantile Function

A common approach to measure the skewness and kurtosis of a distribution is to consider
measures defined with moments. However, these moments do not always exist. This is particularly
true for heavy-tailed distributions such as the Lomax or PL distribution. For this reason, some
alternatives are given by the use of the quantile function. In particular, to measure the skewness, we
can use the Galton skewness coefficient defined by

S =
Q(1/4; θ, α, β, λ) + Q(3/4; θ, α, β, λ)− 2Q(1/2; θ, α, β, λ)

Q(3/4; θ, α, β, λ)−Q(1/4; θ, α, β, λ)
.

To evaluate the kurtosis, we can use the Moors kurtosis coefficient defined by

K =
Q(7/8; θ, α, β, λ)−Q(5/8; θ, α, β, λ) + Q(3/8; θ, α, β, λ)−Q(1/8; θ, α, β, λ)

Q(6/8; θ, α, β, λ)−Q(2/8; θ, α, β, λ)
.

The sign of S is informative on the direction of the skewness of the distribution: S > 0 for right
skewed, S = 0 for symmetric, and S < 0 for left skewed. The value of K measures the tail-heaviness
of the distribution; in general, the bigger is the value of K is, the heavier is the tail of the distribution.
We refer the reader to [36,37] for further details on these measures.

Three-dimensional plots for S and K are proposed in Figures 3 and 4. We see smooth variations
for the three-dimensional surface corresponding to these measures (in green), with possible high
variations according to the values of the parameters, showing the flexibility of the distribution on
these aspects.
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3.2. Useful Expansions

The following result proposes a series expansion for the pdf of the TIITLPL distribution.

Theorem 1. For any x > 0, we have

f (x; θ, α, β, λ) =
+∞

∑
k=0

2k

∑
`=1

ak,`xβ−1
(

1 +
xβ

λ

)−α`−1

,

where

ak,` =
αβ

λ

(
θ

k

)(
2k
`

)
(−1)k+``, (10)

with (b
k) = b(b− 1) . . . (b− k + 1)/k!.

Proof. Owing to Equation (7), by applying the generalized binomial and standard binomial formulas
in a row, we get

F(x; θ, α, β, λ) = 1−
+∞

∑
k=0

(
θ

k

)
(−1)k

[
1−

(
1 +

xβ

λ

)−α
]2k

= 1−
+∞

∑
k=0

2k

∑
`=0

(
θ

k

)(
2k
`

)
(−1)k+`

(
1 +

xβ

λ

)−α`

.
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By differentiating the (left and right) functions above according to x, we get the desired result.
This ends the proof of Theorem 1.

A generalization of this result is given below.

Theorem 2. Let υ be a positive integer. For any x > 0, we have

S(x; θ, α, β, λ)υ f (x; θ, α, β, λ) =
+∞

∑
k=0

2k

∑
`=1

a[υ]k,`xβ−1
(

1 +
xβ

λ

)−α`−1

,

where

a[υ]k,` =
αβ

λ(υ + 1)

(
θ(υ + 1)

k

)(
2k
`

)
(−1)k+``. (11)

Proof. We start the proof by expanding the function S(x; θ, α, β, λ)υ+1. Owing to Equation (9) and the
generalized binomial and standard binomial formulas, we obtain

S(x; θ, α, β, λ)υ+1 =
+∞

∑
k=0

(
θ(υ + 1)

k

)
(−1)k

[
1−

(
1 +

xβ

λ

)−α
]2k

=
+∞

∑
k=0

2k

∑
`=0

(
θ(υ + 1)

k

)(
2k
`

)
(−1)k+`

(
1 +

xβ

λ

)−α`

.

By differentiating the functions above according to x and noticing that[
S(x; θ, α, β, λ)υ+1

]′
= −(υ + 1)S(x; θ, α, β, λ)υ f (x; θ, α, β, λ),

we establish the desired result. This ends the proof of Theorem 2.

One can remark that a[0]k,` = a[υ]k,`.
Theorems 1 and 2 are useful for determining sums expressions of important statistical measures.

Some of them are presented in the next.

3.3. Moments

Two kinds of moments for the TIITLPL distribution are now investigated, with discussions.

3.3.1. Ordinary moments

Let X be a random variable following the TIITLPL distribution. Then, if it exists, the sth ordinary
moment of X is given by

µ′s = E(Xs) =
∫ +∞

−∞
xs f (x; θ, α, β, λ)dx

=
∫ +∞

0
xs 2θαβ

λ
xβ−1

(
1 +

xβ

λ

)−α−1 [
1−

(
1 +

xβ

λ

)−α
]1−

[
1−

(
1 +

xβ

λ

)−α
]2


θ−1

dx.

Since, when x → +∞, we have f (x; θ, α, β, λ) ∼ 2θθαβλαθ x−αθβ−1, this integral exists if and only
if s < αθβ (there is no problem of existence when x → 0). If the parameters s, θ, α, β, and λ are fixed,
we can evaluate the numerical values of µ′s by using a mathematical software such as R, Matlab, and
Mathematica.

A sum expression of µ′s can be derived to Theorem 1, as presented below.
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Proposition 1. Let us suppose that s < αβ min(θ, 1). Then, we have

µ′s =
+∞

∑
k=0

2k

∑
`=1

bk,`,sB(s/β + 1, α`− s/β),

where

bk,`,s = λs/βα

(
θ

k

)(
2k
`

)
(−1)k+`` (12)

and B(x, y) denotes the standard beta function defined by B(x, y) =
∫ 1

0 tx−1(1− t)y−1dt.

Proof. It follows from Theorem 1 that

µ′s =
∫ +∞

−∞
xs f (x; θ, α, β, λ)dx =

+∞

∑
k=0

2k

∑
`=1

ak,` I`,s,

where ak,` is given by Equation (10) and

I`,s =
∫ +∞

0
xs+β−1

(
1 +

xβ

λ

)−α`−1

dx.

Now, by applying the two changes of variables x = (λy)1/β and y = u/(1− u) = −1 + 1/(1− u)
in a row, we get

I`,s =
1
β

λs/β+1
∫ +∞

0
ys/β (1 + y)−α`−1 dy =

1
β

λs/β+1
∫ 1

0
us/β (1− u)α`−s/β−1 du

=
1
β

λs/β+1B(s/β + 1, α`− s/β).

By putting the above equalities together and noticing that (λs/β+1/β)ak,` = bk,`,s, we end the
proof of Proposition 1.

By taking s = 1, we obtain the mean of X, i.e., µ = µ′1. The variance of X is obtained by
σ2 = E[(X− µ)2] = µ′2 − µ2. Further, one can determine the sth central moment and sth cumulant of
X defined by, respectively,

µs = E[(X− µ)s] =
s

∑
k=0

(
s
k

)
µ′s−k(−1)kµk, κs = µ′s −

s−1

∑
k=1

(
s− 1
k− 1

)
κkµ′s−k,

with κ1 = µ. One can also express several measures of skewness and kurtosis based on the central
moments (or cumulants).

3.3.2. Incomplete Moments

Let X be a random variable following the TIITLPL distribution and, for any t ≥ 0, let Xt be the
random variable such that Xt = X if X ≤ t and 0 otherwise. Then, the sth incomplete moment of X is
given by

µ′s(t) = E(Xs
t ) =

∫ t

−∞
xs f (x; θ, α, β, λ)dx

=
∫ t

0
xs 2θαβ

λ
xβ−1

(
1 +

xβ

λ

)−α−1 [
1−

(
1 +

xβ

λ

)−α
]1−

[
1−

(
1 +

xβ

λ

)−α
]2


θ−1

dx.
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Note that µ′s(t) always exists. As for the ordinary moments, if the parameters s, t, θ, α, β, and λ

are fixed, a numerical calculation of µ′s(t) is always possible by any mathematical software.
In this regards, by using the R software, Table 2 collects the numerical values of the first four

incomplete moments of the TIITLPL distribution with t = 100 for some values of the parameters.
We observe that the parameters of the distribution have a high impact on these values.

Table 2. The numerical values of the first four incomplete moments of the TIITLPL distribution with
t = 100 for some values of the parameters.

(θ, α, β, λ) µ
′
1(100) µ

′
2(100) µ

′
3(100) µ

′
4(100)

(0.5, 0.5, 0.5, 0.5) 6.5310 329.8982 21948 1642994
(5.0, 0.5, 0.5, 0.5) 3.0469 83.6055 4496.53 304584
(5.0, 1.0, 0.5, 0.5) 0.2716 0.8662 18.6814 905.1954
(5.0, 2.0, 0.5, 0.5) 0.03667 0.0061 0.0038 0.0111
(5.0, 2.5, 0.5, 0.5) 0.0210 0.0017 0.0004 0.0003
(5.0, 0.5, 1.0, 0.5) 1.2956 6.6656 141.9529 6614.0360
(5.0, 2.0, 1.0, 0.5) 0.1528 0.03667 0.0126 0.0061
(5.0, 2.0, 2.0, 0.5) 0.3661 0.1528 0.0712 0.03667
(5.0, 2.0, 5.0, 0.5) 0.6575 0.4426 0.3044 0.2139
(5.0, 2.0, 0.5, 1.0) 0.1467 0.0980 0.2437 2.3221
(5.0, 2.0, 0.5, 5.0) 3.6090 51.7157 1679.7620 84843.84
(5.0, 2.0, 5.0, 5.0) 1.0420 1.1118 1.2121 1.3482
(5.0, 5.0, 5.0, 5.0) 0.8527 0.7423 0.6583 0.5939

From the analytical point of view, a sum expression of µ′s(t) is presented below.

Proposition 2. We have

µ′s(t) =
+∞

∑
k=0

2k

∑
`=1

bk,`,sBtβ/(tβ+λ)(s/β + 1, α`− s/β),

where bk,`,s is given by Equation (12) and Bw(x, y) denotes the lower incomplete beta function defined by
Bw(x, y) =

∫ w
0 tx−1(1− t)y−1dt.

Proof. The proof is similar to the one of Proposition 1, only the upper bound of the integral term must
be adjusted. Thus, Theorem 1 gives

µ′s(t) =
∫ t

−∞
xs f (x; θ, α, β, λ)dx =

+∞

∑
k=0

2k

∑
`=1

ak,` I`,s(t),

where ak,` is given by Equation (10) and

I`,s(t) =
∫ t

0
xs+β−1

(
1 +

xβ

λ

)−α`−1

dx.

Now, by applying the two changes of variables x = (λy)1/β and y = u/(1− u) = −1+ 1/(1− u),
i.e., u = y/(1 + y), in a row, we get

I`,s(t) =
1
β

λs/β+1
∫ tβ/λ

0
ys/β (1 + y)−α`−1 dy =

1
β

λs/β+1
∫ tβ/(tβ+λ)

0
us/β (1− u)α`−s/β−1 du

=
1
β

λs/β+1Btβ/(tβ+λ)(s/β + 1, α`− s/β).
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Since (λs/β+1/β)ak,` = bk,`,s, by combining the above equalities, we end the proof of
Proposition 2.

From the incomplete moments of X, one can define important quantities and functions. For instance,
one can express the mean deviations of X about the mean µ and the median M by, respectively,

δ1 = E(|X− µ|) = 2µF(µ; θ, α, β, λ)− 2µ′1(µ), δ2 = E(|X−M|) = µ− 2µ′1(M).

Other quantities can be defined in a similar manner. Well-known functions defined with the
s-incomplete moment include the sth lower and upper conditional moments of X defined by, respectively,

µ∇s (t) = E(Xs | X ≤ t) =
1

F(t; θ, α, β, λ)
µ′s(t), t ≥ 0

and

µ4s (t) = E(Xs | X > t) =
1

S(t; θ, α, β, λ)
[µ′s − µ′s(t)], t ≥ 0.

3.4. Order Statistics

Let X be a random variable following the TIITLPL distribution and, for a random sample of size
n from X, say X1, . . . , Xn, let Xi:n be the ith order statistic such that X1:n ≤ X2:n ≤ . . . ≤ Xn:n, where
Xu:n ∈ {X1, . . . , Xn} for u = 1, . . . , n. In full generality, the study of the order statistics is of importance
since they naturally appear in various applications, mainly those involving systems composed of
several components that can fail independently of each other. Here, some distributional properties of
Xi:n are presented. First, the pdf of Xi:n is given by

fi:n(x; θ, α, β, λ) =
n!

(i− 1)!(n− i)!
F(x; θ, α, β, λ)i−1S(x; θ, α, β, λ)n−i f (x; θ, α, β, λ), x > 0.

It follows from the binomial formula that

fi:n(x; θ, α, β, λ) =
n!

(i− 1)!(n− i)!

i−1

∑
j=0

(
i− 1

j

)
(−1)jS(x; θ, α, β, λ)j+n−i f (x; θ, α, β, λ), x > 0.

An immediate application of Theorem 2 gives us the following series expansion:

fi:n(x; θ, α, β, λ) =
i−1

∑
j=0

+∞

∑
k=0

2k

∑
`=1

b[j+n−i]
k,` xβ−1

(
1 +

xβ

λ

)−α`−1

, x > 0,

where

b[j+n−i]
k,` =

n!
(i− 1)!(n− i)!

(
i− 1

j

)
(−1)ja[j+n−i]

k,`

and a[j+n−i]
k,` is defined by Equation (11) with υ = j + n− i.

From this series expansion, structural properties of the distribution of Xs:n can be determined, as
several kinds of moments. For instance, after some algebraic manipulations, the sth moment of Xs:n is
given by

µ′i:n,s = E(Xs
i:n) =

i−1

∑
j=0

+∞

∑
k=0

2k

∑
`=1

c[j+n−i]
k,` B(s/β + 1, α`− s/β),

where c[j+n−i]
k,` = (λs/β+1/β)b[j+n−i]

k,` .
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Let us now focus on the extreme order statistics defined by X1:n = inf(X1, . . . , Xn) and Xn:n =

sup(X1, . . . , Xn), having the pdfs given by, respectively,

f1:n(x; θ, α, β, λ) = nS(x; θ, α, β, λ)n−1 f (x; θ, α, β, λ), x > 0

and

fn:n(x; θ, α, β, λ) = nF(x; θ, α, β, λ)n−1 f (x; θ, α, β, λ), x > 0.

The following result concerns the limiting distributions of X1:n and Xn:n, involving the well-known
Weibull and Fréchet distributions.

Theorem 3.

1. The limiting distribution of (X1:n)n∈N∗ is the Weibull distribution with the following cdf: F∗(x; β) =

1− e−x2β
, x > 0, i.e., there exist (an)n∈N∗ and (bn)n∈N∗ such that

lim
n→+∞

P (bn(X1:n − an) ≤ x) = F∗(x; β).

2. The limiting distribution of (Xn:n)n∈N∗ is the Fréchet distribution with the following cdf: F∗∗(x; θ, α, β) =

e−x−αθβ
, x > 0, i.e., there exist (an)n∈N∗ and (bn)n∈N∗ such that

lim
n→+∞

P (bn(Xn:n − an) ≤ x) = F∗∗(x; θ, α, β).

Proof.

1. Let us recall that, when x → 0, we have f (x; θ, α, β, λ) ∼ (2θα2β/λ2)x2β−1 and Q(0; θ, α, β, λ) = 0.
Hence, owing to l’Hospital’s rule, we have

lim
ε→0

F(Q(0; θ, α, β, λ) + εx; θ, α, β, λ)

F(Q(0; θ, α, β, λ) + ε; θ, α, β, λ)
= lim

ε→0

F(εx; θ, α, β, λ)

F(ε; θ, α, β, λ)

= lim
ε→0

x f (εx; θ, α, β, λ)

f (ε; θ, α, β, λ)
= x2β.

It follows from ([38] Theorem 8.3.6) the desired result.
2. Let us recall that, when x → +∞, we have f (x; θ, α, β, λ) ∼ 2θθαβλαθ x−αθβ−1. Thus, by applying

l’Hospital’s rule, we have

lim
t→+∞

1− F(tx; θ, α, β, λ)

1− F(t; θ, α, β, λ)
= lim

t→+∞

x f (tx; θ, α, β, λ)

f (t; θ, α, β, λ)
= x−αθβ.

The desired result follows from ([39] Theorem 1.6.2 and Corollary 1.6.3).

The proof of Theorem 3 is completed.

4. Inference

We now investigate the inferential aspect of the TIITLPL model. The unknown parameters are
estimated by the well-established maximum likelihood estimation method.

4.1. Maximum Likelihood Estimation Method

The maximum likelihood estimation method consists in determining the parameters that
maximize the likelihood function of the sample data, called the maximum likelihood estimates (MLEs).
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For the purpose of this paper, from an observed sample x1, . . . , xn from the TIITLPL distribution, the
corresponding likelihood function is given by

L(θ, α, β, λ) =
n

∏
i=1

f (xi; θ, α, β, λ)

=
n

∏
i=1

2θαβ

λ
xβ−1

i

(
1 +

xβ
i

λ

)−α−1 1−
(

1 +
xβ

i
λ

)−α

1−

1−
(

1 +
xβ

i
λ

)−α
2


θ−1
 .

The MLEs of θ, α, β, and λ are denoted by θ̂, α̂, β̂, and λ̂, respectively. They can also be obtained
by maximization of a more tractable function: the log-likelihood function is given by

`(θ, α, β, λ) = log[L(θ, α, β, λ)] = n log(2) + n log(θ) + n log(α) + n log(β)− n log(λ)

+ (β− 1)
n

∑
i=1

log(xi)− (α + 1)
n

∑
i=1

log

(
1 +

xβ
i

λ

)
+

n

∑
i=1

log

1−
(

1 +
xβ

i
λ

)−α


+ (θ − 1)
n

∑
i=1

log

1−

1−
(

1 +
xβ

i
λ

)−α
2
 .

Thus, θ̂, α̂, β̂, and λ̂ are the simultaneous solutions of the following non-linear equations:
∂`(θ, α, β, λ)/∂θ = 0, ∂`(θ, α, β, λ)/∂α = 0, ∂`(θ, α, β, λ)/∂β = 0 and ∂`(θ, α, β, λ)/∂λ = 0, according
to the parameters. Here, these partial derivatives are of complexed form, i.e.,

∂`(θ, α, β, λ)

∂θ
=

n
θ
+

n

∑
i=1

log

1−

1−
(

1 +
xβ

i
λ

)−α
2
 , (13)

∂`(θ, α, β, λ)

∂α
=

n
α
−

n

∑
i=1

log

(
1 +

xβ
i

λ

)
+

n

∑
i=1

(
1 + xβ

i
λ

)−α

log
(

1 + xβ
i

λ

)
1−

(
1 + xβ

i
λ

)−α

− 2(θ − 1)
n

∑
i=1

(
1 + xβ

i
λ

)−α
[

1−
(

1 + xβ
i

λ

)−α
]

log
(

1 + xβ
i

λ

)

1−
[

1−
(

1 + xβ
i

λ

)−α
]2 ,

∂`(θ, α, β, λ)

∂β
=

n
β
+

n

∑
i=1

log(xi)− (α + 1)
n

∑
i=1

xβ
i log(xi)

λ + xβ
i

+
α

λ

n

∑
i=1

xβ
i log(xi)

(
1 + xβ

i
λ

)−α−1

1−
(

1 + xβ
i

λ

)−α

− 2α(θ − 1)
λ

n

∑
i=1

xβ
i log(xi)

(
1 + xβ

i
λ

)−α−1
[

1−
(

1 + xβ
i

λ

)−α
]

1−
[

1−
(

1 + xβ
i

λ

)−α
]2
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and

∂`(θ, α, β, λ)

∂λ
= − n

λ
+

α + 1
λ2

n

∑
i=1

xβ
i

1 + xβ
i

λ

− α

λ2

n

∑
i=1

xβ
i

(
1 + xβ

i
λ

)−α−1

1−
(

1 + xβ
i

λ

)−α

+
2α(θ − 1)

λ2

n

∑
i=1

xβ
i

(
1 + xβ

i
λ

)−α−1
[

1−
(

1 + xβ
i

λ

)−α
]

1−
[

1−
(

1 + xβ
i

λ

)−α
]2 .

Let us just mention that, owing to Equation (13), the MLEs satisfy the following simple relation:

θ̂ =

− 1
n

n

∑
i=1

log

1−

1−

1 +
xβ̂

i

λ̂

−α̂


2

−1

.

However, we have no closed-forms for the MLEs. Numerical maximization algorithms are useful
in this regards; most of the statistical softwares can be used to provide numerical evaluations of the
MLEs. Finally, the choice of the MLEs in our context is motivated as usual: theoretical results ensure
that, under some (abstract regularity) conditions, the subjacent random versions of the MLEs converge
(in some senses) to the real value of the unknown parameters, which is a very desirable property for
practical purposes. In addition, thanks to the existing theory on the MLEs, one can provide asymptotic
confidence sets and likelihood tests involving θ, α, β, and λ, which is, however, out the scope of
this study.

4.2. Simulation

Thus, mathematical guarantees justify the use of the MLEs in our setting. We now illustrate this
fact through a complete numerical study. We proceed as follows:

• One thousand random samples of size n = 50, 100, 200, and 500 are generated from the TIITLPL
distribution by the use of the quantile function (see Section 3.1.2).

• Eight different sets of values of true parameters α, λ, β, and θ in order, are taken as
Set 1 = (0.5, 0.5, 0.5, 0.5), Set 2 = (0.5, 0.5, 1.5, 0.5), Set 3 = (0.5, 1.5, 0.8, 1.5),
Set 4 = (0.5, 1.5, 1.5, 1.2), Set 5 = (0.5, 0.5, 2, 0.5), Set 6 = (1, 0.5, 2, 0.5),
Set 7 = (0.5, 1, 1.2, 1.5), Set 8 = (0.8, 0.5, 1.5, 1.5).

• The mean of the obtained MLEs (Estimates) and the mean squared errors (MSEs) for the selected
sets of parameters are calculated.

• Numerical outcomes are listed in Tables 3 and 4.

The calculations were performed via Mathematica 9. We observe that the MSEs converge to zero
when the sample size is increased, which is consistent with the well-known theoretical convergence
properties of the MLEs.
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Table 3. Estimates and MSEs of TIITLPL distribution for MLEs by using different parameter values.

Set 1 Set 2 Set 3 Set 4

n Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs

50

0.471 0.090 0.602 0.091 0.587 0.058 0.554 0.128
0.537 0.238 0.663 0.223 2.145 2.429 1.614 1.138
0.735 0.223 1.758 0.587 0.920 0.250 2.122 1.636
0.771 0.431 0.662 0.344 1.790 1.041 1.650 1.552

100

0.504 0.084 0.644 0.053 0.574 0.033 0.609 0.083
0.428 0.085 0.669 0.128 1.747 0.446 1.739 0.510
0.660 0.122 1.633 0.258 0.865 0.115 1.665 0.239
0.656 0.245 0.474 0.088 1.479 0.284 1.310 1.088

200

0.525 0.081 0.617 0.046 0.577 0.017 0.642 0.058
0.546 0.075 0.585 0.041 1.623 0.141 1.719 0.199
0.558 0.045 1.561 0.124 0.832 0.025 1.548 0.085
0.685 0.233 0.475 0.071 1.309 0.149 1.066 0.293

500

0.504 0.061 0.647 0.035 0.592 0.013 0.660 0.051
0.477 0.051 0.612 0.027 1.620 0.058 1.729 0.137
0.539 0.013 1.449 0.035 0.815 5.258 * 1.515 0.023
0.636 0.169 0.419 0.018 1.226 0.106 0.942 0.141

* indicates that the value multiply 10−3.

Table 4. Estimates and MSEs of TIITLPL distribution for MLEs by using different parameter values.

Set 5 Set 6 Set 7 Set 8

n Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs

50

0.651 0.147 0.773 0.210 0.699 0.206 1.268 0.48
0.613 0.303 0.486 0.228 1.464 4.786 1.143 3.391
2.442 1.194 2.549 1.534 1.588 0.918 1.603 0.247
0.746 0.758 1.058 1.221 1.752 2.663 1.432 1.103

100

0.667 0.133 0.806 0.147 0.767 0.161 1.199 0.248
0.621 0.156 0.437 0.074 1.326 0.386 0.774 0.895
2.296 0.714 2.310 0.440 1.247 0.115 1.592 0.123
0.652 0.484 0.845 0.612 1.286 0.630 1.148 0.600

200

0.735 0.109 0.828 0.109 0.750 0.102 1.197 0.168
0.647 0.078 0.456 0.039 1.247 0.177 0.703 0.093
2.064 0.121 2.099 0.169 1.253 0.061 1.468 0.033
0.478 0.222 0.819 0.594 1.115 0.582 1.098 0.222

500

0.725 0.07 0.898 0.036 0.768 0.090 1.167 0.140
0.680 0.056 0.483 0.017 1.269 0.139 0.639 0.043
1.880 0.073 2.043 0.048 1.195 0.013 1.484 0.016
0.406 0.043 0.612 0.121 1.004 0.314 1.054 0.221

5. Applications

In this section, the highly effectiveness of TIITLPL distribution is proved by the use of two
well-known practical datasets: the aircraft windshield dataset and the cancer patient data, presented
in more detail below.

We also make comparisons with other distributions by providing a formative evaluation of the
goodness of fit of the models. The following goodness of fit measures are considered: the Akaike
information criterion (AIC), consistent AIC (CAIC), Hannan–Quinn information criterion (HQIC),
Anderson–Darling (A∗), and Cramér–von Mises (W∗). In general, the smaller the values of these
statistics is, the better the fit to the data is.
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5.1. Aircraft Windshield Data

The first dataset was studied by [40], which represents the failure times for a particular windshield
device. A brief statistical description of them is given in Table 5.

Table 5. Descriptive statistics for the aircraft windshield data.

n Mean Median Standard Deviation Skewness Kurtosis

84 2.56 2.35 1.12 0.10 −0.71

In particular, we see that the data are platykurtosis. More informative descriptive illustrations are
given in Figure 5.
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Figure 5. Plots TTT and kernel density plot for the aircraft windshield data.

The total time on test (TTT) plot in Figure 5 shows a concave TTT-transform, indicating that the hrf
is possibly increasing. Moreover, the basic kernel density estimator is nearly symmetrical (unimodal).
Hence, the TIITLPL model could be appropriate for fitting this dataset.

Thus, for the aircraft windshield data, we compare the fit of the TIITLPL distribution with the
following distributions: the gamma Lomax (GL) distribution by [11], beta Lomax (BL) distribution
by [30], transmuted Weibull Lomax (TWL) distribution by [33], Kumaraswamy Weibull (KwW)
distribution by [41], McDonald Weibull (McW) distribution by [42], beta Weibull (BW) distribution
by [43], transmuted log-logistic (TLL) distribution by [44], and (standard) log-logistic (LL) distribution
and transmuted Marshall-Olkin Fréchet (TMOFr) distribution by [45].

The MLEs of the parameters of these distributions and the corresponding standard errors (SEs)
for windshield data are provided in Table 6. The statistics AIC, CAIC, HQIC, A∗, and W∗ are listed in
Table 7.

We note from the results in Table 7 that the TIITLPL model gives the smallest values of AIC,
CAIC, HQIC, A∗, and W∗ as compared to the other competitive models. Therefore, the TIITLPL
distribution provides the best fit for the aircraft windshield data. To illustrate and complete these
numerical results, Figure 6 plots the histogram and the estimated pdf of the TIITLPL distribution, the
Probability-Probability (P-P) plot showing a nice line adjustment of the scatter plot, and the estimated
cdf and sf over the empirical cdf and sf, respectively.

In addition, we would like to mention that, for this dataset, the TIITLPL distribution outperforms
the EPL distribution by [19] presented in the Introduction; if we compare Table 7 and ([19] Table 5),
the AIC, CAIC, A∗, and W∗ are favorable for the TIITLPL distribution.
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Table 6. MLEs and SEs (in parentheses) for the aircraft windshield data.

Distributions MLEs and SEs

TIITLPL(θ, α, β, λ) 213.2225
(8.0985)

3.6880
(0.7192)

1.2282
(0.1149)

186.8420
(7.6076) -

BL(a, b, α, β) 3.6036
(0.6187)

32.6387
(13.7145)

4.8307
(9.2382)

119.0374
(42.9269) -

KwW(a, b, α, β) 34.6604
(17.5270)

81.8464
(52.0142)

14.4338
(27.0952)

0.2040
(0.0423) -

McW(a, b, α, β, c) 17.6864
(6.2220)

33.6392
(19.9941)

1.9406
(1.0111)

0.3062
(0.0454)

16.7211
(9.6221)

BW(a, b, α, β) 34.1808
(14.8389)

11.4968
(6.7300)

1.3609
(1.0020)

0.2982
(0.0603) -

TMOFr(α, β, σ, λ) 200.7472
(87.2751)

1.9524
(0.1252)

0.1022
(0.0173)

-0.8692
(0.1012) -

TLL(α, β, λ) 2.0589
(0.2759)

3.1025
(0.3408)

−0.4839
(0.3853) - -

LL(α, β) 2.3911
(0.1369)

3.2235
(0.2971) - - -

Table 7. The AIC, CAIC, HQIC, A∗, and W∗ statistics for the aircraft windshield data.

Distributions AIC CAIC HQIC A∗ W∗

TIITLPL 269.0398 269.5461 272.9485 0.6245 0.0621
BL 285.4354 285.9355 289.3650 1.4080 0.1684

KwW 281.4345 281.9411 291.1585 1.5062 0.1851
McW 283.8993 284.6692 296.0532 1.5917 0.1992
BW 305.0283 305.5343 314.7519 3.2277 0.4655

TMOFr 309.4725 309.9785 319.1953 2.4042 0.3209
TLL 284.7719 285.0719 287.7034 1.4922 0.1842
LL 283.1625 283.3106 285.1168 1.5203 0.1866
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Figure 6. Several kinds of fits of the TIITLPL distribution for the aircraft windshield data.
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5.2. Cancer Patient Data

The cancer patient dataset describes the remission times (in months) of a random sample of
128 bladder cancer patients studied by [46]. A brief statistical description of them is given in Table 8.

Table 8. Descriptive statistics for the cancer patient data.

n Mean Median Standard Deviation Skewness Kurtosis

128 9.37 6.39 10.51 3.25 15.20

We can remark that the data are right skewed with a high kurtosis showing the heavy tailed
nature of the data. More informations are given in Figure 7 with the consideration of a TTT plot and a
basic kernel estimation of the unknown subjacent pdf.
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Figure 7. Plots TTT and kernel density plot for the cancer patient data.

The TTT-plot in Figure 7 shows that the TTT-transform is first concave then convex giving an
indication of bathtub shape of the hrf. Furthermore, the kernel density estimator is heavy right
skewed (unimodal). Hence, the TIITLPL model could be appropriate model for fitting the cancer
patient dataset.

For these data, we thus compare the fit of the TIITLPL distribution with some other distributions:
the transmuted modified Weibull (TMW) distribution by [47], transmuted additive Weibull (TAW)
distribution by [31], generalized inverse gamma (GIG) distribution by [32], beta exponentiated Burr
XII (BEBXII) distribution by [48], beta Fréchet (BFr) distribution by [49], Kumaraswamy log-logistic
(KwLL) distribution by [50], transmuted complementary Weibull geometric (TCWG) distribution
by [51], Kumaraswamy exponentiated Burr XII (KwEBXII) distribution by [52], generalized transmuted
Weibull (GTW) distribution by [53], and the exponentiated transmuted generalized Rayleigh (ETGR)
distribution by [54].

The MLEs of the parameters of these distributions and the corresponding SEs for the cancer
patient data are provided in Table 9. The statistics AIC, CAIC, HQIC, A∗, and W∗ are listed in Table 10.

We note from the results in Table 10 that the TIITLPL model gives the smallest values of AIC, CAIC,
HQIC, A∗, and W∗ as compared to the other competitive models. Therefore, TIITLPL distribution
provides the best fit for the cancer patient data.

Figure 8 plots the histogram and the estimated pdf of the TIITLPL distribution, the
probability-probability (P-P) plot, and the estimated cdf and sf over the empirical cdf and sf,
respectively, all showing nice fits for the TIITLPL distribution.
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Figure 8. Several kinds of fits of the TIITLPL distribution for the cancer patient data.

Table 9. MLEs and SEs (in parentheses) for the cancer patient data.

Distribution MLEs and SEs

TIITLPL(θ, α, β, λ) 3.7264
(0.1187)

1.8637
(0.2335)

0.8039
(0.1253)

13.3937
(1.2256) -

KwLL(α, β, a, b) 4.6580
(13.1634)

0.2984
(0.1675)

7.8661
(4.4933)

113.0181
(23.364) -

TCWG(α, β, λ, γ) 106.0695
(124.8000)

1.7124
(0.0992)

0.2173
(0.6104)

0.0090
(0.0070) -

KwEBXII(a, b, c, β, k) 2.7805
(44.5102)

67.636
(104.728)

0.3380
(0.3857)

3.0833
(49.3534)

0.8398
(1.7235)

BEBXII(a, b, c, β, k) 22.1869
(21.9561)

20.2778
(17.2968)

0.2243
(0.1446)

1.7804
(1.0763)

1.3067
(1.0794)

GIG(a, b, c, β, k) 2.3272
(0.3698)

0.0002
(0.0002)

17.9315
(7.3857)

0.5430
(0.0420)

0.0010
(0.0003)

BFr(a, b, α, β) 12.5268
(24.4699)

33.342
(36.348)

27.7533
(71.5078)

0.1690
(0.1040) -

ETGR(α, β, λ, δ) 7.3765
(5.3893)

0.0473
(0.0042)

0.1182
(0.2600)

0.0491
(0.0362) -

TMW(a, α, β, λ) 0.0002
(0.0114)

0.1208
(0.0240)

0.8955
(0.6260)

0.4075
(0.4070) -

TAW(a, b, α, β, λ) 0.00003
(0.0061)

1.0065
(0.0353)

0.1139
(0.0322)

0.9722
(0.125)

−0.1630
(0.2803)

GTW(a, b, α, β, λ) 2.7965
(1.117)

0.0128
(7.214)

0.2991
(0.1512)

0.6542
(0.1216)

0.0020
(1.7691)
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Table 10. The AIC, CAIC, HQIC, A∗, and W∗ statistics for the cancer patient data.

Distributions AIC CAIC HQIC A∗ W∗

TIITLPL 828.1981 828.5239 832.8331 0.2043 0.0340
KwLL 829.5312 829.8570 834.1672 0.3173 0.0494
TCWG 829.9953 830.3201 834.6335 0.3064 0.0435

KwEBXII 831.6514 832.1432 837.4453 0.3244 0.0485
BEBXII 841.2684 841.7644 855.5283 0.9515 0.1345

GIG 839.8243 840.3163 854.0853 2.6188 0.4100
BFr 842.9651 843.2924 854.3735 1.1218 0.1689

ETGR 866.3500 866.6755 877.7588 2.3617 0.3980
TMW 836.4555 836.7759 847.8586 0.1259 0.7609
TAW 838.47833 838.9777 852.7390 0.1130 0.7030
GTW 831.3475 831.8395 837.1411 0.3058 0.0469

As a last remark, for this dataset, we observe that the TIITLPL distribution outperforms the TPL
distribution by [21] presented in the Introduction; if we compare Table 10 with ([21] Table 2), the AIC,
CAIC, and HQIC are favorable for the TIITLPL distribution.

6. Final Remarks

Motivated by the high demand of data analysis in applied sciences, we introduce a new
four-parameter lifetime distribution, called the TIITLPL distribution, having desirable properties in
this regards. We study its main mathematical aspects, proving comprehensible results of independent
interest. Then, the related model is explored by the use of the maximum likelihood method.
Two concrete datasets are then analyzed, including the well-known aircraft windshield data. Fair
comparisons are performed with modern and well-established adversary models, with favorable
issues for the TIITLPL model. Thanks to its potentiality, we hope that the TIITLPL distribution will
give satisfaction to researchers in various applied areas wishing a depth analysis of their lifetime data.
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Abbreviations

cdf cumulative distribution function
pdf probability distribution function
PL Power Lomax
TIITL-G type II Topp-Leone-G
TIITLPL type II Topp-Leone power Lomax
sf survival function
hrf hazard rate function
MLE maximum likelihood estimate
MSE mean squared error
AIC Akaike information criterion
CAIC consistent Akaike information criterion
HQIC Hannan-Quinn information criterion
A∗ Anderson-Darling
W∗ Cramér-von Mises
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TTT total time on test
GL gamma Lomax
BL beta Lomax
TWL Transmuted Weibull Lomax
KwW Kumaraswamy Weibull
McW McDonald Weibull
BW beta Weibull
TLL transmuted log-logistic
LL log-logistic
TMOFr transmuted Marshall-Olkin Fréchet
SE standard error
TMW transmuted modified Weibull
TAW transmuted additive Weibull
GIG generalized inverse gamma
BEBXII beta exponential Burr XII
BFr beta Fréchet
KwLL Kumaraswamy log-logistic
TCWG transmuted complementary Weibull geometric
KwEBXII Kumaraswamy exponentiated Burr XII
GTW generalized transmuted-W
ETGR exponentiated transmuted generalized Rayleigh
Nomenclature
G∗(x; α, λ) cdf of the Lomax distribution
g∗(x; α, λ) pdf of the Lomax distribution
Go(x; α, β, λ) cdf of the power Lomax distribution
go(x; α, β, λ) pdf of the power Lomax distribution
F(x; θ, ξ) cdf of the TIITL-G family
f (x; θ, ξ) pdf of the TIITL-G family
F(x; θ, α, β, λ) cdf of the TIITLPL distribution
f (x; θ, α, β, λ) pdf of the TIITLPL distribution
S(x; θ, α, β, λ) sf of the TIITLPL distribution
h(x; θ, α, β, λ) hrf of the TIITLPL distribution
r(x; θ, α, β, λ) reverse hazard rate function of the TIITLPL distribution
C(x; θ, α, β, λ) cumulative hazard rate function of the TIITLPL distribution
Q(u; θ, α, β, λ) quantile function of the TIITLPL distribution
M Median of the TIITLPL distribution
q(u; θ, α, β, λ) quantile density function of the TIITLPL distribution
H(u; θ, α, β, λ) hazard quantile function of the TIITLPL distribution
S Galton skewness of the TIITLPL distribution
K Moors kurtosis of the TIITLPL distribution
ak,` coefficient in the considered series expansion for f (x; θ, α, β, λ)

a[υ]k,` coefficient in the considered series expansion for S(x; θ, α, β, λ)υ f (x; θ, α, β, λ)

µ′s sth ordinary moment of the TIITLPL distribution
bk,`,s coefficient in the considered series expansion for µ′s
µ′s sth central moment of the TIITLPL distribution
κs sth cumulant of the TIITLPL distribution
µ′s(t) sth incomplete moment taken on t of the TIITLPL distribution
δ1 mean deviation about the mean of the TIITLPL distribution
δ1 mean deviation about the median of the TIITLPL distribution
µ∇s (t) lower conditional moment taken on t of the TIITLPL distribution
µ∆

s (t) upper conditional moment taken on t of the TIITLPL distribution
Xi:n ith order statistic of the TIITLPL distribution
fi:n(x; θ, α, β, λ) pdf of the ith order statistic of the TIITLPL distribution

b[j+n−i]
k,` coefficient in the considered series expansion for fi:n(x; θ, α, β, λ)
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µ′i:n,s sth moment of the ith order statistic of the TIITLPL distribution
L(θ, α, β, λ) likelihood function of the TIITLPL distribution
`(θ, α, β, λ) log-likelihood function of the TIITLPL distribution
θ̂, α̂, β̂ and λ̂ MLEs of θ, α, β and λ, respectively
n size of the considered sample or the number of data
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