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Abstract: In Lorentz–Minkowski space, the angles between any two non-null vectors have been
defined in the sense of the angles in Euclidean space. In this work, the angles relating to lightlike
vectors are characterized by the Frenet frame of a pseudo null curve and the angles between any two
non-null vectors in Minkowski 3-space. Meanwhile, the explicit measuring methods are demonstrated
through several examples.
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1. Introduction

In Einstein’s theory of relativity, time, together with the three dimension space, constitutes
the four-dimension space–time. As one of the important space–time models in theory of relativity,
Lorentz–Minkowski space–time is attracting the attentions of many physicians and mathematicians.
One of the remarkable things is that some classical research topics with Riemannian metric are
generalized into Lorentz–Minkowski space with a pseudo-Riemannian metric [1,2].

The Lorentz–Minkowski metric divides the vectors into timelike, lightlike (null) or spacelike
vectors [1]. Due to the causal character of vectors in this space, some simple problems become a little
complicated and strange, especially the ones relating to null vectors, such as null curves, pseudo
null curves, B-scrolls, marginally trapped surfaces and so on [3–5]. One of the reasons is the angles
relating to lightlike vectors that cannot be defined properly, which restrict some research, depending
on angular measurement to some extent. As far as the authors know, this problem is still in the air
at present.

The angles between any two nonzero vectors in Euclidean space can be defined through their
scalar product. Naturally, the idea can be moved to Lorentz–Minkowski space. In Lorentz–Minkowski
space, the angles between any two non-null vectors have been defined in the light of the angles in
Euclidean space [6]. However, the method cannot be taken into the angles relating to lightlike vectors
because of the character of lightlike vectors, i.e., the norm of lightlike vectors vanishes everywhere.

Considering the relationship between any two independent lightlike vectors and the existing
definitions of angles between any two non-null vectors in Minkowski space, an appropriate method
is proposed to define the angles relating to lightlike vectors by the Frenet frame of a pseudo null
curve and the angles between any two non-null vectors. In Section 2, some fundamental facts about
the pseudo null curves and the definitions of angles between any two non-null vectors are recalled.
In Section 3, the angles between a lightlike vector and a spacelike vector, a timelike vector or another
lightlike vector which is independent to it are defined, respectively. Last but not least, several examples
are given explicitly.

Using the new angular measurement proposed in this paper, a lot of research works can be
completed systematically. For example, the helix, k-type slant helix, the curves with constant precession,

Mathematics 2020, 8, 56; doi:10.3390/math8010056 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6900-0426
http://www.mdpi.com/2227-7390/8/1/56?type=check_update&version=1
http://dx.doi.org/10.3390/math8010056
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 56 2 of 11

and the constant angle surfaces, which play important roles in the science of biology and physics, such
as analyzing the structure of DNA and characterizing the motion of particles in a magnetic field [7,8].
It is of great significance to study the theory of relativity.

The curves in this paper are regular and smooth unless otherwise stated.

2. Preliminaries

A Minkowski 3-space E3
1 is provided with the standard flat metric given by

〈·, ·〉 = −dx2
1 + dx2

2 + dx2
3

in terms of the natural coordinate system (x1, x2, x3). Recall that a vector v is said to be spacelike,
timelike and lightlike (null), if 〈v, v〉 > 0 or v = 0, 〈v, v〉 < 0 and 〈v, v〉 = 0, (v 6= 0), respectively.
The norm (modulus) of v is defined by ‖v‖ =

√
|〈v, v〉|. Comparing to the vectors in Euclidean space,

the existence of timelike and lightlike vectors gives some particular properties, as follows:

• Two lightlike vectors x and y are linearly dependent if and only if 〈x, y〉 = 0;

• If x and y are two timelike or lightlike vectors with 〈x, y〉 = 0, then they are lightlike vectors.

Definition 1 ([9]). Two vectors x, y in E3
1 are Lorentz orthogonal if and only if 〈x, y〉 = 0.

For any two vectors x = (x1, x2, x3), y = (y1, y2, y3) ∈ E3
1, the exterior product is given by

x× y = (x3y2 − x2y3, x3y1 − x1y3, x1y2 − x2y1) .

An arbitrary curve r(t) is spacelike, timelike or lightlike if all of its velocity vectors r′(t) are
spacelike, timelike or lightlike. A surface is said to be timelike, spacelike or lightlike if all of its normal
vectors are spacelike, timelike or lightlike, respectively. Furthermore, the spacelike curves in E3

1 can
be classified into three kinds according to their principal normal vectors are spacelike, timelike and
lightlike, which are called the first and the second kind of spacelike curve and the pseudo null curve,
respectively [9]. Among of them, the pseudo null curve is defined as follows:

Definition 2 ([10]). A spacelike curve r(t) framed by Frenet frame {α, β, γ} in E3
1 is called a pseudo null

curve, if its principal normal vector β and binormal vector γ are linearly independent lightlike (null) vectors.

Proposition 1 ([10]). Let r(s) : I→ E3
1 be a pseudo null curve parameterized by arc-length s, i.e., ‖r′(s)‖ = 1.

Then there exists a unique Frenet frame {r′(s) = α, β, γ} such thatα′(s)
β′(s)
γ′(s)

 =

 0 1 0
0 κ(s) 0
−1 0 −κ(s)


α(s)

β(s)
γ(s)

 , (1)

where 〈α, α〉 = 〈β, γ〉 = 1, 〈β, β〉 = 〈γ, γ〉 = 〈α, β〉 = 〈α, γ〉 = 0 and α× β = β, β× γ = α, γ× α = γ.
In sequence, α, β, γ is called the tangent, principal normal and binormal vector field of r(s), respectively.
The function κ(s) is called the curvature function.

Remark 1. In some research papers for pseudo null curves such as [10], the function κ(s) is also called torsion
function. Throughout the paper, the pseudo null curves are parameterized by arc-length s.

Motivated by the angular measurement in Euclidean 3-space, the angles between any two non-null
vectors u and v are defined according to the classification of vectors in E3

1, as follows [6]:

Definition 3. Let u and v be spacelike vectors in E3
1.
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• If u and v span a timelike vector subspace. Then we have |〈u, v〉| > ‖u‖‖v‖ and hence, there is a unique
positive real number θ such that

|〈u, v〉| = ‖u‖‖v‖ cosh θ. (2)

The real number θ is called the Lorentz timelike angle between u and v.
• If u and v span a spacelike vector subspace. Then we have |〈u, v〉| ≤ ‖u‖‖v‖ and hence, there is a unique

real number θ ∈ [0, π
2 ] such that

|〈u, v〉| = ‖u‖‖v‖ cos θ. (3)

The real number θ is called the Lorentz spacelike angle between u and v.

Definition 4. Let u and v be future pointing (past pointing) timelike vectors in E3
1. Then there is a unique

non-negative real number θ such that

|〈u, v〉| = ‖u‖‖v‖ cosh θ. (4)

The real number θ is called the Lorentz timelike angle between u and v.

Definition 5. Let u be a spacelike vector and v a future pointing timelike vector in E3
1. Then there is a unique

non-negative real number θ such that

|〈u, v〉| = ‖u‖‖v‖ sinh θ. (5)

The real number θ is called the Lorentz timelike angle between u and v.

Remark 2. Physically, this designation of the future pointing and past pointing timelike vectors corresponds to
a choice of an arrow of time at the given point, therefore Equations (4) and (5) include all the definitions of angles
between non-null vectors and timelike vectors.

Obviously, the angles recalled in Definitions 3–5 do not include the angles relating to lightlike
vectors. In what follows, we will seek a method to fill this gap.

3. Main Conclusions

In this section, we will focus on the angle between any two lightlike vectors and the angles
between a lightlike vector and a spacelike vector or a timelike vector, respectively.

3.1. The Angle between Any Two Lightlike Vectors

Let r(s) be a pseudo null curve framed by {α, β, γ}. From the lightlike vector β, we let u = ω1(s)β

be an arbitrary lightlike vector which is independent to γ. Similarly, from the lightlike vector γ, we
can assume another arbitrary lightlike vector v = ω2(s)γ which is independent to β, where ω1(s) and
ω2(s) are non-zero smooth functions of arc-length s.

From the Frenet frame of r(s), we know that 〈u, v〉 = ω1(s)ω2(s) and 〈cu, v〉 = cω1(s)ω2(s), (c ∈
R− {0}) which satisfy the axiom of angles. Thus, we have the following definition.

Definition 6. The angle ω(u, v) between any two lightlike vectors u = ω1(s)β and v = ω2(s)γ is defined by

ω(u, v) = ω1(s)ω2(s).

Remark 3. Obviously, when ω1(s) = 1, ω(u, v) = 〈β, v〉 = ω2(s), and when ω2(s) = 1, ω(u, v) =

〈u, γ〉 = ω1(s). Therefore, the function ω1(s), ω2(s) represents the rotation angle between u and γ, between v
and β, respectively. In particular, when ω1(s) = ω2(s) = 1, ω(u, v) = 〈β, γ〉 = 1 which coincides with the
Frenet frame of the pseudo null curve r(s).
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3.2. The Angle between a Lightlike Vector and a Spacelike Vector

Let r(s) be a pseudo null curve framed by {α, β, γ}, u = ω1(s)β and v = ω2(s)γ be any two
lightlike vectors. Assume a1 = λ1α+ λ2β+ λ3γ be an arbitrary unit spacelike vector, where λi = λi(s),
(i = 1, 2, 3) are smooth functions and λ2

1 + 2λ2λ3 = 1.
From the Frenet frame of r(s), we know that 〈u, a1〉 = λ3(s)ω1(s), 〈v, a1〉 = λ2(s)ω2(s) and

〈cu, a1〉 = cλ3(s)ω1(s), 〈cv, a1〉 = cλ2(s)ω2(s), (c ∈ R− {0}) which satisfy the axiom of angles. Then
the angles ω(u, a1) and ω(v, a1) can be defined by{

ω(u, a1) = λ3(s)ω1(s),
ω(v, a1) = λ2(s)ω2(s).

(6)

Considering the Frenet frame of r(s), we can fix two vectors, a spacelike vector b1(s) =
√

2
2 (β + γ)

and a timelike vector b2(s) =
√

2
2 (β− γ). Due to a1 is spacelike, b2 is timelike, assuming θ is the angle

between a1 and b2, from Equation (5), we have

|〈b2, a1〉| =
√

2
2
|λ2 − λ3| = sinh θ, (θ ≥ 0). (7)

On the other hand, b1 × a1 = 1√
2
[(λ3 − λ2)α− λ1(β− γ)], then

〈b1 × a1, b1 × a1〉 =
1
2
[(λ2 + λ3)

2 − 2].

Notice that λ2λ3 ≤ 1
2 from λ2

1 + 2λ2λ3 = 1, then we have

Case 1: when |λ2 + λ3| >
√

2, b1 × a1 is a spacelike vector, i.e., b1 and a1 span a timelike subspace.
Assume ξ1 is the angle between a1 and b1. From Equation (2), we know

|〈b1, a1〉| =
√

2
2
|λ2 + λ3| = cosh ξ1, (ξ1 > 0). (8)

From Equations (7) and (8), we have

1. when 1
2λ3
≤ λ2 < −

√
2− λ3(λ3 < −

√
2

2 ), we have λ2 = −
√

2
2 (cosh ξ1 − sinh θ),

λ3 = −
√

2
2 (cosh ξ1 + sinh θ);

(9)

2. when
√

2− λ3 < λ2 ≤ 1
2λ3

(λ3 >
√

2
2 ), we have{

λ2 =
√

2
2 (cosh ξ1 − sinh θ),

λ3 =
√

2
2 (cosh ξ1 + sinh θ);

(10)

3. when
√

2− λ3 < λ2 ≤ 1
2λ3

(0 < λ3 <
√

2
2 ) or λ2 >

√
2− λ3(λ3 ≤ 0), we have{

λ2 =
√

2
2 (cosh ξ1 + sinh θ),

λ3 =
√

2
2 (cosh ξ1 − sinh θ);

(11)

4. when 1
2λ3
≤ λ2 < −

√
2− λ3(−

√
2

2 < λ3 < 0) or λ2 < −
√

2− λ3(λ3 ≥ 0), we have{
λ2 = −

√
2

2 (cosh ξ1 + sinh θ),

λ3 = −
√

2
2 (cosh ξ1 − sinh θ).

(12)
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Case 2: when |λ2 + λ3| <
√

2, b1 × a1 is a timelike vector, i.e., b1 and a1 span a spacelike subspace.
Assume ξ2 is the angle between a1 and b1. From Equation (3), we know

|〈b1, a1〉| =
√

2
2
|λ2 + λ3| = cos ξ2, (ξ2 ∈ [0,

π

2
]). (13)

From Equations (7) and (13), we have

1. when λ3 ≤ λ2 < −λ3(−
√

2
2 < λ3 < 0) or −

√
2− λ3 < λ2 < −λ3(λ3 ≤ −

√
2

2 ), we have{
λ2 = −

√
2

2 (cos ξ2 − sinh θ),

λ3 = −
√

2
2 (cos ξ2 + sinh θ);

(14)

2. when −λ3 ≤ λ2 < λ3(0 < λ3 <
√

2
2 ) or −λ3 ≤ λ2 <

√
2− λ3(λ3 ≥

√
2

2 ), we have{
λ2 =

√
2

2 (cos ξ2 − sinh θ),

λ3 =
√

2
2 (cos ξ2 + sinh θ);

(15)

3. when λ3 ≤ λ2 <
√

2− λ3(0 ≤ λ3 <
√

2
2 ) or −λ3 ≤ λ2 <

√
2− λ3(λ3 < 0), we have{

λ2 =
√

2
2 (cos ξ2 + sinh θ),

λ3 =
√

2
2 (cos ξ2 − sinh θ);

(16)

4. when −
√

2− λ3 < λ2 < λ3(−
√

2
2 < λ3 < 0) or −

√
2− λ3 < λ2 < −λ3(λ3 ≥ 0), we have{

λ2 = −
√

2
2 (cos ξ2 + sinh θ),

λ3 = −
√

2
2 (cos ξ2 − sinh θ).

(17)

Case 3: when |λ2 + λ3| =
√

2, b1 and a1 span a lightlike subspace. And

|〈b1, a1〉| =
√

2
2
|λ2 + λ3| = 1. (18)

From Equations (7) and (18), we have

1. when λ2 = −
√

2− λ3(λ3 ≤ −
√

2
2 ), we have{

λ2 =
√

2
2 (sinh θ − 1),

λ3 = −
√

2
2 (sinh θ + 1);

(19)

2. when λ2 =
√

2− λ3(λ3 >
√

2
2 ), we have{

λ2 = −
√

2
2 (sinh θ − 1),

λ3 =
√

2
2 (sinh θ + 1);

(20)

3. when λ2 =
√

2− λ3(λ3 ≤
√

2
2 ), we have{

λ2 =
√

2
2 (sinh θ + 1),

λ3 = −
√

2
2 (sinh θ − 1);

(21)
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4. when λ2 = −
√

2− λ3(λ3 > −
√

2
2 ), we have{

λ2 = −
√

2
2 (sinh θ + 1),

λ3 =
√

2
2 (sinh θ − 1).

(22)

Substituting Equations (9)–(12), (14)–(17) and (19)–(22) to Equation (6), we have the following
definition.

Definition 7. Let r(s) be a pseudo null curve framed by {α, β, γ} in E3
1, u = ω1(s)β and v = ω2(s)γ any

two lightlike vectors; b1 =
√

2
2 (β + γ) a unit spacelike vector and b2 =

√
2

2 (β− γ) a unit timelike vector;
a1 = λ1α + λ2β + λ3γ, λi = λi(s), (i = 1, 2, 3) an arbitrary unit spacelike vector. Then the angles ω(u, a1)

and ω(v, a1) can be defined explicitly as

• if a1 and b1 span a timelike subspace, then

1. when 1
2λ3
≤ λ2 < −

√
2− λ3(λ3 < −

√
2

2 ), we get{
ω(u, a1) = −

√
2

2 (cosh ξ1 + sinh θ)ω1(s),
ω(v, a1) = −

√
2

2 (cosh ξ1 − sinh θ)ω2(s);

2. when
√

2− λ3 < λ2 ≤ 1
2λ3

(λ3 >
√

2
2 ), we get{

ω(u, a1) =
√

2
2 (cosh ξ1 + sinh θ)ω1(s),

ω(v, a1) =
√

2
2 (cosh ξ1 − sinh θ)ω2(s);

3. when
√

2− λ3 < λ2 ≤ 1
2λ3

(0 < λ3 <
√

2
2 ) or λ2 >

√
2− λ3(λ3 ≤ 0), we get{

ω(u, a1) =
√

2
2 (cosh ξ1 − sinh θ)ω1(s),

ω(v, a1) =
√

2
2 (cosh ξ1 + sinh θ)ω2(s);

4. when 1
2λ3
≤ λ2 < −

√
2− λ3(−

√
2

2 < λ3 < 0) or λ2 < −
√

2− λ3(λ3 ≥ 0), we get{
ω(u, a1) = −

√
2

2 (cosh ξ1 − sinh θ)ω1(s),
ω(v, a1) = −

√
2

2 (cosh ξ1 + sinh θ)ω2(s);

• if a1 and b1 span a spacelike subspace, then

1. when λ3 ≤ λ2 < −λ3(−
√

2
2 < λ3 < 0) or −

√
2− λ3 < λ2 < −λ3(λ3 ≤ −

√
2

2 ), we get{
ω(u, a1) = −

√
2

2 (cos ξ2 + sinh θ)ω1(s),
ω(v, a1) = −

√
2

2 (cos ξ2 − sinh θ)ω2(s);

2. when −λ3 ≤ λ2 < λ3(0 < λ3 <
√

2
2 ) or −λ3 ≤ λ2 <

√
2− λ3(λ3 ≥

√
2

2 ), we get{
ω(u, a1) =

√
2

2 (cos ξ2 + sinh θ)ω1(s),
ω(v, a1) =

√
2

2 (cos ξ2 − sinh θ)ω2(s);
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3. when λ3 ≤ λ2 <
√

2− λ3(0 ≤ λ3 <
√

2
2 ) or −λ3 ≤ λ2 <

√
2− λ3(λ3 < 0), we get{

ω(u, a1) =
√

2
2 (cos ξ2 − sinh θ)ω1(s),

ω(v, a1) =
√

2
2 (cos ξ2 + sinh θ)ω2(s);

4. when −
√

2− λ3 < λ2 < λ3(−
√

2
2 < λ3 < 0) or −

√
2− λ3 < λ2 < −λ3(λ3 ≥ 0), we get{

ω(u, a1) = −
√

2
2 (cos ξ2 − sinh θ)ω1(s),

ω(v, a1) = −
√

2
2 (cos ξ2 + sinh θ)ω2(s);

• if a1 and b1 span a lightlike subspace, then

1. when λ2 = −
√

2− λ3(λ3 ≤ −
√

2
2 ), we get{

ω(u, a1) = −
√

2
2 (sinh θ + 1)ω1(s),

ω(v, a1) =
√

2
2 (sinh θ − 1)ω2(s);

2. when λ2 =
√

2− λ3(λ3 >
√

2
2 ), we get{

ω(u, a1) =
√

2
2 (sinh θ + 1)ω1(s),

ω(v, a1) = −
√

2
2 (sinh θ − 1)ω2(s);

3. when λ2 =
√

2− λ3(λ3 ≤
√

2
2 ), we get{

ω(u, a1) = −
√

2
2 (sinh θ − 1)ω1(s),

ω(v, a1) =
√

2
2 (sinh θ + 1)ω2(s);

4. when λ2 = −
√

2− λ3(λ3 > −
√

2
2 ), we get{

ω(u, a1) =
√

2
2 (sinh θ − 1)ω1(s),

ω(v, a1) = −
√

2
2 (sinh θ + 1)ω2(s),

where θ is the angle between a1 and b2, ξ1,2 is the angle between a1 and b1, and ω1(s) = ω(u, γ), ω2(s) =
ω(v, β) is the angle between u and γ, between v and β, respectively.

Remark 4. Particularly, when λ2 = λ3 = 0, then a1 = ±α which is orthogonal to u and v; when λ2 = 0,
λ3 6= 0, then a1 = ±α + λ3γ which is orthogonal to v; when λ2 6= 0, λ3 = 0, then a1 = ±α + λ2β which is
orthogonal to u.

Remark 5. Obviously, if ω1(s) = 1 or ω2(s) = 1, then ω(β, a1) and ω(γ, a1) are decided by the angles θ and
ξ1,2, completely.

3.3. The Angle between a Lightlike Vector and a Timelike Vector

Let r(s) be a pseudo null curve framed by {α, β, γ}, u = ω1(s)β and v = ω2(s)γ any two
lightlike vectors. Assume a2 = µ1α + µ2β + µ3γ be an arbitrary unit timelike vector, where µi = µi(s),
(i = 1, 2, 3) are smooth functions and µ2

1 + 2µ2µ3 = −1.
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From the Frenet frame of r(s), we know that 〈u, a2〉 = µ3(s)ω1(s), 〈v, a2〉 = µ2(s)ω2(s) and
〈cu, a2〉 = cµ3(s)ω1(s), 〈cv, a2〉 = cµ2(s)ω2(s), (c ∈ R− {0}) which satisfy the axiom of angles. Then
the angles ω(u, a2) and ω(v, a2) can be defined by{

ω(u, a2) = µ3(s)ω1(s),
ω(v, a2) = µ2(s)ω2(s).

(23)

Considering the Frenet frame of r(s), we can fix two vectors, a spacelike vector b1(s) =
√

2
2 (β + γ)

and a timelike vector b2(s) =
√

2
2 (β− γ). Assume η1 be the angle between a2 and b1, η2 the angle

between a2 and b2. Due to b1 is spacelike, a2 and b2 are timelike, from Equations (4) and (5), we know

|〈b1, a2〉| =
√

2
2
|µ2 + µ3| = sinh η1, (η1 ≥ 0)

and

|〈b2, a2〉| =
√

2
2
|µ2 − µ3| = cosh η2, (η2 ≥ 0).

Notice that µ2µ3 ≤ − 1
2 from µ2

1 + 2µ2µ3 = −1. Then we have

1. when − 1
2µ3
≤ µ2 < −µ3(µ3 < −

√
2

2 ), we get{
µ2 = −

√
2

2 (sinh η1 − cosh η2),

µ3 = −
√

2
2 (sinh η1 + cosh η2);

(24)

2. when −µ3 ≤ µ2 ≤ − 1
2µ3

(µ3 ≥
√

2
2 ), we get{

µ2 =
√

2
2 (sinh η1 − cosh η2),

µ3 =
√

2
2 (sinh η1 + cosh η2);

(25)

3. when µ2 ≥ −µ3(µ3 < −
√

2
2 ) or µ2 ≥ − 1

2µ3
(−
√

2
2 ≤ µ3 < 0) we get{

µ2 =
√

2
2 (sinh η1 + cosh η2),

µ3 =
√

2
2 (sinh η1 − cosh η2);

(26)

4. when µ2 < −µ3(µ3 ≥
√

2
2 ) or µ2 ≤ − 1

2µ3
(0 < µ3 <

√
2

2 ), we get{
µ2 = −

√
2

2 (sinh η1 + cosh η2),

µ3 = −
√

2
2 (sinh η1 − cosh η2).

(27)

Taking Equations (24)–(27) into Equation (23), we have the following definition.

Definition 8. Let r(s) be a pseudo null curve framed by {α, β, γ} in E3
1, u = ω1(s)β and v = ω2(s)γ any

two lightlike vectors; b1 =
√

2
2 (β + γ) a unit spacelike vector and b2 =

√
2

2 (β− γ) a unit timelike vector;
a2 = µ1α + µ2β + µ3γ, µi = µi(s), (i = 1, 2, 3) an arbitrary unit timelike vector. Then the angles ω(u, a2)

and ω(v, a2) can be defined explicitly as

1. when − 1
2µ3
≤ µ2 < −µ3(µ3 < −

√
2

2 ), we get{
ω(u, a2) = −

√
2

2 (sinh η1 + cosh η2)ω1(s),
ω(v, a2) = −

√
2

2 (sinh η1 − cosh η2)ω2(s);
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2. when −µ3 ≤ µ2 ≤ − 1
2µ3

(µ3 ≥
√

2
2 ), we get{

ω(u, a2) =
√

2
2 (sinh η1 + cosh η2)ω1(s),

ω(v, a2) =
√

2
2 (sinh η1 − cosh η2)ω2(s);

3. when µ2 ≥ −µ3(µ3 < −
√

2
2 ) or µ2 ≥ − 1

2µ3
(−
√

2
2 ≤ µ3 < 0), we get{

ω(u, a2) =
√

2
2 (sinh η1 − cosh η2)ω1(s),

ω(v, a2) =
√

2
2 (sinh η1 + cosh η2)ω2(s);

4. when µ2 < −µ3(µ3 ≥
√

2
2 ) or µ2 ≤ − 1

2µ3
(0 < µ3 <

√
2

2 ), we get{
ω(u, a2) = −

√
2

2 (sinh η1 − cosh η2)ω1(s),
ω(v, a2) = −

√
2

2 (sinh η1 + cosh η2)ω2(s),

where η1 is the angle between a2 and b1, η2 is the angle between a2 and b2, and ω1(s) = ω(u, γ), ω2(s) =
ω(v, β) is the angle between u and γ, between v and β, respectively.

Remark 6. Obviously, if ω1(s) = 1 or ω2(s) = 1, then ω(β, a2), ω(γ, a2) are decided by the angles η1 and
η2, completely.

Example 1. Let r(s) be a pseudo null curve framed by {α, β, γ} and u = sin sβ, v = cos sγ two lightlike
vectors. Then according to Definition 6, the angle between u and v is

ω(u, v) = sin s cos s.

Example 2. Let r(s) be a pseudo null curve framed by {α, β, γ} and u = esβ a lightlike vector. There is a unit
spacelike vector x = x1α+ x2β+ x3γ, xi = xi(s), (i = 1, 2, 3) whose intersection angles with b1 =

√
2

2 (β+ γ)

and b2 =
√

2
2 (β− γ) are all π

4 . From Definition 7, the angle ω(u, x) can be expressed as follows:

1. when x and b1 span a timelike subspace, ω1(s) = es and ξ1 = θ = π
4 , we have

• if 1
2x3
≤ x2 < −

√
2− x3(x3 < −

√
2

2 ), then

ω(u, x) = −
√

2
2

(cosh
π

4
+ sinh

π

4
)es = −

√
2

2
es+ π

4 ;

• if
√

2− x3 < x2 ≤ 1
2x3

(x3 >
√

2
2 ), then

ω(u, x) =
√

2
2

(cosh
π

4
+ sinh

π

4
)es =

√
2

2
es+ π

4 ;

• if
√

2− x3 < x2 ≤ 1
2x3

(0 < x3 <
√

2
2 ) or x2 >

√
2− x3(x3 ≤ 0), then

ω(u, x) =
√

2
2

(cosh
π

4
− sinh

π

4
)es =

√
2

2
es− π

4 ;

• if 1
2x3
≤ x2 < −

√
2− x3(−

√
2

2 < x3 < 0) or x2 < −
√

2− x3(x3 ≥ 0), then

ω(u, x) = −
√

2
2

(cosh
π

4
− sinh

π

4
)es = −

√
2

2
es− π

4 ;
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2. when x and b1 span a spacelike subspace, ω1(s) = es and ξ2 = θ = π
4 , we have

• if x3 ≤ x2 < −x3(−
√

2
2 < x3 < 0) or −

√
2− x3 < x2 < −x3(x3 ≤ −

√
2

2 ), then

ω(u, x) = −
√

2
2

(cos
π

4
+ sinh

π

4
)es = −1

2
es −

√
2

4
(es+ π

4 − es− π
4 );

• if −x3 ≤ x2 < x3(0 < x3 <
√

2
2 ) or −x3 ≤ x2 <

√
2− x3(x3 ≥

√
2

2 ), then

ω(u, x) =
√

2
2

(cos
π

4
+ sinh

π

4
)es =

1
2

es +

√
2

4
(es+ π

4 − es− π
4 );

• if x3 ≤ x2 <
√

2− x3(0 ≤ x3 <
√

2
2 ) or −x3 ≤ x2 <

√
2− x3(x3 < 0), then

ω(u, x) =
√

2
2

(cos
π

4
− sinh

π

4
)es =

1
2

es −
√

2
4

(es+ π
4 − es− π

4 );

• if −
√

2− x3 < x2 < x3(−
√

2
2 < x3 < 0) or −

√
2− x3 < x2 < −x3(x3 ≥ 0), then

ω(u, x) = −
√

2
2

(cos
π

4
− sinh

π

4
)es = −1

2
es +

√
2

4
(es+ π

4 − es− π
4 );

3. when x and b1 span a lightlike subspace, ω1(s) = es and θ = π
4 , we have

• if x2 = −
√

2− x3(x3 ≤ −
√

2
2 ), then

ω(u, x) = −
√

2
2

(sinh θ + 1)es = −
√

2
2

es −
√

2
4

(es+ π
4 − es− π

4 );

• if x2 =
√

2− x3(x3 >
√

2
2 ), then

ω(u, x) =
√

2
2

(sinh θ + 1)es =

√
2

2
es +

√
2

4
(es+ π

4 − es− π
4 );

• if x2 =
√

2− x3(x3 ≤
√

2
2 ), then

ω(u, x) = −
√

2
2

(sinh θ − 1)es =

√
2

2
es −

√
2

4
(es+ π

4 − es− π
4 );

• if x2 = −
√

2− x3(x3 > −
√

2
2 ), then

ω(u, x) =
√

2
2

(sinh θ − 1)es = −
√

2
2

es +

√
2

4
(es+ π

4 − es− π
4 ).

Example 3. Let r(s) be a pseudo null curve framed by {α, β, γ} and v = cos sγ a lightlike vector. There
is a unit timelike vector x = x1α + x2β + x3γ, xi = xi(s), (i = 1, 2, 3) whose intersection angles with
b1 =

√
2

2 (β + γ) and b2 =
√

2
2 (β − γ) are all π

4 . From Definition 8 and ω2(s) = cos s, η1 = η2 = π
4 ,

the angle ω(v, x) can be expressed as follows:

1. when − 1
2x3
≤ x2 < −x3(x3 < −

√
2

2 ), we have

ω(v, x) = −
√

2
2

(sinh
π

4
− cosh

π

4
) cos s =

√
2

2
e−

π
4 cos s;
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2. when −x3 ≤ x2 ≤ − 1
2x3

(x3 ≥
√

2
2 ), we have

ω(v, x) =
√

2
2

(sinh
π

4
− cosh

π

4
) cos s = −

√
2

2
e−

π
4 cos s;

3. when x2 ≥ −x3(x3 < −
√

2
2 ) or x2 ≥ − 1

2x3
(−
√

2
2 ≤ x3 < 0), we have

ω(v, x) =
√

2
2

(sinh
π

4
+ cosh

π

4
) cos s =

√
2

2
e

π
4 cos s;

4. when x2 < −x3(x3 ≥
√

2
2 ) or x2 ≤ − 1

2x3
(0 < x3 <

√
2

2 ), we have

ω(v, x) = −
√

2
2

(sinh
π

4
+ cosh

π

4
) cos s = −

√
2

2
e

π
4 cos s.
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