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Abstract: The aim of this paper is the construction of stochastic versions for some fractional
Gompertz curves. To do this, we first study a class of linear fractional-integral stochastic equations,
proving existence and uniqueness of a Gaussian solution. Such kinds of equations are then used to
construct fractional stochastic Gompertz models. Finally, a new fractional Gompertz model, based on
the previous two, is introduced and a stochastic version of it is provided.
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1. Introduction

Fractional calculus is presently applied to a lot of scientific fields. Despite the problem of
defining fractional derivatives being quite old (see, for instance, [1,2]), it has mainly been developed
in recent times (see [3]). Due to its versatility in describing slower or also different time scales,
fractional derivatives and fractional-order differential equations are very often used in applications,
so that also different books have been written on the argument (see, for instance, [4–6]). The main
generalization of the classical Cauchy problems to the fractional order is achieved via the so-called
Caputo-fractional derivative, introduced by Michele Caputo in [7]. In such paper, the fractional
derivative is used to study the Q-factor of some non-ferromagnetic solids, thus being introduced in an
applicative context. From such moment, fractional calculus has been used to address a lot of different
models: from epidemics [8] to osmosis [9], from neurophysiology [10] to viscoelasticity [11] and many
others [12].

Here we focus on fractional-order population growth models. A first model of population growth
can be achieved by modifying the classical Malthus model by introducing a fractional-order derivative
in place of the classical one (see [12,13]). As a second step, one could ask for a fractional-order
generalization of a Gompertz model. Gompertz model are quite popular growth model. Such models
take into account a time-varying birth rate, which describes the fact that a person’s resistance to
death decreases with age. Such models have been used in particular to model cancer growth, starting
from [14] and then used to describe a single species growth (see for instance [15]). For this and other
reasons, Gompertz curves have been widely studied. For instance, knowing that some species of cancer
evolved following a Gompertz law, optimal control of it has become necessary (see for instance [16]).
At the same time, stochastic models became necessary to describe eventual environmental (and thus
unpredictable) effects (see [17–20] and many others).

Concerning fractional-order Gompertz models, the first one has been introduced in [21], but it is
not achieved by simply substituting the fractional derivative in place of the classical one. To understand
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how the fractional-order model is introduced, let us recall that the classical Gompertz curve x(t) can
be defined as the solution of the non-linear Cauchy problem dx

dt (t) = αx(t)− βx(t) log
(

x(t)
x0

)
,

x(0) = x0
(1)

where α, β > 0 are dynamical parameters and x0 > 0 is the initial population density. It is also well
known that the solution is given by

x(t) = x0 exp
(

α

β
(1− e−βt)

)
and then the model admits a carrying capacity

x(∞) = lim
t→+∞

x(t) = x0e
α
β .

If we define y(t) = log
(

x(t)
x0

)
, the Cauchy problem (1) can be rewritten as



dx
dt (t) = (α− βy(t))x(t),
dy
dt (t) = α− βy(t),

x(0) = x0,

y(0) = 0.

(2)

In [21], the fractional-order Gompertz model is achieved by substituting the Caputo-fractional
derivative in place of the classical one only in the linear equation. In particular, the function yν(t) is
defined as the solution of the fractional Cauchy problem{ dνyν

dtν (t) = α− βyν(t),

yν(0) = 0,
(3)

where dν

dtν is the fractional Caputo derivative of order ν ∈ (0, 1), and then defining the fractional
Gompertz curve as xν(t) = x0eyν(t). In such case, we have

yν(t) =
α

β
(1− Eν(−βtν)), xν(t) = x0 exp

(
α

β
(1− Eν(−βtν))

)
(4)

where Eν(t) is the Mittag-Leffler function (defined in Equation (8)).
In [22] another type of fractional-order Gompertz model has been introduced. To understand

how such model is defined, let us recall that for the classical model we have y(t) = α
β (1− e−βt) and

then we can rewrite the first equation of Equations (2) as{
eβt d

dt x(t) = αx(t),

x(0) = x0.

In [22], they use the Caputo-fractional derivative with respect to another function, as defined
in [23], to define the improved fractional Gompertz curve xν(t) the solution of

(
eβt d

dt

)ν
xν(t) = αxν(t),

xν(0) = x0,
(5)
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given by

xν(t) = x0Eν

(
α

βν
(1− e−βt)ν

)
.

In this paper, we aim to define a class of stochastic Gompertz models that generalize the two
proposed fractional Gompertz curves. To do this, we first need to investigate some results related
to a class of stochastic linear fractional-integral equations, concerning in particular the existence of
Gaussian solutions. Such equations generalize the Caputo-fractional stochastic differential equations
studied for instance in [24,25].

In particular this approach leads to a method of construction for general fractional growth models
with noise that preserves normal or log-normal one-dimensional distributions. The preservation of
such laws permits recognition in some macroscopical observable functions (the mean in the normal
case and the median in the log-normal case) of the original growth models. Thus, these stochastic
models work as a noisy perturbation of the original deterministic ones. This procedure could not
be achieved by using the classical tools of fractionalization via time-change (see for instance [26–29])
for different reasons. For instance, if we apply a time-change to the stochastic Gompertz model,
since the stochastic differential equation that drives the model is non-linear, its mean does not solve
Equation (1) with the Caputo derivative in place of the classical one. However, such time-changed
process can be still seen as the exponential of a time-changed Ornstein-Uhlenbeck process (in the sense
of [28]), but, being the latter not a Gaussian one, the time-changed Gompertz model is not log-normal
and its median does not coincide with the function xν given in Equation (4), despite the mean of
the time-changed Ornstein-Uhlenbeck process is still solution of Equation (3). Our new approach
overtakes such problems, giving then some log-normal or normal processes whose dynamics are given
by perturbation of the deterministic ones.

The paper is structured as follows:

• In Section 2 we give some basic definitions and preliminaries on fractional calculus;
• In Section 3 we study a class of linear fractional-integral stochastic equations: we will need them

to define the stochastic models for fractional Gompertz curves. In particular, we focus on existence
and almost surely uniqueness of Gaussian solutions. Moreover, since they are obtained via a
Picard approximation method, we also give an estimate of the speed of convergence of the method
in terms of the distribution of the maximum of the chosen noise.

• In Section 4 we give some examples on possible choices of noise. In particular in Section 4.4 we
show that such fractional-integral equations are indeed a generalization of the fractional stochastic
differential equations discussed in [24,25].

• In Section 5 we use the results from the previous sections to introduce stochastic models for
fractional Gompertz curves. In particular in Section 5.1 we give some generalities on the classical
stochastic Gompertz model, while in Sections 5.2 and 5.3 we give a stochastic version of the
fractional Gompertz curve introduced in [21] and of the improved fractional Gompertz curve
introduced in [22]. Finally, in Section 5.4 we construct a new fractional Gompertz model obtained
by merging the approach of the previous two models and we describe a stochastic counterpart
for it.

2. Some Preliminaries on Fractional Calculus

Concerning the main properties of fractional integrals and derivatives, we refer to [30]. Let us
give the following definition of the fractional-integral.

Definition 1. Given ν > 0 the fractional-integral Iν
t of order ν is defined as

Iν
t f =

1
Γ(ν)

∫ t

0
(t− τ)ν−1 f (τ)dτ
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for any suitable function f : [0,+∞)→ R.

It is easy to see that for instance, for any f ∈ L∞ the fractional-integral Iν
t f is defined. Moreover,

for any ν1, ν2 it holds Iν1
t I

ν2
t = Iν1+ν2

t . It is also interesting to notice that the fractional-integral Iν
t

is a convolution operator. Indeed if we define the kernel Iν(t) = tν−1

Γ(ν)χ[0,+∞), then, for any function
f : [0,+∞)→ R

Iν
t f = (Iν ∗ f )(t)

where ∗ is the convolution product and f is extended to the whole real line by setting f (t) = 0 for
any t < 0. If ν ∈ (0, 1), then the convolution kernel Iν is singular, but still in L1(0, T) for any T > 0.
Therefore, while for any ν ∈ [1,+∞), one only needs f to be in L1

loc, it is not enough if ν ∈ (0, 1).
Now we can define the Riemann-Liouville derivative.

Definition 2. Given ν ∈ (0, 1), the Riemann-Liouville fractional derivative Dν
t of order ν is defined as

Dν
t f =

1
Γ(1− ν)

d
dt

∫ t

0
(t− τ)−ν f (τ)dτ

for any suitable function f : [0,+∞)→ R.

From the definition of Dν
t , one easily obtains that

Dν
t =

d
dt
I1−ν

t (6)

for any ν ∈ (0, 1). Thus, by the semigroup property of the fractional-integral and the fact that I1
t is the

classical integral, we have

Dν
t (Iν

t f ) =
d
dt
I1−ν

t Iν
t f = f (t)

for any suitable function f : [0,+∞)→ R. In particular we have that Dν
t is the left inverse of Iν

t and
thus, vice versa, Iν

t is the right inverse of Dν
t for any ν ∈ (0, 1).

However, we also have another fractional derivative.

Definition 3. Given ν ∈ (0, 1), the Caputo-fractional derivative dν

dtν of order ν is defined as

dν f
dtν

(t) =
1

Γ(1− ν)

∫ t

0
(t− τ)−ν f ′(τ)dτ

for any suitable function f : [0,+∞)→ R.

The class of functions for which dν f
dtν is defined is smaller than the one for which Dν

t f is: indeed,
one has at least to ask that f is absolutely continuous. Moreover, we have that

dν

dtν
= I1−ν

t

(
d
dt

)
hence, working as before, we have

Iν
t

dν f
dtν

= Iν
t I1−ν

t
d f
dt

= f (t)

for any suitable function f : [0,+∞)→ R. We can conclude that Iν
t is the left inverse of dν

dtν , and then
dν

dtν is the right inverse of Iν
t . There is also a relation between Riemann-Liouville and Caputo derivative:
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dν f
dtν

= Dν
t ( f − f (0+)). (7)

From now on we will denote f (0+) = f (0). This relation lets us also define the Caputo-fractional
derivative for any Riemann-Liouville derivable function, hence for a much wider class of functions.
Concerning Caputo derivatives, we can define fractional Cauchy problems by using them. Indeed,
under suitable assumptions, the fractional Cauchy problem{ dνy

dtν (t) = F(t, y(t)),

y(0) = y0

is well-posed. In particular, the relaxation problem{ dνy
dtν (t) = ay(t),

y(0) = y0

admits as unique solution the function

y(t) = y0Eν(atν)

where Eν(t) is the Mittag-Leffler function, defined as

Eν(t) =
+∞

∑
k=0

tk

Γ(νk + 1)
, t ∈ R, (8)

which is a generalization of the exponential function (observe that if ν = 1, E1(t) = et).
We need also to introduce fractional calculus with respect to other functions. Riemann-Liouville

type fractional derivative of a function with respect of another function were introduced to deal with
Leibniz rule and chain rule for fractional derivatives (see, for instance, [31,32]). For this part, we mainly
refer to [23]. Let us first give the definition of fractional-integral with respect to another function.

Definition 4. Given ν > 0 and an increasing function Ψ ∈ C1(0,+∞) such that Ψ′(t) 6= 0 for any t > 0,
the fractional-integral Iν,Ψ

t with respect to Ψ is given by

Iν,Ψ
t f :=

1
Γ(ν)

∫ t

0
Ψ′(τ)(Ψ(t)−Ψ(τ))ν−1 f (τ)dτ

for any suitable function f : [0,+∞)→ R.

Observe that if Ψ(t) = t, we achieve the classical fractional-integral. Let us now define the
Riemann-Liouville type fractional derivative.

Definition 5. Given ν ∈ (0, 1) and an increasing function Ψ ∈ C1(0,+∞) such that Ψ′(t) 6= 0 for any t > 0,
the Riemann-Liouville fractional derivative Dν,Ψ

t with respect to Ψ is given by

Dν,Ψ
t f :=

1
Γ(1− ν)

d
dt

∫ t

0
Ψ′(τ)(Ψ(t)−Ψ(τ))−ν f (τ)dτ

for any suitable function f : [0,+∞)→ R.

Observe that for Ψ(t) = t, we achieve the classical Riemann-Liouville fractional derivative.
Moreover, we have in this case

Dν,Ψ
t =

1
Ψ′(t)

d
dt
I1−ν,Ψ

t . (9)
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Let us also give the definition of the Caputo type fractional derivative.

Definition 6. Given ν ∈ (0, 1) and an increasing function Ψ ∈ C1(0,+∞) such that Ψ′(t) 6= 0 for any t > 0,

the Caputo-fractional derivative
(

1
Ψ′(t)

d
dt

)ν
with respect to Ψ is given by

(
1

Ψ′(t)
d
dt

)ν

f (t) =
1

Γ(1− ν)

∫ t

0
(Ψ(t)−Ψ(τ))−ν f ′(τ)dτ

for any suitable function f : [0,+∞)→ R.

In [23] (Theorem 3) the following relation is shown(
1

Ψ′(t)
d
dt

)ν

f (t) = Dν,Ψ
t ( f − f (0)). (10)

Using this relation, one can extend the definition of Caputo-fractional derivative of a function
with respect to another function to the whole class of the Riemann-Liouville derivable (with respect
to Ψ) functions. Moreover, under suitable assumptions, the following fractional Cauchy problem
is well-posed 

(
1

Ψ′(t)
d
dt

)ν
y(t) = F(t, y(t)),

y(0) = y0.

In the spirit of [31,32], let us show a chain rule for Caputo-fractional derivatives of a function with
respect to another function.

Proposition 1. Let g be a Caputo-derivable function and Ψ be an increasing function in C1(J) such that
Ψ′(t) 6= 0 for any t ∈ J and Ψ(0) = 0. Define f (t) = g(Ψ(t)). Then(

1
Ψ′(t)

d
dt

)ν

f (t) =
dνg
dtν

(Ψ(t))

Proof. First, let us observe that

I1−ν,Ψ
t f =

1
Γ(1− ν)

∫ t

0
Ψ′(τ)(Ψ(t)−Ψ(τ))−ν f (τ)dτ

=
1

Γ(1− ν)

∫ t

0
Ψ′(τ)(Ψ(t)−Ψ(τ))−νg(Ψ(τ))dτ

=
1

Γ(1− ν)

∫ Ψ(t)

0
(Ψ(t)− z)−νg(z)dz = I1−ν

Ψ(t) g.

Deriving both sides of this relation and dividing by Ψ′(t), by using Equation (9), we have

Dν,Ψ
t f = Dν

Ψ(t)g.

Finally, by substituting f (t)− f (0) and g(t)− g(0) in place of f and g and using Equation (10)
we conclude the proof.

This proposition leads us to easily give the solution for the relaxation equation
(

1
Ψ′(t)

d
dt

)ν
y(t) = ay(t),

y(0) = y0

(11)
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whenever Ψ(0) = 0. Indeed, if we define z(t) as the solution of the relaxation equation for the Caputo
derivative, hence z(t) = y0Eν(atν), and y(t) = z(Ψ(t)), we have, by the previous proposition(

1
Ψ′(t)

d
dt

)ν

y(t) =
dνz
dtν

(Ψ(t)) = az(Ψ(t)) = ay(t)

thus y(t) is the solution of Equation (11).

3. Stochastic Linear fractional-integral Equations with Constant Coefficients and
Gaussian Solutions

From now on let us fix a complete filtered space (Ω,F ,F t,P).
In this section, we want to study existence and uniqueness of solutions of stochastic linear

fractional-integral equations in the form

Yν(t) = y0 + Iν
t (aYν(t) + b) + G(t) (12)

where y0, a, b ∈ R, a 6= 0, and G(t) is a given F t-adapted Gaussian process. From now on, as shorthand
notation, let us denote

G(J) := {G : Ω× J → R | G is a F t -adapted Gaussian process with a.s. continuous paths}

where J = [0, T] for some T > 0 or J = [0,+∞), and

Gr(J) := {G : Ω× J → R | G is a F t -adapted Gaussian process with a.s. r-Hölder continuous paths}.

Remark 1. Obviously, for any f , g ∈ C0(J) and Z ∈ G(J), we have f Z + g ∈ G(J).

Moreover, let us denote ‖ f ‖L∞(J) = supt∈J | f (t)| for any f ∈ L∞(J), where J = [0, T] with T > 0.

3.1. The fractional-integral of a Gaussian Process

First, one could ask if the fractional-integral of a Gaussian process is still a Gaussian process.
Concerning this problem, we have the following Lemma.

Lemma 1. Let Z ∈ G(J) for some time interval J and define Zν(t) := Iν
t Z for t ∈ J. Then Zν ∈ G(J).

Moreover, if J = [0, T] for some T > 0, then Zν ∈ Gν(J).

Proof. Let us consider
A = {ω ∈ Ω : t 7→ Z(t, ω) is continuous}

and recall that P(Ω \ A) = 0. Fix ω ∈ A and observe that Iν
t Z(·, ω) is well-defined and continuous

(in t). We need to show that it is a F t-adapted Gaussian process. Let us define

Iν,ε
t Z(ω) =

1
Γ(ν)

∫ t−ε

0
(t− τ)ν−1Z(τ, ω)dτ

which is well-defined as Riemann integral since, for fixed t > 0, τ 7→ (t− τ)ν−1Z(τ, ω) is continuous
in [0, t− ε]. To show that Zν(t) is F t-adapted, let us observe that, by definition of Riemann integral,

Iν,ε
t Z(ω) = lim

n→+∞

n

∑
j=1

(t− sj,n)
ν−1Z(sj,n, ω)δε

n
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for any ω ∈ A where δε
n = t−ε

n and sj,n =
(

j− 1
2

)
δε

n, with j = 1, . . . , n. Hence we have that
almost surely

Iν,ε
t Z = lim

n→+∞

n

∑
j=1

(t− sj,n)
ν−1Z(sj,n)δ

ε
n.

Since Z is F t-adapted and with a.s. continuous paths, it is progressively measurable and then,
for any n ∈ N and j = 1, . . . , n, Z(sj,n) is F sj,n -measurable and thus, being sj,n < t, F t-measurable.
Hence the variable ∑n

j=1(t− sj,n)
ν−1Z(sj,n)δn is F t-measurable for any n ∈ N and so it is its limit as

n → +∞, concluding that for any ε > 0, Iν,ε
t Z is F t-measurable. Now let us consider, for k ∈ N,

εk =
1
k . Let us observe that for fixed ω ∈ A we have, for τ ∈ (0, t),

|(t− τ)ν−1Z(τ, ω)χ(0,t−εk)
(τ)| ≤ (t− τ)ν−1 max

τ∈[0,t]
Z(τ, ω)

which is a L1(0, t) function. Hence, we have, by Lebesgue dominated convergence theorem, that

Zν(t, ω) = lim
k→+∞

Iν,εk
t Z(ω)

thus also Zν(t) (being a.s. limit of F t-measurable r.v.) is F t-measurable.
Now let us show that Zν is a Gaussian process. Let us fix m ∈ N, (a1, . . . , am) ∈ Rm, (t1, . . . , tm) ∈

Jm and let us consider the random variable Z ε given by

Z ε :=
m

∑
i=1

ai Iν,ε
ti

Z.

As before, if we define, for fixed i ≤ m and n ∈ N, δε
i,n := ti−ε

n and si,j,n :=
(

j− 1
2

)
δε

i,n for
j = 1, . . . , n, we have that, by definition of Riemann integral,

Iν,ε
ti

Z(ω) = lim
n→+∞

n

∑
j=1

(ti − si,j,n)
ν−1Z(si,j,n, ω)δε

i,n

for any ω ∈ A. Hence we have, for any ω ∈ A,

Z ε(ω) = lim
n→+∞

m

∑
i=1

ai

n

∑
j=1

(ti − si,j,n)
ν−1Z(si,j,n, ω)δε

i,n.

Since Z(t) is a Gaussian process the random variable ∑m
i=1 ai ∑n

j=1(ti − si,j,n)
ν−1Z(si,j,n)δ

ε
i,n is

Gaussian for any n ∈ N. Hence Z ε is almost surely limit of Gaussian random variables, hence it must
be Gaussian.

As before, if we consider εk = 1/k, we have that for ω ∈ A

m

∑
i=1

aiZν(ti, ω) = lim
k→+∞

Z εk (ω)

hence ∑m
i=1 aiZν(ti, ω) is almost surely limit of Gaussian random variables and must be Gaussian itself.

The arbitrariness of (a1, . . . , am) ∈ Rm and m ∈ N gives us the fact that Zν is a Gaussian process.
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Finally, suppose that J = [0, T] and let us consider t1, t2 ∈ J. Suppose, without loss of generality,
that t1 < t2 and set t2 = t1 + h. Hence we have for ω ∈ A

|Zν(t1 + h, ω)− Zν(t1, ω)| ≤ 1
Γ(ν)

∫ t1

0
((t1 − τ)ν−1 − (t1 + h− τ)ν−1)|Z(τ, ω)|dτ

+
1

Γ(ν)

∫ t1+h

t1

(t1 + h− τ)ν−1|Z(τ, ω)|dτ

≤
‖Z(·, ω)‖L∞(J)

Γ(ν + 1)
(tν

1 − (t1 + h)ν + hν)

+
‖Z(·, ω)‖L∞(J)

Γ(ν + 1)
hν

≤
3 ‖Z(·, ω)‖L∞(J)

Γ(ν + 1)
hν,

concluding the proof.

Let us remark that fractionally integrated Gauss-Markov processes have been also studied in [33].

3.2. Compatibility between Fractionally Integrated Gaussian Processes

Now we want to study the behavior of a fractionally integrated Gaussian process with respect to
other Gaussian processes. To do this let us first give the following shorthand notation.

Definition 7. Let Z(t) and G(t) be two F t-adapted Gaussian processes with a.s. continuous paths. We say
that Z(t) and G(t) are compatible if for any n, m ∈ N, any (a1, . . . , an, an+1, . . . , an+m) ∈ Rn+m and any
(t1, . . . , tn, tn+1, . . . , tn+m) ∈ Rn+m the random variable

n

∑
i=1

aiZ(ti) +
m

∑
i=n+1

aiG(ti)

is still a Gaussian random variable. This obviously implies that Z(t) + G(t) ∈ G(J). Let us denote, for any
G ∈ G(J),

G(J, G) := {Z ∈ G(J) : Z and G are compatible}.

It is obvious that if Z(t) and G(t) are independent F t-adapted Gaussian processes with a.s.
continuous paths, then Z(t) and G(t) are compatible.

Now let us show the following Lemma.

Lemma 2. Let Z, G ∈ G(J) such that Z ∈ G(J, G). Then, setting Zν(t) := Iν
t Z for t ∈ J, Zν(t) ∈ G(J, G).

Proof. Let us consider

A = {ω ∈ Ω : t 7→ (Z(t, ω), G(t, ω)) is continuous}

and recall that P(Ω \ A) = 0. Fix ω ∈ A and observe that Zν(t) ∈ G(J) by the previous Lemma and
that for ω ∈ A, Zν(·, ω) is continuous. Thus, we have that t 7→ Zν(t, ω) + G(t, ω) is continuous for
any ω ∈ A. Moreover, since Zν and G are F t-adapted, Zν + G is F t-adapted. Now we need to show
the compatibility property.
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Let us fix m1, m2 ∈ N, (t1, . . . , tm1 , tm1+1, . . . , tm2) ∈ Jm1+m2 and (a1, . . . , am1 , am1+1, . . . , am2) ∈
Rm1+m2 and let us define the random variables

Z :=
m1

∑
i=1

aiZν(ti) +
m2

∑
i=m1+1

aiG(ti),

Z ε :=
m1

∑
i=1

ai Iν,ε
ti

Z +
m2

∑
i=m1+1

aiG(ti).

Let us work on the second one. Fix ω ∈ A. Thus, by recalling the definition of δε
i,n and si,j,n for

i ≤ m and j = 1, . . . , n given in the previous lemma, we have that

Z ε(ω) = lim
n→+∞

n

∑
j=1

m

∑
i=1

ai(ti − si,j,n)
ν−1Z(si,j,n, ω)δε

i,n +
m

∑
i=1

aiG(ti, ω)

hence we have that almost surely

Z ε = lim
n→+∞

n

∑
j=1

m1

∑
i=1

ai(ti − si,j,n)
ν−1Z(si,j,n)δ

ε
i,n +

m2

∑
i=m1+1

aiG(ti)

where on the RHS we have Gaussian random variables since Z(t) and G(t) are compatible. Hence Z ε is
a Gaussian random variable. Moreover, if we define εk = 1/k for k ∈ N, one has that Z = limk→+∞ Z εk

almost surely, thus Z is a Gaussian random variable and then Zν and G are compatible.

Remark 2. Obviously, for any f , g ∈ C0(J) and Z ∈ G(J, G), we have f Z + g ∈ G(J, G). Moreover, for any
f , g ∈ C0(J) and Z ∈ G(J, G), we also have f Z + gG ∈ G(J, G).

3.3. Main Result

Now we are ready to show an existence and uniqueness result in G(J) for the solution of
Equation (12) in the fashion of [6] (Theorem 3.3).

Theorem 1. For any T > 0, J = [0, T], and G ∈ G(J), Equation (12) admits a unique solution Yν ∈ G(J).
Moreover, if G ∈ Gν(J), then Yν ∈ Gν(J).

Proof. Let us consider
A = {ω ∈ Ω : t 7→ G(t, ω) is continuous} (13)

and recall that P(Ω \ A) = 0. Fix ω ∈ A and define the operator Aω : C0
γ(J)→ C0

γ(J) as

(Aω f )(t) = y0 + Iν
t (a f + b) + G(t, ω), f ∈ C0(J)

where C0
γ(J) is the Banach space (C0(J), ‖·‖γ) of the continuous functions equipped with the Bielecki

norm ‖ f ‖γ = maxt∈J | f (t)|e−γt for some γ > 0, which is equivalent to the classical L∞ norm.
Let us show that Aω is well-posed, i.e., Aω f is continuous. To do this consider t1, t2 ∈ J and

suppose, without loss of generality, that t1 < t2. Then, we can set t2 = t1 + δ. We have
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| Aω f (t1 + δ)−Aω f (t1)| ≤
1

Γ(ν)

∫ t1

0
((t1 − τ)ν−1 − (t1 + δ− τ)ν−1)|a f (τ) + b|dτ

+
1

Γ(ν)

∫ t1+δ

t1

(t1 + δ− τ)ν−1|a f (τ) + b|dτ

+ |G(t1 + δ, ω)− G(t1, ω)|

≤
|a| ‖ f ‖L∞(J) + |b|

Γ(ν + 1)
(tν

1 − (t1 + δ)ν + δν)

+
|a| ‖ f ‖L∞(J) + |b|

Γ(ν + 1)
δν + |G(t1 + δ, ω)− G(t1, ω)|

≤
3(|a| ‖ f ‖L∞(J) + |b|)

Γ(ν + 1)
δν + |G(t1 + δ, ω)− G(t1, ω)|

(14)

hence, being G(·, ω) continuous, sending δ→ 0+, we have limδ→0+ | Aω f (t + δ)−Aω f (t)| = 0 and
then Aω f ∈ C0(J).

Now consider f1, f2 ∈ C0(J), choose q ∈
(

1, 1
1−ν

)
and set p such that 1

q +
1
p = 1. We have

| Aω f1(t)−Aω f2(t)| ≤
|a|

Γ(ν)

∫ t

0
(t− τ)ν−1| f1(τ)− f2(τ)|dτ

=
|a|

Γ(ν)

∫ t

0
(t− τ)ν−1| f1(τ)− f2(τ)|e−γτeγτdτ

≤
|a| ‖ f1 − f2‖γ

Γ(ν)

∫ t

0
(t− τ)ν−1eγτdτ

≤
|a| ‖ f1 − f2‖γ

Γ(ν)

(∫ t

0
(t− τ)q(ν−1)dτ

) 1
q
(∫ t

0
epγτdτ

) 1
p

≤
|a| ‖ f1 − f2‖γ T

1+q(ν−1)
q

(1 + q(ν− 1))
1
q Γ(ν)

1

(pγ)
1
p
(epγt − 1)

1
p

≤
|a| ‖ f1 − f2‖γ T

1+q(ν−1)
q

(1 + q(ν− 1))
1
q Γ(ν)

1

(pγ)
1
p

eγt

and then

| Aω f1(t)−Aω f2(t)|e−γt ≤ |a|T
1+q(ν−1)

q

(1 + q(ν− 1))
1
q Γ(ν)(pγ)

1
p
‖ f1 − f2‖γ .

Taking the maximum, we have

‖Aω f1 −Aω f2‖γ ≤
|a|T

1+q(ν−1)
q

(1 + q(ν− 1))
1
q Γ(ν)(pγ)

1
p
‖ f1 − f2‖γ .

Thus, we can choose γ > 0 big enough to have

|a|T
1+q(ν−1)

q

(1 + q(ν− 1))
1
q Γ(ν)(pγ)

1
p
< 1.

With this choice of γ, we have that Aω is a contraction and thus admits a unique fixed point
(see [34], Theorem 3.1): let us denote it as Yν(·, ω).



Mathematics 2020, 8, 60 12 of 24

Moreover, let us consider the sequence (for fixed ω ∈ A){
f0(t, ω) ≡ 0

fn(t, ω) = Aω fn−1(t, ω) n ≥ 1.

This sequence is such that fn(·, ω)→ Yν(·, ω) in C0 by contraction theorem (see [34]).
Now let us define a stochastic operator A. For ω ∈ A, let us define it as

A f (t, ω) = Aω f (t, ω)

for any stochastic process such that t 7→ f (t, ω) is continuous for any ω ∈ A, while for ω 6∈ A let us
complete it as we wish, since Ω \ A is a null set.

We can re-interpret our sequence as a sequence of stochastic processes given by{
f0(t) ≡ 0

fn(t) = A fn−1(t) n ≥ 1.
(15)

Now let us observe that f0 is a (degenerate) F t-adapted Gaussian process with a.s. continuous
paths. For f1, we have that

f1(t) = y0 + G(t)

which obviously belongs to G(J, G) by Remark 2. Let us suppose that fn−1 ∈ G(J, G). By using
Remark 2 and Lemmas 1 and 2, we have that fn ∈ G(J, G). Hence we have that for any n ∈ N,
fn ∈ G(J, G).

Now, we have that
Yν(t) = lim

n→+∞
fn(t)

where the limit is in the a.s. sense, thus it is easy to see that Yν ∈ G(J) (a.s. continuity of the paths
follows from the continuity of t 7→ Yν(t, ω) for ω ∈ A, since Yν(·, ω) are fixed points of Aω). Finally,
a.s. uniqueness follows from the fact that Aω are contractions for ω ∈ A, hence their fixed point
is unique.

Now, if G is a.s. ν-Hölder continuous, let us define

Aν = {ω ∈ Ω : t 7→ G(t, ω) is ν-Hölder continuous}

and let us recall that P(Ω \ Aν) = 0. Consider ω ∈ Aν and f ∈ C0(J) and observe that, from (14),
we have

| Aω f (t1 + δ)−Aω f (t1)| ≤
3(|a| ‖ f ‖L∞(J) + |b|)

Γ(ν + 1)
δν + |G(t1 + δ, ω)− G(t1, ω)|

≤
(

3(|a| ‖ f ‖L∞(J) + |b|)
Γ(ν + 1)

+ C(ω)

)
δν

where C(ω) is such that |G(t + δ, ω)− G(t, ω)| ≤ C(ω)δν (that exists since we have chosen ω ∈ Aν).
In particular, we have that for any f ∈ C0(J), Aω f ∈ Cν(J). Almost surely ν-Hölder continuity of the
paths of Yν thus follows from the fact that, for any ω ∈ Aν, Yν(·, ω) = AωYν(·, ω).
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Remark 3. Let us observe that the fractional-integral operator Iν
t is a compact Hilbert-Schmidt operator in

L2([0, T]) (see, for instance [35]) if ν > 1
2 . Indeed, the integral kernel k(t, τ) := (t− τ)ν−1χ(0,t)(τ) (where

χ(0,t) is the indicator function of the interval (0, t)) is such that

∫ T

0

∫ T

0
|k(t, τ)|2dtdτ < +∞

if and only if ν > 1
2 . In such case, one can use the structure of the equation to show that there exists a unique

Gaussian solution. Setting for instance a = 1 and b = 0, we have for fixed ω ∈ Ω

(I − Iν
t )Yν(·, ω) = y0 + G(·, ω),

where I is the identity operator; hence we have

Yν(·, ω) = (I − Iν
t )
−1(y0 + G(·, ω)).

In such a way, for ν > 1
2 , one has the characterization of the solution Y as

Yν =
+∞

∑
i=0

(Iν
t )

i(y0 + G)

and then Y is given by a linear operator applied to a Gaussian process, hence it is Gaussian.

3.4. Speed of Convergence

We could also investigate the speed of convergence of the sequence fn defined in Equation (15) to
Yν. The following proposition is an easy consequence of the contraction theorem.

Proposition 2. Consider J = [0, T] for some T > 0, ν ∈ (0, 1) and q ∈
(

1, 1
1−ν

)
. Moreover, consider Yν

solution of Equation (12). Set p such that 1
q +

1
p = 1 and

L =
|a|T

1+q(ν−1)
q

(1 + q(ν− 1))
1
q Γ(ν)(pγ)

1
p

and fix γ > 0 such that L < 1. Finally, define G̃(t) = y0 + G(t). Then, for the sequence fn defined in
Equation (15) we have

‖ fn −Yν‖L∞(J) ≤
Ln

1− L
eγT

∥∥∥G̃
∥∥∥

L∞(J)
(16)

almost surely. As a consequence it holds

P(‖ fn −Yν‖L∞(J) > ε) ≤ P
(

max
t∈[0,T]

|G̃(t)| > (1− L)ε
LneγT

)
.

Proof. Fix ω ∈ A (where the set A is defined in Equation (13)). By contraction theorem (see [34]) we
have, since L is the Lipschitz constant of Aω : C0

γ(J)→ C0
γ(J),

‖ fn(·, ω)−Yν(·, ω)‖γ ≤
Ln

1− L
‖ f1(·, ω)− f0(·, ω)‖γ .

Now let us recall that for any function f ∈ C0
γ(J)

e−γT ‖ f ‖L∞(J) ≤ ‖ f ‖γ ≤ ‖ f ‖L∞(J)
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thus, we have

‖ fn(·, ω)−Yν(·, ω)‖L∞(J) ≤
Ln

1− L
eγT ‖ f1(·, ω)− f0(·, ω)‖L∞(J) .

Now let us recall that f0(t, ω) = 0 and f1(t, ω) = y0 + G(t, ω) = G̃(t, ω), thus we have

‖ fn(·, ω)−Yν(·, ω)‖L∞(J) ≤
Ln

1− L
eγT

∥∥∥G̃(·, ω)
∥∥∥

L∞(J)
.

Since P(Ω \ A) = 0, Equation (16) holds.

3.5. The Mean of Yν

Let us introduce another class of Gaussian processes

G0(J) := {G ∈ G(J) : E[G(t)] = 0, ∀t ∈ J}.

We want to investigate the mean of Yν, solution of (12), when G ∈ G0(J). We have the
following result.

Proposition 3. Fix G ∈ G0(J) and let us suppose that yν(t) := E[Yν(t)] is in L∞(J), where Yν(t) is solution
of (12) in J. Then, yν(t) is solution of the fractional Cauchy problem{ dνyν

dtν (t) = ayν(t) + b, t ∈ J

yν(0) = y0.

Proof. First, let us observe that
Yν(0) = y0 + G(0)

hence yν(0) = y0. Now, let us notice that

∫ t

0
(t− τ)ν−1|yν(τ)|dτ ≤ ‖yν‖L∞(J)

tν

ν
.

Hence we can use Fubini’s theorem to achieve

yν(t) = y0 + Iν
t (ayν + b).

Rearranging the equation and applying I1−ν
t on both sides we have

I1−ν
t (yν − y0) =

∫ t

0
(ayν(τ) + b)dτ.

Since on the RHS we have a C1 function, we can differentiate both terms and use (6) and (7)
to achieve

dνyν

dtν
(t) = ayν(t) + b.

Remark 4. It is not difficult to show that if G ∈ G(J), g(t) := E[G(t)] is Riemann-Liouville derivable and yν

is in L∞(J), then yν is solution of the Cauchy problem{ dνyν

dtν (t) = ayν(t) + b + Dν
t g(t), t ∈ J

yν(0) = y0 + g(0).

The proof of such result is analogous to the previous one.
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4. The Choice of G: Some Examples

In this section, we will give some example concerning the choice of the process G ∈ G(J). Actually,
these kinds of equations are noisy versions of the Cauchy problems{ dνyν

dtν = ayν + b

yν(0) = y0
(17)

and the choice of the noise depends on the choice of G ∈ G(J). Moreover, if we take G ∈ G0(J)
and E[Yν(t)] is in L∞(J), we are considering a process with an assigned mean and we can modulate
covariance by changing G. Let us give some examples.

4.1. Brownian Motion and White Noise

A first simple case is given by choosing G(t) as a Brownian motion W(t) on (Ω,F ,F t,P).
Concerning the regularity of the solution Yν of Equation (12), we have the following result.

Corollary 1. Consider in Equation (12) ν ∈ (0, 1/2) and G = W a Brownian motion on (Ω,F ,F t,P).
Then the solution Yν of Equation (12) belongs to Gν(J) ∩ G(J, W) for any J = [0, T].

Actually, we could imagine writing (only formally) our integral equation in differential form.
We have, by (formally) using the relation (6),

dYν(t) = D1−ν
t (aYν + b)dt + dW(t).

Writing in this way, we can see what the role is of W(t): it works like a white noise introduced
in Equation (17).

In particular, if ν = 1, Y1(t) is a classical Ornstein-Uhlenbeck process.

4.2. Fractional Brownian Motion and Fractional White Noise

We could also choose G(t) to be a fractional Brownian motion WH(t) with Hurst index H ∈ (0, 1),
introduced in [36]. We will not focus on the features of such process, but for them we refer to [37,38].
Let us recall that the definition of WH already involves fractional integrals. Indeed, for ν ∈ (0, 1),
we can define the operators − Iν

t and −Dν
t as

− Iν
t f =

1
Γ(ν)

∫ +∞

t
(τ − t)ν−1 f (τ)dτ

and

−Dν
t f = − 1

Γ(1− ν)

d
dt

∫ +∞

t
(τ − t)−ν f (τ)dτ

for any suitable function f : R→ R. In such case, if H ∈
(

1
2 , 1
)

and we fix ν = H− 1
2 , then there exists

a (normalizing) constant CH such that

WH(t) = CH

∫
R
− Iν

s χ(0,t)dW(s)

while if H ∈
(

0, 1
2

)
, if we fix ν = 1

2 − H, we have

WH(t) = CH

∫
R
−Dν

s χ(0,t)dW(s)

Concerning the regularity of the solution Yν of Equation (12), we have the following result:
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Corollary 2. Consider H ∈ (0, 1) and let (in Equation (12)) G = WH be a fractional Brownian motion
on (Ω,F ,F t,P) with Hurst index H; then, if ν ∈ (0, H), the solution Yν of Equation (12) belongs to
Gν(J) ∩ G(J, WH) for any J = [0, T].

Such corollary is linked to the fact that the paths of WH(t) are γ-Hölder continuous for any γ < H,
as shown in [38].

As before, we could formally write Equation (12) in differential form, by using Equation (6),
to achieve

dYν(t) = D1−ν
t (aYν + b)dt + dWH(t)

where the fractional white noise dWH must be carefully interpreted. Thus, we have that our equation
is a perturbation of (17) with a fractional white noise.

For ν = 1, we obtain the fractional Ornstein-Uhlenbeck process ([39,40]).

4.3. Ornstein-Uhlenbeck Process and Colored Noise

We get another example by choosing G(t) to be an Ornstein-Uhlenbeck process U(t), solution of

dU(t) = (λU(t) + µ)dt + σdW(t) (18)

for some λ, µ ∈ R, σ > 0 and W a Brownian motion on (Ω,F ,F t,P). In such case, we have the
following regularity result:

Corollary 3. Consider, in Equation (12), ν ∈
(

0, 1
2

)
and G := U an Ornstein-Uhlenbeck process on

(Ω,F ,F t,P). Then, the solution Yν of Equation (12) belongs to Gν(J) ∩ G(J, U) for any J = [0, T].

As before we can write the differential form of the equation obtaining

dYν(t) = D1−ν
t (aYν + b)dt + dU(t)

that, by using Equation (18), becomes

dYν(t) = (D1−ν
t (aYν + b) + λU(t) + µ)dt + σdW(t),

thus observing the effect of a colored noise (for ν = 1 see, for instance, [41,42]).
Eventually, we could also use a fractional Ornstein-Uhlenbeck UH in place of U, obtaining the

following regularity result:

Corollary 4. Consider H ∈ (0, 1) and let (in Equation (12)) G = UH be a fractional Ornstein-Uhlenbeck
process on (Ω,F ,F t,P) with Hurst index H; then, if ν ∈ (0, H), the solution Yν of Equation (12) belongs to
Gν(J) ∩ G(J, UH) for any J = [0, T].

4.4. Fractional Itô Integral

There is another particular choice of G that can be done. Let us suppose that ν ∈
(

1
2 , 1
)

and

observe that, for fixed t > 0, the function (t − τ)ν−1 is in L2(0, t). Thus, the following process is
well-defined and belongs to G0(J) for any J = [0, T]:

G(t) =
1

Γ(ν)

∫ t

0
(t− τ)ν−1dW(τ) (19)

where W is a Brownian motion on (Ω,F ,F t,P) and the integral must be interpreted in the Itô sense.
With this noise, Equation (12) is the integral version of a Caputo-fractional stochastic differential
equation, as studied for instance in [24,25]. For such equations, closed form of the solutions can be
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obtained via a variation of constant formula, as shown in [24]. In this particular case it is known that
yν(t) := E[Yν(t)] is a continuous function.

5. Stochastic Models for Fractional Gompertz Curves

In this section, we will construct two classes of stochastic models for fractional Gompertz curves:
one for the fractional Gompertz curve given in [21], the other for the improved one given in [22].
Moreover, we will introduce a third model that combines the two previous approaches. However,
let us first recall how the classical stochastic Gompertz model is constructed.

5.1. The Stochastic Gompertz Model

Here we will recall some basics of the stochastic Gompertz model. We will follow the lines of [43].
Let us consider a stochastic process X(t) solution of the following stochastic differential equation

dX(t) =
(

α− β log
(

X(t)
X0

))
X(t)dt +

√
2αX(t)dW(t), X(0) = x0 (20)

where x0 > 0 is a constant, W(t) is a Brownian motion (with respect to the filtration F t) and α, β > 0
are the growth parameters we defined in Section 1.

Now, if we define the process Y(t) = log
(

X(t)
x0

)
, a simple application of the Itô formula leads to

dY(t) = (−βY(t) + α)dt +
√

2αdW(t), Y(0) = 0 (21)

which is the Stochastic Differential Equation of an Ornstein-Uhlenbeck process. It will be useful to
write such equation in integral form

Y(t) =
∫ t

0
(−βY(t) + α)dt +

√
2αW(t). (22)

In particular, Y(t) is a Gaussian process and thus X(t) = x0eY(t) is a log-normal process. Moreover,
it is easy to see that, setting y(t) = E[Y(t)], we have{ dy

dt (t) = −βy(t) + α

y(0) = 0

that is the second equation of (2). However, since (20) is non-linear, we cannot conclude that the mean
of X(t) solves the Gompertz Equation (1). Let us then denote with x(t) the median of X(t), i.e., for each
t > 0

x(t) := inf
{

z ∈ R : P(X(t) ≤ z) >
1
2

}
.

Since X(t) is absolutely continuous for t > 0, x(t) is the unique solution of the equation (in z)

P(X(t) ≤ z) =
1
2

while, since X(0) = x0, x(0) = x0.
It is well known that the median of a log-normal variable coincides with the exponential of the

mean of its logarithm, i.e.,
x(t) = x0ey(t).

In particular this shows that x(t) solves Gompertz Equation (1).
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For this reason, we can consider X(t) a stochastic version of the Gompertz curve: the deterministic
model is recovered via the median of the process, which is an observable function that describes the
macroscopic behavior of the process.

Following this line, we are searching for a log-normal (or a Gaussian process) such that the median
(or the mean) is a fractional Gompertz curve.

5.2. A Stochastic Model for the Fractional Gompertz Curve

Let us first obtain the stochastic model for the fractional Gompertz curve given in [21]. Recalling
the construction of the classical stochastic Gompertz model, we are searching for a log-normal stochastic
process whose median is a fractional Gompertz curve.

To do this, fix a time horizon T > 0 and a time window J = [0, T]. Let us consider the following
stochastic linear fractional-integral equation:

Yν(t) = Iν
t (−βYν(t) + α) + G(t) (23)

for some G ∈ G0(J) such that yν(t) := E[Yν(t)] is a L∞(J) function. Equation (23) can be recognized as
a stochastic version of Equation (3). Indeed, the latter can be written in integral form as

yν(t) = Iν
t (−βyν(t) + α)

and then Equation (23) follows by adding a noise G(t). In particular, such equation follows as a
generalization of Equation (22) by substituting the classical integral with the fractional one and the
white noise with a general Gaussian one.

A natural choice for G(t), if ν ∈
(

1
2 , 1
)

, is the one given in Section 4.4 by Equation (19).
In particular, if we set

G(t) =
√

2α

Γ(ν)

∫ t

0
(t− τ)ν−1dW(τ),

Equation (23) can be formally seen as a fractional version of Equation (21).
Now, let us define the process Xν(t) = X0eYν(t) with Yν(t) defined in (23). We have the

following result.

Proposition 4. The process Xν(t) is a log-normal process. Moreover, its median xν(t) is given by

xν(t) = x0 exp
(

α

β
(1− Eν(−βtν))

)
,

i.e., is a fractional Gompertz curve.

Proof. The fact that Xν(t) is a log-normal process follows from the fact that Yν ∈ G(J). Moreover,
since it is a log-normal process, we have

xν(t) = x0eyν(t)

where yν(t) = E[Yν(t)]. By Proposition 3, we know that yν(t) is solution of Equation (3) and we
conclude the proof.
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5.3. A Stochastic Model for the Improved Fractional Gompertz Curve

Let us obtain a stochastic model for the improved fractional Gompertz curve. To do this, let us
recall that the improved fractional Gompertz curve is solution of

(
eβt d

dt

)ν
xν(t) = αxν(t),

xν(0) = x0.
(24)

In this case, referring to Definition 6, let us choose Ψ as

Ψ(t) =
1
β
(1− e−βt)

to rewrite Equation (24) as follows:
(

1
Ψ′(t)

d
dt

)ν
xν(t) = αxν(t)

xν(0) = x0

Now, let us consider Yν solution of

Yν(t) = x0 + Iν
t (−βYν + α) + G(t)

with yν(t) := E[Yν(t)] in L∞(J). As before, for ν ∈
(

1
2 , 1
)

, a natural choice for the noise is given by

G(t) =
√

2α

Γ(ν)

∫ t

0
(t− τ)ν−1dW(τ).

Now let us define Xν(t) := Yν(Ψ(t)). We have the following result.

Proposition 5. Xν(t) is a Gaussian process whose mean xν(t) := E[Xν(t)] is given by

xν(t) = x0Eν

(
α

βν
(1− e−βt)ν

)
.

Proof. Recalling that yν(t) = E[Yν(t)], we have, from Proposition 3, that yν is solution of{ dνyν

dtν (t) = −βyν(t) + α, t ∈ J

yν(0) = y0.

Moreover, recalling also that Xν(t) = Yν(Ψ(t)), we know that

xν(t) = E[Xν(t)] = E[Yν(Ψ(t))] = yν(Ψ(t))

where Ψ(t) = 1
β (1− e−βt). Let us observe that xν(0) = yν(Ψ(0)) = x0. Finally, by Proposition 1,

(
1

Ψ′(t)
d
dt

)ν

xν(t) =
dνyν

dtν
(Ψ(t)) = −βyν(Ψ(t)) + α = −βxν(t) + α,

concluding the proof.

5.4. A New Fractional Model and Its Stochastic Counterpart

Now we want to give a fractional model that takes into account both the fractional Gompertz
curve and the improved fractional Gompertz curve. To do this, we will suppose an a priori form for
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the growth rate. This has been done for instance in [44], with the introduction of a growth model that
takes into account both the Gompertz and the Korf dynamics. In general, let us consider as a starting
point a model of the form {

dx
dt (t) = r(t)x(t),

x(0) = x0
(25)

for some growth rate function r(t). Equation (25) can be solved and solution is given by

x(t) = x0 exp
(∫ t

0
r(s)ds

)
. (26)

In our case, let us consider as growth rate the function

rν1(t) = αtν1−1Eν1,ν1(−βtν1), t > 0,

for some ν1 ∈ (0, 1), where Eν,θ(t) is the two-parameters Mittag-Leffler function (see, for instance, [45])
defined as

Eν,θ(t) =
+∞

∑
k=0

tk

Γ(νk + θ)
, t ∈ R .

Let us also denote with xν1 the solution of Equation (25) where rν1(t) is used in place of r(t). In this
case, we can explicitly calculate the integral in Equation (26). Indeed, let us denote R(t) = Eν1(−tν1).
We have

R(t) =
+∞

∑
k=0

(−1)ktν1k

Γ(ν1k + 1)

thus, differentiating the series term by term, we have

R′(t) =
+∞

∑
k=1

(−1)kν1ktν1k−1

Γ(ν1k + 1)

=
+∞

∑
k=1

(−1)ktν1k−1

Γ(ν1k)
=

+∞

∑
k=0

(−1)k+1tν1k+ν1−1

Γ(ν1k + ν1)

= −tν1−1
+∞

∑
k=0

(−1)ktν1k

Γ(ν1k + ν1)
= −tν1−1Eν1,ν1(−tν1). (27)

Now let us consider

Ψν1(t) =
1
β
(1− Eν1(−βtν1)) =

1
β
(1− R(β1/ν1 t));

by using Equation (27) we have

Ψ′ν1
(t) = − 1

β
β1/ν1 R′(β1/ν1 t) = tν1−1Eν1,ν1(−βtν1) =

rν1(t)
α

.

Thus, we have that ∫ t

0
rν1(t)dt = αΨν1(t).

By substituting this last integral in Equation (26) for rν1 and writing Ψν1 explicitly, we achieve

xν1(t) = x0 exp
(

α

β
(1− Eν1(−βtν1))

)
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which is actually the fractional Gompertz curve given in [21]. Indeed, recalling that for the fractional
Gompertz curve we had xν1(t) = x0eyν1 (t) where

yν1(t) =
α

β
(1− Eν1(−βtν)),

xν1(t) was solution of the equation
dxν1 (t)

dt = y′ν1
(t)xν1(t)

xν1(0) = x0.

Since yν1(t) = αΨν1(t), we have shown that y′ν1
(t) = rν1(t) and we achieve Equation (25).

Thus, we can conclude that equation
1

Ψ′ν1 (t)
dxν1

dt (t) = αxν1(t),

xν1(0) = x0

defines the fractional Gompertz curve. Here we already introduced a first degree of fractionalization:
now let us introduce another fractional timescale. To do this, let us work as in [22] and let us
consider a fractional generalization obtained by introducing the fractional derivative with respect
to Ψν1 . So our new fractional Gompertz curve will be defined as the solution xν (where we denote
ν = (ν1, ν2) ∈ (0, 1)2) of the fractional Cauchy problem

(
1

Ψ′ν1 (t)
d
dt

)ν2

xν(t) = αxν(t),

xν(0) = x0

that, being a relaxation equation for the Caputo derivative with respect to Ψ, can be explicitly solved as

xν(t) = x0Eν2(αΨ(t)ν2) = x0Eν2

(
α

βν2
(1− Eν1(−βtν1))ν2

)
.

This new fractional Gompertz curve exhibits two degrees of fractionality: one given by the fact
that we chose the growth function to be the one of the fractional Gompertz curve, the other from the
fact that we introduced a fractional Caputo derivative (with respect to the integral of the growth rate)
in the corresponding time in-homogeneous relaxation equation. This also leads to the possibility of
considering two different fractional timescales: one for the population, the other for the growth rate.
Concerning the stochastic model for such fractional Gompertz curve, fix ν = (ν1, ν2) ∈ (0, 1)2 and let
us consider Yν2 as the solution of

Yν2(t) = x0 + Iν2
t (−βYν2 + α) + G(t)

such that yν2(t) = E[Yν2(t)] is in L∞(J). As we already stated, if ν2 ∈
(

1
2 , 1
)

, we could consider

G(t) =
√

2α

Γ(ν2)

∫ t

0
(t− τ)ν2−1dW(τ).

Finally, let us define Xν(t) := Yν2(Ψν1(t)). We have the following result.

Proposition 6. Xν(t) is a Gaussian process whose mean xν(t) := E[Xν(t)] is given by

xν(t) = x0Eν2

(
α

βν2
(1− Eν1(−βtν1))ν2

)
.
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The proof of such proposition is analogous to the one of Proposition 5.

6. Conclusions

In this paper, we have given some methods to construct stochastic fractional Gompertz models by
using stochastic linear fractional equations with Gaussian driving processes. The choice of a Gaussian
driving process is linked to the necessity (in the first class of models introduced in Section 5.2) to
preserve the lognormality of the Gompertz model. In Sections 5.3 and 5.4 we obtain stochastic fractional
Gompertz models with Gaussian one-dimensional law. These were actually only exemplifications.
Indeed, one can use the construction method given in Sections 5.3 and 5.4 to obtain Gaussian stochastic
models for general growth models of the form

(
1

Ψ′(t)
d
dt

)ν
xν(t) = αxν(t)

xν(0) = x0

(28)

where Ψ′(t) = r(t)
α for some growth rate r(t) > 0.

One could also try to substitute the operator Iν,Ψ
t in place of Iν

t in Equation (12). In such a case
one could show, by similar arguments, the existence and uniqueness of a Gaussian solution and then
use the construction given in Section 5.2 to obtain a log-normal stochastic model for (28).

Concerning possible applications, it has been already observed in [21,22] that fractional Gompertz
models are more appropriate than classical ones to describe some phenomena such as tumor
growth (concerning the model in Section 5.2), dark fermentation and other fermentation phenomena
(concerning the model in Section 5.3). In this paper we provided a method to introduce noise
(due to eventual unpredictable variables in the environment) in such a way that a macroscopic
observable function still preserves such laws. Concerning the choice of the noise, it depends on
the autocorrelation one wants to introduce in the model. For instance, if one wants to introduce a
long-range (or short-range) correlated noise, one could use a fractional Brownian motion as driving
Gaussian process, while if a delta-correlated noise is needed one could use a classical Brownian motion
as driving process.

Finally, we want to recall that our aim was to introduce some construction methods that could
lead to log-normal or normal stochastic models for general fractional growth processes (as the ones
in Equation (28)) with a general Gaussian noise, in order to provide a wide range of models that could
be possibly useful in future applications.
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