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Abstract: In this paper, a Neural Networks optimizer based on Self-adaptive Differential Evolution
is presented. This optimizer applies mutation and crossover operators in a new way, taking into
account the structure of the network according to a per layer strategy. Moreover, a new crossover
called interm is proposed, and a new self-adaptive version of DE called MAB-ShaDE is suggested to
reduce the number of parameters. The framework has been tested on some well-known classification
problems and a comparative study on the various combinations of self-adaptive methods, mutation,
and crossover operators available in literature is performed. Experimental results show that DENN
reaches good performances in terms of accuracy, better than or at least comparable with those
obtained by backpropagation.
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1. Introduction

The use of Neural Network (NN) models has been steadily increasing in the recent past, following
the introduction of Deep Learning methods and the ever-growing computational capabilities of modern
machines. Thus, such models are applied to various problems, including image classification [1] and
generation [2], text classification [3], speech recognition [4], emotion recognition [5], and many more.
New and more complex network structures, such as Convolutional Neural Networks [6], Neural
Turing Machines [7], and NRAM [8], were developed and applied to the aforementioned tasks; such
new problems and structures also required the development of new optimization techniques [9–11].

According to these new trends, neuroevolution has also been renewed [12–15]. The term of
neuroevolution is used to identify the research area where evolutionary algorithms are used to construct
and train artificial neural networks. Several approaches have been proposed both to train networks’
weights and topology and to exploit the characteristics of neuroevolution of being highly general,
allowing learning with nondifferentiable activation functions, without explicit targets, and with
recurrent networks [16,17].

The traditional method used by neural networks to learn their weights and biases is the
gradient descent algorithm applied to a cost function and its most famous implementation is the
backpropagation procedure. Nowadays, the backpropagation algorithm is still the workhorse of
learning in neural networks even if its origin dates back to 1970s; its importance was revealed in
1986 [18].

Backpropagation works under two main assumptions about the form of the cost function: it has
to be written as an average over cost functions Cx for individual training examples x and as a function
of the outputs from the neural network. Moreover the activation functions have to be differentiable.
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With that said, there are tricks for avoiding this kind of problems, and finding alternatives
to gradient descent is an active area of investigation. An interesting analysis on the motivations
according to backpropagation is the most used technique based on gradient to train neural networks
and evolutionary approaches are not sufficiently studied is presented in [15].

As long as meta-heuristic algorithms are generally nondeterministic and not sensitive to the
differentiability and continuity of the objective functions, these methods are used in a wide range of
complex optimization problems. In addition, the stochastic global optimizations can identify global
minimum without being trapped in local minima [19–21].

The most used evolutionary approach in neuroevolution is the genetic one, extensively employed
in the conventional neuroevolution (CNE) [17,22] and also recently proposed in the case of deep
neuroevolution [23]. In those algorithms, the best individuals (the individuals with the highest fitness)
are evolved by means of the mutation and crossover operators and replace the genotypes with the
lowest fitness in the population. The genetic approach is the most used technique because it is easy to
implement and practical in many domains. However, on the other hand, there is the problem of the
encoding since they use a discrete optimization method to solve continuous problems.

In order to avoid the encoding problem other continuous evolutionary meta-algorithms have
been proposed including, in particular, differential evolution (DE). Indeed, DE evolves a population of
real-valued vectors, so no encoding and decoding are required.

It is well known that DE performs better than other popular evolutionary algorithms [24], has
a quick convergence, and is robust [25]; it also performs better for learning applications [26]. At the
same time, DE has simple genetic operations, such as its operator of the mutation and survival strategy
based on one-on-one competition. Moreover, they can also use population global information and
individual local information to search for the optimal solution.

When the optimization problem is complex, the performance of the traditional DE algorithm
depends on the selected the control parameters and mutation strategy [19,27–29]. If the control
parameters and selected mutation strategy are unsuitable, then DE is likely to yield premature
convergence, stagnation phenomena and excessive consumption of computational resources.
In particular, the stagnation problem for DE applied to neural network optimization has been studied
in [30].

In this paper the system DENN that optimizes artificial Neural Networks using DE is presented.
The system uses a direct encoding with a one-to-one mapping between the weights of the neural
networks and values of individuals in the population. This system is an enhanced version of the
system introduced in [12], where a preliminary implementation was described.

A batching system is introduced to overcome one of the main computational problems of the
proposed approach, i.e., the fitness computation. For every generation the population is evaluated
on a limited number of training examples, given by the size of the current batch, rather than the
whole training set. This reduces the computational load, particularly on large training sets. Moreover,
a restart method is applied to avoid a premature convergence of the algorithm: the best individual is
saved and the rest of the current population is discarded, continuing the research on a new random
generated population.

Finally, a new self-adaptive mutation strategy MAB-ShaDE inspired to the multi-armed bandit
UCB1 [31] and a new particular crossover operator interm, a randomized version of the arithmetic
crossover, have been proposed.

An extensive experimental study have been implemented to (i) determine if this approach is
scalable and applicable also to large classification problems, like MNIST digit recognition; (ii) study
the performance reached by using MAB-ShaDE and interm components; and (iii) identify the best
algorithm configurations, i.e., the configurations reaching the highest accuracy.

The experimental results show that DENN is able to outperform the backpropagation algorithm
in training neural networks without hidden layers. Moreover, DENN is a viable solution also from a
computational point of view, even if the time spent for learning is higher than its competitor BPG.
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The paper is organized as follows. Background concepts about neuroevolution, DE algorithm
and its self-adaptive strategies are summarized in Section 2, related works are presented in Section 3,
the system is presented in Section 4, and experimental results are shown in Section 5. Section 6 closes
the paper with some final considerations and some ideas for future works.

2. Background

2.1. Differential Evolution

Differential evolution (DE) is a evolutionary algorithm used for optimization over continuous
spaces, which operates by improving a population of N candidate solutions evaluated by means of
a fitness function f though a iterative process. The first phase is the initialization in which the first
population is generated; there exists various approaches, among which the most common is randomly
generating each vector. Following, during the iterative phase, for each generation a new population is
computed though mutation and crossover operators; each new vector is evaluated and then the best
ones are chosen, according to a selection operator, for the next generation. The evolution may proceed
for a fixed number of generations or until a given criterion is met.

The mutation used in DE is called differential mutation. For each vector target vector xi, for i =
1, . . . , N, of the current generation, a vector ȳi, namely, donor vector, is calculated as linear combination
of some vectors in the DE population selected according to a given strategy. In the literature, there
exist many variants of the mutation operator (see for instance [32]). In this work, we implemented
and used three operators: rand/1 [33], current_to_pbest [34], and DEGL [35].

The operator rand/1 is defined as

ȳi = xa + F(xb − xc) (1)

where F ∈ [0, 2] is a real parameter called mutation Factor, a, b, c are unique random indices different
from i.

The operator curr_to_pbest is defined as

ȳi = xi + F(xpbest − xi) + F(xa − xb) (2)

where p ∈ (0, 1] and pbest is randomly selected index from the indices of the best N × p individuals of
the population. Moreover, xb is an individual randomly chosen from the set

{x1, . . . , xN} \ {xa, xi} ∪ A

where A is an external archive of bounded size (usually with at most N individuals) that contains the
individuals discarded by the selection operator.

Finally, DEGL is defined as
ȳi = wLi + (1− w)Gi

Li = xi + α(xnnbest − xi) + β(xa − xb)

Gi = xi + α(xbest − xi) + β(xa − xb)

(3)

where best is the index of the best individual in the population, nnbest is the index of the best individual
in the neighborhood of the target xi, and w ∈ [0, 1] is the weight of the convex combination between Li
and Gi.

The crossover operator creates a new vector yi, namely trial vector, by recombining the donor with
the corresponding target vector. There are many kinds of crossover; the most known is the binomial
crossover where yi is computed as follows,
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yi,j =

{
ȳi,j if randi,j ≤ CR or j = jrand

xi,j otherwise
for j = 1, . . . , D (4)

where randi,j ∈ [0, 1] is a real random number in [0, 1], jrand is an integer random number in {1, . . . , D},
and CR ∈ [0, 1] is the crossover probability.

Finally, the selection operator compares each trial vector yi with the corresponding target vector
xi and selects the better of them in the population of the next generation.

2.1.1. Self-Adaptive Differential Evolution

The DE parameters F and CR have a strong impact during the evolution and the choose of their
values is hard. In literature there exist many proposals of self-adaptive methods that select the values
for F and CR.

One of the simplest and most popular method is jDE [36]. Each population individual xi has its
own values Fi and CRi. The trial individual zi inherits from the target the values Fi and CRi, separately
with probability 0.9; otherwise, a new value for F and/or for CR is randomly generated in [0.1, 1] or in
[0, 1], respectively. The trial is then created using its own values for F and CR. If the trial survives in
the selection phase, it will keep its values for F and CR in the next generation.

Another self-adaptive method is JADE [37], in which the value of F is randomly generated
from a Cauchy distribution C(µF, 0.1) and the value of CR from the normal distribution N(µCR, 0.1).
The means of these distributions µF and µCR are initialized to 0.5 and are updated at each generation as

µF ← (1− c)µF + cmL(SF)

and
µCR ← (1− c)µCR + cmA(SCR)

where mL(SF) is the Lehmer mean of the successful F values (i.e., those used to generate trials which
are better than their targets) and mA(SCR) is the arithmetic mean of the successful CR values.

A variant of JADE is ShaDE [34], in which the values of F and CR are generated in the same way
of JADE, but the means of the distributions are randomly selected from a success history, which stores
the means computed with respect to the succesful trials.

Finally, L-ShaDE [38] is an enhancement of ShaDE where the population size is reduced as the
generations go on.

2.1.2. Self-Adaptive Mutation

There also exist self-adaptive variants of DE which selects, for instance at each generation or even
for each trial, the mutation operator to be applied among a set of possible choices.

We have decided to implement SaMDE [39]. It is a variant of jDE, where it is applied the automatic
selection of mutation strategy from a pool of given strategies. Each population individual has its own
vector V of o real numbers, where o is the number of mutation operators. The vector V is evolved in
the same way as the individual itself. The values of V are used to randomly choose, by means of the
roulette-wheel method, the mutation operator to be used to create the trial individual.

2.2. Neuroevolution

The term of neuroevolution is used to identify the research area where evolutionary algorithms are
used to construct and train artificial neural networks. It covers a wide range of network architectures
and neural models. Most neural learning methods focus on modifying the strengths of neural
connections (i.e., their connection weights), whereas other models can optimize the structure of
the network, the type of computation performed by individual neurons, and even learning rules that
modify the network during evaluation.
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The evolutionary approach dominating the scene of neuroevolution is the genetic approach by
means of genetic algorithms. Typically, to find a network that solves the given task, a population of
genetic encodings of neural networks (genotype) is evolved. The process constitutes an intelligent
parallel search towards better genotypes in the space of solutions, and continues until a network with
a sufficiently high fitness is found. The generate-and-test loop of evolutionary algorithms usually
applied: (i) Each genotype is chosen in turn and decoded into the corresponding neural network,
called phenotype. (ii) The performance of this network is then measured by a fitness value. (iii) After
all individuals have been evaluated, genetic operators are applied and the next generation is created.

The evolution is applied to the the individuals with the highest fitness are crossed and mutated
over with each other, and replace the genotypes with the lowest fitness in the population.

The conventional neuroevolution (CNE) follows this approach for the network weights [17,22].
This is the most used techniques because it is easy to implement but practical in many domains.

3. Related Works

The first DE-based optimizers for NNs were presented in the late ’90s and the early 2000s
by [40,41], who presented and analyzed the applications of DE on the problem of feedforward NN
train. In recent times, new applications of evolutionary algorithms have been presented in the area of
neuroevolution [32].

The dominating evolutionary approach used is the genetic one [17,22]: this is used to optimize
both topology and weights of the network but in the latter case it is very limited by being a discrete
approach. In literature several encodings for the real weights are proposed, with genes represented
either as a real-valued string or characters sequence, which can be interpreted as real values with a
specific precision using for example Gray-coded numbers.

More adaptive approaches have been suggested, for example in [42] or more recently in [43]. In
the first paper, the authors presented a dynamic encoding, which depends on the exploitation and
exploration phases of the search. In the second one, the authors proposed a self-adaptive encoding,
where the string characters are interpreted as a system of particles whose center of mass determines
the encoded value. Other adaptive approaches have been developed for network immunization and
diffusion in link prediction [44,45].

Moreover, they have also used a direct encoding that exploits the particular problem structure.
These methods are not general and are not easily extendable to be applicable in more general

cases [17]. In [46], a direct encoding floating-point representation of the NN’s weights is used.
Precisely, the authors use the evolution strategy called CMA-ES, a real-value optimization algorithm,
applied to the well-known reinforcement learning problem: pole balancing.

Among DE applications to neuroevolution, the most related works we have to cite
are [13–15,30,47], even if they apply the evolutionary meta-heuristics in a different way.

In [47], the search exploration is enhanced by a DE algorithm with a modified best mutation
operation: the algorithm is used to train the network and the global best value is used as a seed by the
backpropagation procedure (BPG).

In [13], three different methods (GA, DE, and EDA) are compared and used to train a
simple network architecture with one hidden layer, the learning factor, and the seed for the
weights initialization.

In [14], the authors use the Adaptive DE (ADE) algorithm to calculate the initial weights and the
thresholds of standard neural networks trained by BPG. The authors demonstrated that the system is
effective to solve time series forecasting problems.

In [15], a Limited Evaluation Evolutionary Algorithm (LEEA) is applied to optimize the weights of
the network. This paper is related to our paper because we employ a similar batching system, in which
minibatches are used in the training phase and are changed after a certain number of generations.

The work in [30] has a strong connection with ours because the author studied how different
mutation operators work to train neural networks. The results showed that the DEGL-trig (a
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composition of DEGL with Trigonometric mutation) is the best mutation operator to use with
small NNs.

DE and the other enhancement methods permit our algorithm to train neural networks much
larger than those used in [15,30]: whereas the maximum size handled in [15] has less than 1500 weights
and the maximum size handled in [30] has only 46 weights, we are capable to train a feedforward
neural network for MNIST which has more than 7000 weights.

4. The DENN Algorithm

This section describes the Differential Evolution for Neural Networks. The idea is to apply the
Differential Evolution for optimization of NN’s weights taking in count the structure of the network.

Given a fixed topology and fixed activation functions, a population P is defined as a set of N
neural networks.

We decided to exploit the DE characteristic of working with continuous values by using a direct
codification based on a one-to-one mapping between the weights of the neural network and individuals
in DE population.

More precisely, let N be a feedforward neural network composed of L levels. For each level, l,
of the network is defined by a real valued matrix, W(l), and a real valued vector, b(l), representing,
respectively, the connection weights and the bias values. Therefore, each population individual xi is
defined as a sequence

〈(Ŵ(i,1), b(i,1)), . . . , (Ŵ(i,L), b(i,L))〉,

where Ŵ(i,l) is the real values vector obtained by linearization of the matrix W(i,l), for l = 1, . . . , L.
For a population individual xi, we indicate by x(h)i its h–th component, for h = 1, . . . , 2L. For

example, x(h)i = Ŵ(i,(h+1)/2), if h is odd, whereas x(h)i = b(i,h/2) if h is even.

Note that for each solution xi the component x(h)i is a vector whose size d(h) is dependent on the
number of neurons of in the level h.

The individuals of the population are evolved by applying mutation and crossover operators in a
component-wise way. For instance, the mutation rand/1 for the individual xi is applied as three indices,
a, b, c, that are randomly chosen in the set {1, . . . , N} \ {i} without repetition; then, for h = 1, . . . , 2L,
the h–th component ȳ(h)i of the donor individual ȳi is calculated as the linear combination

ȳ(h)i = x(h)a + F(x(h)b − x(h)c ).

The evaluation of a population element xi is performed by a fitness function f , which is the
objective function to be optimized.

As proposed in the many other efficient applications, we split the dataset D in three different
subsets: a training set TS, a validation set VS, and a test set ES. The TS is used for the training phase,
the VS is used at the end of each training phase for a uniform evaluation of the individuals, and ES is
used on the best neural network in order to evaluate the performance.

As the evaluation phase is the most time consuming operation, and it can lead to unacceptable
computation time if the fitness is computed on the whole dataset, we decided to use a batching method
similar to the one proposed in [15] by partitioning the training set TS in k batches B0, . . . , Bk−1 of size
b = |TS|/k.

Note that records in each batch should follow the same distribution to avoid the risk of the
overfitting, followed by generation of a model that is unable to generalize.

At each generation the population is evaluated against only a small number of training samples,
given by the size of the current batch, instead of evaluating the population with all the training set
samples. This permits to reduce the computational load, especially on large training sets.
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To reduce the problems that arose when the batch is changed as well as obtaining a smoother
transition from a batch to the next one, we defined a window U of size b, which is a set of samples
taken from the current batch Bi and from the next one Bi+1.

At the beginning of an epoch, the fitness of all individuals in P is re-evaluated by computing the
fitness on the new batch defined by currently window U.

The window is changed after s generations, by substituting b/r examples of U from Bi with b/r
examples taken from Bi+1 and not already present in U.

Then, given sub-epoch dimension s, the window passes from a batch to the next one in r sub-epoch,
or in other words in rs generations (we call epoch this period). In this way, the fitness function change
more smoothly and the evolution has more time to learn from the batch because the window is updated
after s generations.

Moreover, the batches are reused in a cyclic way; when the algorithm iterates for more than k
epochs and thus runs out of available batches, the batch sequence restarts from the first one.

Since the fitness function relies also on the batch and we need a fixed one to compare the
individuals across the epochs; consequently, at the end of every epoch e, the best individual x∗e is
calculated as the NN in P , which reaches the highest accuracy in the validation set VS. The global best
network x∗∗ found so far is then eventually updated.

A restart method is used to avoid a premature convergence of the algorithm; The restart strategy
adopted discard all the individuals in the current population, except the best one, and for the next
algorithm iteration a new population randomly generated is used. The restart technique is applied at
the end of each epoch e, if the fitness evaluation of x∗∗ did not change for a given number M of epochs.
The complete algorithm, namely DENN, is depicted in Algorithm 1.

In the algorithm DENN, the function generate_offspring execute the mutation and the crossover
operators in order to produce the trial individual, whereas the function best_score finds the best network
x∗ and computes the respective score f ∗ among all the individuals in the population.
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4.1. Fitness Function

In the case of classification problems, the fitness function used to evaluate the individual x is
the well-known cross-entropy. In this case, the optimization problem is to find the neural network x
minimizing the H(x) value, computed as

H(x) = −
b

∑
i=1

C

∑
j=1

z′ij log(zij) (5)

where z′ij and zij are, respectively, the value predicted by x and the actual value for the i-th record of U
with respect to the j-th class (C is the number of classes).

4.2. The Interm Crossover

We have implemented a new particular crossover operator called interm, which is a randomized
version of the arithmetic crossover. If xi is the target and ȳi is the donor, then the trial yi is obtained in
the following way; for each component x(h)i of xi and ȳ(h)i of ȳi, let a(h)i be a vector of d(h) randomly
numbers, generated with a uniform distribution [0, 1], then

y(h)ij = a(h)ij x(h)i + (1− a(h)ij )ȳ(h)ij

for j = 1, . . . , d(h).

4.3. The MAB-ShaDE Mutation Method

We have also implemented a variant of ShaDE algorithm, called MAB-ShaDE. MAB-ShaDE has a
solution archive and a history of the best CR and F parameters, like ShaDE (Section 2).

The novelty of MAB-ShaDE is in the method used, inspired to the Multi-armed bandit UCB1 [31],
to select one mutation strategy among a list of possible operators.

We consider the mutation strategies as arms of the bandit and the epochs as the rounds where the
reward of the selected arm is computed. Therefore, for each mutation operator OP, UCB1 stores the
average value of the reward µOP and the number of epoch nOP in which OP has been used. After the
end of the epoch e, the operator

O = arg max
OP

(µOP +
√

2 log e/nOP)

is chosen as mutation strategy for the next epoch.

5. Experiments

In this section, we describe the experiments performed to assess the effectiveness of DENN
algorithm as an alternative to backpropagation for neural network optimization.

Moreover, we are interested to find the best algorithm combination and, in particular, the best
mutation and crossover operators. To do that we organized two rounds of experiments. First of all, we
tested all the possible combinations in order to define the best algorithm singularly for each dataset
and the global best. These experiments are described in Section 5.3 and allow us to conclude that
there is no winner combination if we consider the results grouped by dataset, whereas we can say
that the combination of ShaDE with curr_p_best and interm globally perform better than any other
combination. Then, we decided to verify the effectiveness both in term of computational effort and
accuracy compared to the classical backpropagation. These results are shown in Section 5.2.

All the networks used in these experiments are without any hidden layer.
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DENN has been implemented as a C++ program (Source code available at https://github.com/
Gabriele91/DENN). The results presented here are obtained with a computer having a CPU AMD
Ryzen 1600 and 16GB RAM.

5.1. Datasets

We tested DENN on various classification datasets from the UCI repositories (https://archive.
ics.uci.edu/ml/datasets) (MAGIC, QSAR, and GASS) and also on the well-known MNIST (http:
//yann.lecun.com/exdb/mnist/) dataset for hand-written digit classification. They have been chosen
because of their differences on the number of features and records. Moreover, we chose the MNIST
dataset because it is a classical challenge with well-known results obtained by various NN classification
systems. Note that these datasets are also considered as interesting challenges in [15].

• MAGIC Gamma telescope:dataset with 19,020 records, 10 features, and two classes.
• QSAR biodegradation: dataset with 1055 records, 41 features, and two classes.
• GASS Sensor Array Drift: dataset with 13,910 records, 128 features, and six classes.
• MNIST: dataset with 70,000 records, 784 features, and 10 classes.

5.2. System Parameters

The DENN algorithm depends on various parameters: some directly deriving from the DE (F,
CR, the auto-adaptive variant of DE, the mutation, and crossover operators), other depending on the
batching system (s, b, and r). For each dataset we analyzed the following parameters,

• the auto-adaptive variant of DE (simply called Method),
• the Mutation operator,
• the Crossover operator,
• the number s of generations of a sub-epoch,
• the batch/window size b, and
• the ratio r between the batch size and the number of records changed in the window at each

sub-epoch.

and their values are shown in Table 1.

Table 1. Parameters values.

Parameter Values

Method JDE, JADE, ShaDE, L-ShaDE, MAB-ShaDE, SAMDE
Mutation rand/1, curr_to_pbest, DEGL
Crossover bin, interm
b low, mid, high
r 1, 1

2 , 1
4

s b
r , b

2r , b
4r

We have chosen three levels for the window size b, called low, mid, and high, which depend on the
dataset size, hence they correspond to different values for each dataset (see Table 2).

Table 2. Size of batches for each dataset.

Dataset Low Mid High

MAGIC 20 40 80
QSAR 10 20 40
GASS 20 40 80
MNIST 50 100 200

https://github.com/Gabriele91/DENN
https://github.com/Gabriele91/DENN
https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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We have also chosen three levels for the length s of the sub-epoch, which are proportional to
the number b/r of records changed at each sub-epoch. For instance, the lowest level is b

4r , which
corresponds to a number of generations equal to 1/4 of b/r. The main motivation of this choice is that
DENN should need more generations with larger batches/windows.

Another aspect of our tests is that we have used a double version for each dataset, the original one
and the normalized one. In this way, we can see if the normalization process affects the performances
of DENN.

As we implemented a complete test for each possible combination in each dataset and we run the
same configuration five times, we collected accuracy values and computation time for 30,240 runs.

All the results are stored on GitHUB (Results available at https://github.com/Gabriele91/DENN-
RESULTS-2019); in this paper, only the most significant are shown.

5.3. Algorithm Combination Analysis

The first analysis has been made on the convergence graphics, where for each dataset the data of
accuracy has been plotted during the generations. For each dataset and for each self-adaptive method,
the data of the method which obtained the highest accuracy have been displayed in Figures 1–4.
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Figure 1. Plots of convergences on MAGIC and MAGIC normalized datasets.
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Figure 2. Plots of convergences on QSAR and QSAR normalized datasets.
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Figure 3. Plots of convergences on GASS and GASS normalized datasets.
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Figure 4. Plots of convergences on MNIST and MNIST normalized datasets.

From the plots, it is possible to see that, excluding the cases where the differences are not
significant, MAB-ShaDE works well on smaller datasets (MAGIC and QSAR), whereas ShaDE is the
best method for larger datasets.

5.4. Convergence Analysis

In this subsection, we discuss the convergence across all DE used and analyzed in this paper on
the datasets discussed before. On the MAGIC dataset, SHADE and L-SHADE converge in around
1750 generations, whereas the proposed MAB-SHADE requires only 250 generations to achieve a
solution with a comparable quality. Other methods were able to discover lower quality solutions only.
Regarding the other binary classification problem, QSAR, MAB-SHADE converges faster than all the
other methods in less than 200 generations, while simultaneously obtaining a higher quality solution.

On the GASS multi-class problem, MAB-SHADE follow the same convergence path of L-SHADE,
whereas SHADE has a slow convergence, but the quality of result reached by SHADE is slightly better,
conversely, the other methods do not reach a satisfactory solution.

On the image classification problem MNIST, SHADE and L-SHADE resulted the best algorithms
in terms of the solution quality and the time of convergence, whereas the other methods did not obtain
comparable solutions in terms of quality; noticeably, MAB-SHADE did not get stuck, but it is likely
that it requires more generations to converge to a solution.

We also performed the same tests with normalized versions of the datasets, finding susceptible
differences with the previous results.

On MAGIC all the methods converged to the same solution, whereas on QSAR the best solution
was reached by MAB-SHADE and jDE. Regarding GASS, no analyzed method reached a solution



Mathematics 2020, 8, 69 12 of 16

comparable in terms of quality to the solutions found on the corresponding original dataset. Finally,
on MNIST all the methods, except SAMDE, reached good solutions, which are, however, below the
solutions found with SHADE on the non normalized datasets.

Generally speaking, the best DE method is SHADE for the multi-class problems and MAB-SHADE
for binary classification. Anyway, the convergence curves of SHADE are close to those of MAB-SHADE
in the latter kind of problems.

Finally, it is worth to notice that MAB-SHADE performed systematically better than its direct
competitor SAMDE without requiring to choose a particular mutation strategy.

Quade Weighted Rank

As we have different results for different datasets, we applied the Quade test [48] in order to
obtain a global ranking which takes into account the differences among the datasets.

The Quade test considers that some datasets could be more difficult to deal with (i.e.,
the differences in accuracy of the various algorithms are larger). In this way, the rankings computed on
each dataset are scaled depending on the differences observed in the algorithms’ performances [48].

With reference to Table 3, for each algorithm combination, the weighted ranking values are shown
in the last column Quade rank.

These values are computed as follows.
Given the 756 parameter configurations we obtained by varying the values for each dimensions

as shown in Table 1, we memorized in vij the average accuracy value obtained by the configuration in
the row i on the dataset in the column j. The ranks rij of these values are computed for each dataset.
Ranks are also assigned to the datasets according to the sample range of accuracy values obtained on
it. The sample range within data set j is the difference between the largest and the smallest accuracy
vij within that data set. Let Qj be the rank assigned to the j-th dataset with respect to these values.
Then, the Quade weighted rank is obtained ordering the parameters configuration with respect to
Sj = ∑i rijQj.

In Table 3, the top 20 among the 756 configurations tested are shown. We can see that SHADE,
curr_p_best, interm, and b = high are the best choices.

Table 3. Top 20 Quade ranking for parameter configurations.

Rank Method Mutation Crossover b r s QUADE Rank

1 SHADE curr_p_best interm high 1 B
2R 2713

2 SHADE curr_p_best interm high 2 B
4R 3011

3 L–SHADE curr_p_best interm high 4 B
R 3199

4 SHADE curr_p_best interm mid 4 B
4R 3291

5 SHADE curr_p_best interm high 1 B
R 3330

6 SHADE curr_p_best interm low 2 B
2R 3365

7 JDE degl bin high 2 B
4R 3721

8 JADE curr_p_best interm high 2 B
R 3808

9 JDE curr_p_best interm high 1 B
R 3838

10 L–SHADE curr_p_best interm high 1 B
2R 3872

11 L–SHADE curr_p_best bin high 2 B
2R 3897

12 SHADE curr_p_best interm high 4 B
4R 3928

13 SHADE rand/1 interm high 1 B
2R 4108

14 L–SHADE curr_p_best interm high 2 B
R 4160

15 MAB–SHADE None bin high 1 B
R 4194

16 JADE curr_p_best interm mid 4 B
2R 4267

17 SHADE curr_p_best interm high 1 B
4R 4355

18 SHADE curr_p_best bin high 2 B
2R 4356

19 JADE degl bin low 2 B
4R 4423

20 JDE degl bin high 4 B
2R 4513
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5.5. Execution Times

The execution time of DENN changes with respect to the number of features and the size of batch.
Therefore, in Table 4, we show the average execution time in seconds of DENN in each datasets and
for each level of b. Note that the execution time is not sensitively affected by the normalization of
the datasets.

Table 4. Average execution times.

Dataset b = Low b = Mid b = High

MAGIC 0.571 0.593 0.612
MAGIC-N 0.583 0.591 0.625
QSAR 0.760 0.776 0.783
QSAR-N 0.748 0.752 0.779
GASS 7.740 9.676 10.819
GASS-N 7.751 9.617 10.797
MNIST 133.748 154.731 194.948
MNIST-N 132.615 155.842 191.055

In Table 4, the worst case required approximately three minutes for the computation of the
solution also thanks to a strong parallelization of the computation. Note that this point is a plus of
the evolutionary approach: in the case of an iterative method like backpropagation it would have
been impossible. Therefore, we can conclude that the time to reach the solution is reasonable and the
approach is feasible, even if it is slower when compared to gradient-based methods.

5.6. Comparison with Backpropagation

In this section, we compared our method to the Backpropagation (BPG) algorithm, using two
optimizer: the Stochastic Gradient Descendent (SGD) and the more powerful Adam. The experiments
were performed on the same datasets MAGIC, QSAR, GASS, and MNIST, using both the original and
the normalized versions.

The results are reported in Table 5, where for each dataset we compare the classification accuracy
obtained by NNs trained with BPG (using both optimizers) to the accuracy obtained by our method
(DENN). As it can be seen in the results, in such a scenario our method shows better performances or,
in some cases, comparable to the competitors. More specifically, DENN obtained higher accuracy if
compared to SGD on all classification problems, while ADAM performed better only on MNIST.

Table 5. Comparison BPG - DENN.

Dataset BPG+SGD BPG+ADAM DENN

MAGIC 73.0% 71.9% 76.6%
MAGIC-N 77.0% 78.2% 78.8%
QSAR 78.9% 72.5% 79.9%
QSAR-N 80.6% 80.6% 81.4%
GASS 73.9% 68.9% 86.2%
GASS-N 89.8% 94.6% 96.8%
MNIST 90.3% 90.7% 89.4%
MNIST-N 90.1% 90.5% 90.4%

The difference between MNIST and other datasets is about their features. In MNIST, the features
are just quantitative; whereas, in the other ones, some data has a quantitative nature and other data
are qualitative.

Generally, all the algorithms work better on normalized datasets, except that in MNIST, where
data have are already a high degree of homogeneity. On the other hand, in GASS the effect of using
normalized datasets is much greater for all the algorithms.
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Note that our method can be useful in MLP networks trained for problems on which traditional
algorithms can hardly achieve satisfying performances or need larger networks to achieve the
same results.

6. Conclusions and Future Works

In this paper the DENN framework, a learning algorithm for Neural Networks based on
Self-Adaptive Differential Evolution, is presented. Experiments show that the framework is able
to solve classification problems, reaching satisfying levels of accuracy even in case of large datasets.
The use of batch systems allows the application of DE to new untested domains. Indeed, it is worth
noticing that the size of the problems handled in this work is significantly larger than those tested in
other works available in literature.

Furthermore, the per-layer mutation and crossover strategies introduced in this work perform
better than the traditional DE used in previous works. From the experiments we found the following:

• the configuration of the Self-Adaptive ShaDE with curr_p_best and the new interm crossover
performs better than other settings,

• the slow change of batches allows to reach better results, and
• the MAB-ShaDE algorithm reduces the number of parameters at the cost of slightly

worse solutions.

The results obtained with DENN are almost always better than those obtained with
backpropagation. Moreover DENN appears to be robust than its competitor with respect to
the normalization.

Future research will investigate the possibility of using DENN as optimizer for other Neural
Network structures, including Convolutional Neural Networks, Recurrent Neural Networks,
and Neural Turing Machines. Another scenario could be the application of Evolutionary Algorithms to
those problems and domains where gradient-based optimizers do not perform as well as in supervised
learning. A first direction will be the application of DENN in the Reinforcement Learning context,
where a NN approximates the Value-Action Function (or Q Function) for agents in a nonlinear and
complex environment.
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