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Abstract: In fuzzy set theory, t-norms and t-conorms are fundamental binary operators. Yager proposed
respective parametric families of both t-norms and t-conorms. In this paper, we apply these operators
for the analysis of Pythagorean fuzzy sets. For this purpose, we introduce six families of aggregation
operators named Pythagorean fuzzy Yager weighted averaging aggregation, Pythagorean fuzzy
Yager ordered weighted averaging aggregation, Pythagorean fuzzy Yager hybrid weighted averaging
aggregation, Pythagorean fuzzy Yager weighted geometric aggregation, Pythagorean fuzzy Yager
ordered weighted geometric aggregation and Pythagorean fuzzy Yager hybrid weighted geometric
aggregation. These tools inherit the operational advantages of the Yager parametric families. They enable
us to study two multi-attribute decision-making problems. Ultimately we can choose the best option by
comparison of the aggregate outputs through score values. We show this procedure with two practical
fully developed examples.

Keywords: Yager operators; aggregation operators; arithmetic; geometric; decision-making

1. Introduction

Decision-making is an act of choosing a best choice among different alternatives. There are
a lot of decisions that are taken by human begins in daily routine. If there is only one option,
then there is no need for decision-making but it helps when there are two or more than two choices.
Multicriteria decision-making (MCDM) is an operational research that handles with unique outcome by
particularly evaluating the feasible alternatives over inconsistent several criteria in decision-making.
It is an improbable supposition that the exact numerical information is proper to model the real
world decision-making schemes which are composed of inherent uncertainty in human decisions
therefore, Zadeh [1] introduced the idea of fuzzy sets (FSs) to handle the imprecise information.
Attanasov [2] studied intuitionistic fuzzy sets (IFSs) by adding non-membership function with constraint
0 ≤ µ + ν ≤ 1 with indeterminacy part v = 1− µ− ν. Yager [3] discussed the model of Pythagorean
fuzzy sets (PFSs) to handle imprecise information. The main characteristic of this model is that it relaxes
the constraint of IFSs with the condition 0 ≤ µ2 + ν2 ≤ 1. Zhang and Xu [4] established the idea of
Pythagorean fuzzy number (PFN). In decision-making problems, Garg [5,6] considered the applications
of PFSs.

The main problem arises in MCDM problems is that how we can get a unique decision for
alternative when there is a list of attributes for a given information. To handle such type of difficulties,
the concept of operators was introduced. The different operators are helpful in getting a unique value
by the list of values. The idea of IF weighted averaging, ordered weighted averaging and hybrid
averaging operators was studied by Xu [7]. Xu and Yager [8] studied some geometric weighted,
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geometric ordered weighted and geometric hybrid operators under IFSs environment. The concept
of generalized ordered weighted averaging operators under IFSs was discussed by Li [9]. Xu and
Xia [10] introduced the concept of induced generalized aggregation operators under IF environments.
The dynamic IF multiple-attribute decision-making (MADM) problems were investigated by Wei [11].
The aggregation of infinite chains of IF sets has been recently achieved by Alcantud et al. [12], who used
their operators to make decisions in a temporal intuitionistic setting. Wei [13] proposed the induced
geometric aggregation operators under IF information and their application in group decision-making.
IF Hamacher aggregation operators were examined by Huang [14]. Zhao and Wei [15] studied IF
Einstein hybrid aggregation operators and their application in MADM. Liu et al. [16] take advantage
of aggregation operators to study centroid transformations of intuitionistic fuzzy values. To handle
multiple-attribute group decision-making problem under IF environment, Liu et al. [17] used Dombi
Bonferroni mean operator. Yager [18] studied some aggregation operators such as weighted averaging,
weighted geometric, ordered weighted averaging and ordered weighted geometric operators under PF
environment. The fundamental properties of PF aggregation operators were discussed by Peng and
Yaun [19]. Zeng et al. [20] developed a hybrid method for Pythagorean fuzzy MADM. The MADM
problems under PF interaction aggregation operators were handled by Wei [21]. Peng and Yang [22]
studied the fundamental properties of interval-valued PF aggregation operators. Wei and Lu [23]
developed the concept of PF power aggregation operators in MADM. The multiple-attribute group
decision-making applications under PF Einstein weighted geometric aggregation operators were
discussed by Rahman et al. [24]. Akram et al. [25] proposed the Pythagorean Dombi fuzzy aggregation
operators with applications. For further notations and applications, the readers are referred to [26–33].
In this article, we discuss Yager aggregation operators under PF environment. The motivation of this
article is described as follows:

1. The main purpose of this article is to establish some aggregation operators under PF data
called PF Yager aggregation for assessing the distinct preferences of the choice among the
decision-making process.

2. PFs are more flexible to handle uncertainty where IFSs fail.
3. Yager aggregation operators make the decision results more precise and exact when applied to

real-life MADM based on PF environment.

The structure of paper is as follows: In Section 2, we will recall some basic definitions.
In Section 3, we will study the Pythagorean fuzzy Yager weighted averaging aggregation (PFYWAA),
Pythagorean fuzzy Yager ordered weighted averaging aggregation (PFYOWAA), Pythagorean fuzzy
Yager hybrid weighted averaging aggregation operators (PFYHWAA) and some results of these
operators. In Section 4, we will discuss Pythagorean fuzzy Yager weighted geometric aggregation
(PFYWGA), Pythagorean fuzzy Yager ordered weighted geometric aggregation (PFYOWGA) and
Pythagorean fuzzy Yager hybrid weighted geometric aggregation (PFYHWGA) operators. In Section 5,
we will describe two MADM problems under these operators and choose best option by comparison
through score values. In Section 6, we will discuss the comparative analysis of our model with another
existing model. In Section 7, we will conclude our results related to our proposed model.

2. Preliminaries

In this section, we recall some basic definitions.

Definition 1 ([3]). A PFS p on non-empty set V is defined as

p = {〈h, µp(h), νp(h)〉},

where µp : V → [0, 1] and νp : V → [0, 1] indicate the membership and non-membership degrees of an element

h ∈ V , respectively. vp(h) =
√

1− (µp(h))2 − (νp(h))2 is indeterminacy degree of an element h ∈ V . Zhang
and Xu [4] considered 〈µp(h)), νp(h)〉 as PFN represented by p = 〈µp, νp〉.
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Definition 2 ([4]). Consider two PFNs p1 = 〈µp1 , νp1〉 and p2 = 〈µp2 , νp2〉. The operational laws on PFNs are

1. p1 ⊕ p2 =
〈√

µ2
p1
+ µ2

p2
− µ2

p1
µ2

p2
, νp1 νp2

〉
,

2. p1 ⊗ p2 =
〈

µp1 µp2 ,
√

ν2
p1
+ ν2

p2
− ν2

p1
ν2

p2

〉
,

3. λp1 =
〈√

1− (1− µ2
p1
)λ, νλ

p1

〉
,

4. pλ
1 =

〈
µλ

p1
,
√

1− (1− ν2
p1
)λ
〉

, where λ is a scalar and λ > 0.

Definition 3 ([4]). Consider a PFN p = 〈µp, νp〉. The score S(p) and accuracy functions A(p) of p are

S(p) = µ2
p − ν2

p, where S(p) ∈ [−1, 1],

A(p) = µ2
p + ν2

p, where A(p) ∈ [0, 1].

Definition 4 ([4]). Consider two PFNs p1 = 〈µp1 , νp1〉 and p2 = 〈µp2 , νp2〉. Then

1. If S(p1) < S(p2), then p1 < p2;
2. If S(p1) > S(p2), then p1 > p2;
3. If S(p1) = S(p2), then accuracy functions are compared as:

(a) If A(p1) < A(p2), then p1 < p2;
(b) If A(p1) > A(p2), then p1 > p2;
(c) If A(p1) = A(p2), then p1 ∼ p2.

Definition 5 ([34]). For any two real numbers h and k, Yager’s t-norms and Yager’s t-conorms are given as:

T (h, k) = 1−min(1,
(
(1− h)ϑ + (1− k)ϑ

) 1
ϑ ), (1)

T ′(h, k) = min(1, (hϑ + kϑ)
1
ϑ ), ϑ ∈ (0, ∞). (2)

3. Pythagorean Fuzzy Yager Hybrid Weighted Arithmetic Aggregation Operators

In this section, we define Yager weighted arithmetic aggregation operators under PF environment.

Definition 6. Let p1 = 〈µ1, ν1〉 and p2 = 〈µ2, ν2〉 be two PFNs, ϑ > 0 and λ > 0. Then, Yager t-norm and
t-conorm operations of PFNs are defined by

1. p1 ⊕ p2 =
〈√

min(1, (µ2ϑ
1 + µ2ϑ

2 )
1
ϑ ),
√

1−min(1,
(
(1− ν2

1)
ϑ + (1− ν2

2)
ϑ
) 1

ϑ )
〉

,

2. p1 ⊗ p2 =
〈√

1−min(1,
(
(1− µ2

1)
ϑ + (1− µ2

2)
ϑ
) 1

ϑ ),
√

min(1, (ν2ϑ
1 + ν2ϑ

2 )
1
ϑ )
〉

,

3. λp1 =
〈√

min(1, (λµ2ϑ
1 )

1
ϑ ),
√

1−min(1,
(
λ(1− ν2

1)
ϑ
) 1

ϑ )
〉

,

4. pλ
1 =

〈√
1−min(1,

(
λ(1− µ2

1)
ϑ
) 1

ϑ ),
√

min(1, (λν2ϑ
1 )

1
ϑ )
〉

.

Example 1. Let p1 = 〈0.8, 0.5〉, p2 = 〈0.7, 0.6〉 be two PFNs, then by Yager operations on PFNs using
Definition 6 for ϑ = 3, λ = 4 are:



Mathematics 2020, 8, 70 4 of 20

1. p1 ⊕ p2 =
〈√

min(1, (0.86 + 0.76)
1
3 ),

√
1−min(1,

(
(1− 0.52)3 + (1− 0.62)3

) 1
3 )
〉

= 〈0.85, 0.35〉.

2. p1 ⊗ p2 =
〈√

1−min(1,
(
(1− 0.82)3 + (1− 0.72)3

) 1
3 ),
√

min(1, (0.56 + 0.66)
1
3 )
〉

= 〈0.66, 0.63〉.

3. 4p1 =
〈√

min(1, (4(0.8)6)
1
3 ),

√
1−min(1,

(
4(1− 0.52)3

) 1
3 )
〉

= 〈1, 0〉.

4. p4
1 =

〈√
1−min(1,

(
4(1− 0.82)3

) 1
3 ),
√

min(1, (4(0.5)6)
1
3 )
〉

= 〈0.66, 0.63〉.

Theorem 1. Let p = 〈µ, ν〉, p1 = 〈µ1, ν1〉, p2 = 〈µ2, ν2〉 be three PFNs, then

1. p1 ⊕ p2 = p2 ⊕ p1,
2. p1 ⊗ p2 = p1 ⊗ p2,
3. λ(p1 ⊕ p2) = λp1 ⊕ λp2,
4. (λ1 + λ2)p = λ1 p⊕ λ2 p,
5. (p1 ⊗ p2)

λ = pλ
1 ⊗ pλ

2 , λ > 0,
6. pλ1 ⊗ pλ2 = p(λ1+λ2), λ1, λ2 > 0.

Proof. For three PFNs p, p1, p2 and λ, λ1, λ2 > 0, by Definition 6, we can get

1. p1 ⊕ p2 =
〈√

min(1, (µ2ϑ
1 + µ2ϑ

2 )
1
ϑ ),
√

1−min(1,
(
(1− ν2

1)
ϑ + (1− ν2

2)
ϑ
) 1

ϑ )
〉

=
〈√

min(1, (µ2ϑ
2 + µ2ϑ

1 )
1
ϑ ),
√

1−min(1,
(
(1− ν2

2)
ϑ + (1− ν2

1)
ϑ
) 1

ϑ )
〉

= p2 ⊕ p1.

2. p1 ⊗ p2 =
〈√

1−min(1,
(
(1− µ2

1)
ϑ + (1− µ2

2)
ϑ
) 1

ϑ ),
√

min(1, (ν2ϑ
1 + ν2ϑ

2 )
1
ϑ )
〉

=
〈√

1−min(1,
(
(1− µ2

2)
ϑ + (1− µ2

1)
ϑ
) 1

ϑ ),
√

min(1, (ν2ϑ
2 + ν2ϑ

1 )
1
ϑ )
〉

= p2 ⊗ p1.

3. λ(p1 ⊕ p2) = λ
〈√

min(1, (µ2ϑ
1 + µ2ϑ

2 )
1
ϑ ),
√

1−min(1,
(
(1− ν2

1)
ϑ + (1− ν2

2)
ϑ
) 1

ϑ )
〉

=
〈√

min(1, (λµ2ϑ
1 + λµ2ϑ

2 )
1
ϑ ),
√

1−min(1,
(
λ(1− ν2

1)
ϑ + λ(1− ν2

2)
ϑ
) 1

ϑ )
〉

,

λp1 ⊕ λp2 =
〈√

min(1, (λµ2ϑ
1 )

1
ϑ ),
√

1−min(1,
(
λ(1− ν2

1)
ϑ
) 1

ϑ )
〉
⊕〈√

min(1, (λµ2ϑ
2 )

1
ϑ ),
√

1−min(1,
(
λ(1− ν2

2)
ϑ
) 1

ϑ )
〉

=
〈√

min(1, (λµ2ϑ
1 + λµ2ϑ

2 )
1
ϑ ),
√

1−min(1,
(
λ(1− ν2

1)
ϑ + λ(1− ν2

2)
ϑ
) 1

ϑ )
〉

= λ(p1 ⊕ p2).

4. λ1 p⊕ λ2 p =
〈√

min(1, (λ1µ2ϑ)
1
ϑ ),
√

1−min(1,
(
λ1(1− ν2)ϑ

) 1
ϑ )
〉
⊕〈√

min(1, (λ2µ2ϑ)
1
ϑ ),
√

1−min(1,
(
λ2(1− ν2)ϑ

) 1
ϑ )
〉

=
〈√

min(1, ((λ1 + λ2)µ2ϑ)
1
ϑ ),
√

1−min(1,
(
(λ1 + λ2)(1− ν2)ϑ

) 1
ϑ )
〉

= (λ1 + λ2)p.

Similarly, other properties can be verified. Here, we omit their proofs.
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Definition 7. Let pi = 〈µi, νi〉(i = 1, 2, · · · , s) be a collection of PFNs. The PFYWAA operator is a function
Ps → P such that

PFYWAAα(p1, p2, · · · , ps) =
s⊕

i=1

(αipi),

where α = (α1, α2, · · · , αs)T is the weight vector of pi with αi > 0 and
s

∑
i=1

αi = 1.

Theorem 2. Let pi = (µi, νi)(i = 1, 2, · · · , s) be a collection of PFNs, then aggregated value of them by the
PFYWAA operation is a PFN and

PFYWAAα(p1, p2, · · · , ps) =
s⊕

i=1
(αipi)

=

〈√
min(1,

( s

∑
i=1

(αiµ
2ϑ
i )
) 1

ϑ ),

√
1−min(1,

( s

∑
i=1

(
αi(1− ν2

i )
ϑ)
) 1

ϑ )

〉
, (3)

where α = (α1, α2, · · · , αs)T is the weight vector of pi with αi > 0 and
s

∑
i=1

αi = 1.

Proof. The mathematical induction is used to prove the Theorem.
(i) when s = 2,
As

α1 p1 =
〈√

min(1, (α1µ2ϑ
1 )

1
ϑ ),

√
1−min(1,

(
α1(1− ν2

1)
ϑ
) 1

ϑ )
〉

,

α2 p2 =
〈√

min(1, (α2µ2ϑ
2 )

1
ϑ ),

√
1−min(1,

(
α2(1− ν2

2)
ϑ
) 1

ϑ )
〉

.

Therefore,

α1 p1 ⊕ α2 p2 =
〈√

min(1, (α1µ2ϑ
1 )

1
ϑ ),

√
1−min(1,

(
α1(1− ν2

1)
ϑ
) 1

ϑ )
〉
⊕〈√

min(1, (α2µ2ϑ
2 )

1
ϑ ),

√
1−min(1,

(
α2(1− ν2

2)
ϑ
) 1

ϑ )
〉

=
〈√

min(1, (α1µ2ϑ
1 + α2µ2ϑ

2 )
1
ϑ ),

√
1−min(1,

(
α1(1− ν2

1)
ϑ + α2(1− ν2

2)
) 1

ϑ )
〉

=

〈√√√√min(1,
( 2

∑
i=1

(αiµ
2ϑ
i )
) 1

ϑ ),

√√√√1−min(1,
( 2

∑
i=1

(αi(1− ν2
i )

ϑ)
) 1

ϑ )

〉
.

Hence, Equation (3) is true for s = 2.
(ii) Let Equation (3) holds for s = k,

PFYWAAα(p1, p2, · · · , pk) =
k⊕

i=1

(αipi)

=

〈√√√√min(1,
( k

∑
i=1

(αiµ
2ϑ
i )
) 1

ϑ ),

√√√√1−min(1,
( k

∑
i=1

(αi(1− ν2
i )

ϑ)
) 1

ϑ )

〉
.

Now for s = k + 1.
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PFYWAAα(p1, p2, · · · , pk+1) =

〈√
min(1,

( k
∑
i=1

(αiµ
2ϑ
i )
) 1

ϑ ),

√
1−min(1,

k
∑
i=1

(
αi(1− ν2

i )
ϑ
) 1

ϑ )

〉
⊕〈√

min(1, (αk+1µ2ϑ
k+1)

1
ϑ ),

√
1−min(1,

(
αk+1(1− ν2

k+1)
ϑ
) 1

ϑ )

〉

=

〈√
min(1,

( k+1
∑
i=1

(αiµ
2ϑ
i )
) 1

ϑ ),

√
1−min(1,

( k+1
∑
i=1

(αi(1− ν2
i )

ϑ)
) 1

ϑ )

〉
.

Hence, Equation (3) is true for s = k + 1. Thus, Equation (3) holds for all s.

Example 2. Four persons of a home p1, p2, p3, p4 want to evaluate the cooking performance of a chef C in
making Chinese food. The approximated values of four persons for the chef C are given in Pythagorean fuzzy
information such as p1 = 〈0.6, 0.5〉, p2 = 〈0.5, 0.5〉, p3 = 〈0.7, 0.6〉 and p4 = 〈1, 0〉 with weight vector
α = (0.2, 0.3, 0.2, 0.3)T , where weight vector represents the importance of Chinese food for four persons who are
evaluating the performance of a chef and ϑ = 2. By applying Theorem 2, we can aggregate the four PFNs and
write a clumped value for the cooking performance of a chef as shown below

PFYWAAα(p1, p2, p3, p4) =
4⊕

i=1
(αipi)

=

〈√
min

(
1,
( 4

∑
i=1

(αiµ
2ϑ
i )
) 1

ϑ
)
,

√
1−min

(
1,
( 4

∑
i=1

(αi(1− ν2
i )

ϑ)
) 1

ϑ
)〉

=

〈√
min(1, (0.2(0.6)4 + 0.3(0.5)4 + 0.2(0.7)4 + 0.3(1)4)

1
2 ),√

1−min(1, (0.2(1− 0.52)2 + (0.3(1− 0.52)2 + 0.2(1− 0.52)2 + 0.3(1− 02)2)
1
2

〉
= 〈0.80, 0.44〉.

Theorem 3. (Idempotency). If all PFNs are identical, i.e., pi = p then

PFYWAA(p1, p2, · · · , ps) = p.

Proof. As pi = 〈µi, νi〉 = p(i = 1, 2, · · · , s). Then by Equation (3),

PFYWAAα(p1, p2, · · · , ps) =
s⊕

i=1

(αipi)

=

〈√
min

(
1,
( s

∑
i=1

(αiµ
2ϑ
i )
) 1

ϑ
)
,

√
1−min

(
1,
( s

∑
i=1

(αi(1− ν2
i )

ϑ)
) 1

ϑ
)〉

=

〈√
min(1, (µ2ϑ)

1
ϑ ),

√
1−min(1,

(
(1− ν2)ϑ

) 1
ϑ )

〉

=

〈√
min(1, µ2),

√
1−min(1, (1− ν2)),

〉
=

〈
µ, ν
〉

= p.

Theorem 4. (Boundedness). Let pi = (µi, νi) be a collection of PFNs. Let p− = min(p1, p2, · · · , ps) and
p+ = max(p1, p2, · · · , ps). Then

p− ≤ PFYWAA(p1, p2, · · · , ps) ≤ p+.
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Proof. Suppose that p− = min(p1, p2, · · · , ps) = (µ−, ν−) and p+ = max(p1, p2, · · · , ps) = (µ+, ν+),
where µ− = min(µi), ν− = max(νi), µ+ = max(µi), ν+ = min(νi).

Thus, inequalities for membership value are√
min

(
1,
( s

∑
i=1

(
αiµ−

2ϑ)) 1
ϑ
)
≤

√
min

(
1,
( s

∑
i=1

(
αiµ

2ϑ
i

)) 1
ϑ
)

≤
√

min
(
1,
( s

∑
i=1

(
αiµ+2ϑ)) 1

ϑ
)
.

Similarly, for non-membership value√
1−min

(
1,
( s

∑
i=1

(
αi(1− ν+

2)ϑ
)) 1

ϑ
)
≤

√
1−min

(
1,
( s

∑
i=1

(
αi(1− ν2

i )
ϑ
)) 1

ϑ
)

≤
√

1−min
(
1,
( s

∑
i=1

(
αi(1− ν−2)ϑ

)) 1
ϑ
)
.

Therefore, p− ≤ PFYWAA(p1, p2, · · · , ps) ≤ p+.

Theorem 5 (Monotonicity). Let p′i = {p′1, p′2, · · · , p′s} and pi = {p1, p2, · · · , ps} be two collections of
PFNs. If µ′i ≤ µi and ν′i ≥ νi, ∀ i. Then

PFYWAA(p′1, p′2, · · · , p′s) ≤ PFYWAA(p1, p2, · · · , ps).

Proof. Let PFYWAA(p′1, p′2, · · · , p′s) = (G ′,K′) and PFYWAA(p1, p2, · · · , ps) = (G,K). First, we will
show that G ′ ≤ G. As µ′i ≤ µi, µ′2i ≤ µ2

i . Moreover,

( s

∑
i=1

(αiµ
′2ϑ
i )
) 1

ϑ ≤
( s

∑
i=1

(αiµ
2ϑ
i )
) 1

ϑ

min
(
1,
( s

∑
i=1

(αiµ
′2ϑ
i )
) 1

ϑ
)
≤ min

(
1,
( s

∑
i=1

(αiµ
2ϑ
i )
) 1

ϑ
)

√
min

(
1,
( s

∑
i=1

(αiµ
′2ϑ
i )
) 1

ϑ
)
≤

√
min

(
1,
( s

∑
i=1

(αiµ
2ϑ
i )
) 1

ϑ
)
.

Hence, G ′ ≤ G. Similarly, we can prove that K′ ≥ K. Thus, we conclude that (G ′,K′) ≤ (G,K),
i.e., PFYWAA(p′1, p′2, · · · , p′s) ≤ PFYWAA(p1, p2, · · · , ps).

Theorem 6 (Reducibility). Let pi = (µi, νi)(i = 1, 2, · · · , s) be a collection of PFNs with the corresponding
weight vector α = (α1, α2, · · · , αs)T = ( 1

s , 1
s , · · · , 1

s )
T . Then, PFYWAA operator is

PFYWAAα(p1, p2, · · · , ps) =

〈√
min

(
1,

1
s

( s

∑
i=1

(µ2ϑ
i )
) 1

ϑ
)
,

√
1−min

(
1,

1
s

( s

∑
i=1

(
(1− ν2

i )
ϑ
)) 1

ϑ
)〉

.

Theorem 7 (Commutativity). Consider the collection pi = (µi, νi)(i = 1, 2, · · · , s) of PFNs. If p′i is the
permutation of pi, then

PFYWAAα(p1, p2, · · · , ps) = PFYWAAα(p′1, p′2, · · · , p′s).

We now define the Pythagorean fuzzy Yager ordered weighted arithmetic aggregation operators.
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Definition 8. Let pi = 〈µi, νi〉(i = 1, 2, · · · , s) be a collection of PFNs with the corresponding weight vector

α = (α1, α2, · · · , αs)T with αi > 0 and
s

∑
i=1

αi = 1. The PFYOWAA operator is a function Ps → P such that

PFYOWAAα(p1, p2, · · · , ps) =
s⊕

i=1

(αip$(i)),

where ($(1), $(2), · · · , $(s)) is the permutation of (i = 1, 2, · · · , s) such that p$(i−1) ≥ p$(i),∀ i = 1, 2, · · · , s.

Theorem 8. Let pi = (µi, νi)(i = 1, 2, · · · , s) be a collection of PFNs with the corresponding weight vector

α = (α1, α2, · · · , αs)T with αi > 0 and
s

∑
i=1

αi = 1, then clumped value of them by PFYOWAA operation is a

PFN and

PFYOWAAα(p1, p2, · · · , ps) =
s⊕

i=1
(αip$(i))

=

〈√
min

(
1,
( s

∑
i=1

(αiµ
2ϑ
$(i)

)
) 1

ϑ
)
,

√
1−min

(
1,
( s

∑
i=1

(
αi(1− ν2

$(i)
)ϑ
)) 1

ϑ
)〉

,
(4)

where ($(1), $(2), · · · , $(s)) is the permutation of (i = 1, 2, · · · , s) such that p$(i−1) ≥ p$(i),∀ i = 1, 2, · · · , s.

Example 3. Four members of an interview committee assign different Pythagorean fuzzy values p1 = 〈0.8, 0.3〉,
p2 = 〈0.5, 0.6〉, p3 = 〈0.7, 0.5〉 and p4 = 〈0.8, 0.5〉 with weight vector α = (0.1, 0.3, 0.3, 0.3)T to check the
ability of a candidate for the post of a job in the field of pure math. Here, weight vector represents the importance of
field of pure math for the committee’s members. To find the clumped ability of the candidate, we used PFYOWAA
operator. As

S(p1) = 0.82 − 0.32 = 0.55,

S(p2) = 0.52 − 0.62 = −0.11,

S(p3) = 0.72 − 0.52 = 0.24,

S(p4) = 0.82 − 0.52 = 0.39.

Since S(p1) > S(p3) > S(p4) > S(p2), therefore

p$(1) = p1 = 〈0.8, 0.3〉,

p$(2) = p4 = 〈0.8, 0.5〉,

p$(3) = p3 = 〈0.7, 0.5〉,

p$(4) = p2 = 〈0.5, 0.6〉,

Thus, by applying the PFYOWAA operator, we get

PFYOWAAα(p1, p2, p3, p4) =
4⊕

i=1
(αip$(i))

=

〈√
min

(
1,
( 4

∑
i=1

(αiµ
2ϑ
$(i)

)
) 1

ϑ
)
,

√
1−min

(
1,
( 4

∑
i=1

(
αi(1− ν2

$(i)
)ϑ
)) 1

ϑ
)〉

=

〈√
min(1, (0.1(0.8)4 + 0.3(0.8)4 + 0.3(0.7)4 + 0.3(0.5)4)

1
2 ),√

1−min(1, (0.1(1− 0.32)2 + 0.3(1− 0.52)2 + 0.3(1− 0.52)2 + 0.3(1− 0.62)2)
1
2

〉
= 〈0.71, 0.51〉.

We state the following properties without their proofs.
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Theorem 9 (Idempotency). If all PFNs are identical, i.e., pi = p then

PFYOWAA(p1, p2, · · · , ps) = p.

Theorem 10 (Boundedness). Let pi = (µi, νi) be a collection of PFNs. Let p− = min(p1, p2, · · · , ps) and
p+ = max(p1, p2, · · · , ps). Then

p− ≤ PFYOWAA(p1, p2, · · · , ps) ≤ p+.

Theorem 11 (Monotonicity). Let p′i = {p′1, p′2, · · · , p′s} and pi = {p1, p2, · · · , ps} be two collections of
PFNs. If µ′i ≤ µi and ν′i ≥ νi, ∀ i. Then

PFYOWAA(p′1, p′2, · · · , p′s) ≤ PFYOWAA(p1, p2, · · · , ps).

Theorem 12 (Reducibility). Let pi = (µi, νi)(i = 1, 2, · · · , s) be a collection of PFNs with the corresponding
weight vector α = (α1, α2, · · · , αs)T = ( 1

s , 1
s , · · · , 1

s )
T . Then, PFYOWAA operator is

PFYOWAAα(p1, p2, · · · , ps) =

〈√
min

(
1, 1

s

( s

∑
i=1

(µ2ϑ
$(i)

)
) 1

ϑ
)
,

√
1−min

(
1, 1

s

( s

∑
i=1

(
(1− ν2

$(i)
)ϑ
)) 1

ϑ
)〉

.

Theorem 13 (Commutativity). Consider the collection pi = (µi, νi)(i = 1, 2, · · · , s) of PFNs. If p′i is the
permutation of pi, then

PFYOWAAα(p1, p2, · · · , ps) = PFYOWAAα(p′1, p′2, · · · , p′s).

We now define the Pythagorean fuzzy Yager hybrid weighted averaging operators.

Definition 9. A PFYHWAA is a function Ps → P, with correlated weight vector α = (α1, α2, · · · , αs)T

with αi > 0 and
s

∑
i=1

αi = 1 such that

PFYHWAAα(p1, p2, · · · , ps) =
s⊕

i=1
(αi ṗ$(i))

=

〈√
min

(
1,
( s

∑
i=1

(αiµ̇
2ϑ
$(i)

)
) 1

ϑ
)
,

√
1−min

(
1,
( s

∑
i=1

(
αi(1− ν̇2

$(i)
)ϑ
)) 1

ϑ
)〉

,
(5)

where ṗ$(i) is the ith biggest weighted Pythagorean fuzzy values ṗi( ṗi = sαipi, i = 1, 2, · · · , s) and s is the
balancing coefficient.

Remark 1. For α = ( 1
s , 1

s , · · · , 1
s )

T , PFYWAA and PFYOWAA operators are considered to be a particular
Example of PFYHWAA operator. Thus, PFYHWAA operator is a generalization of both operators.

4. Pythagorean Fuzzy Yager Hybrid Weighted Geometric Aggregation Operators

In this section, we define Yager weighted geometric aggregation operators under PF environment.

Definition 10. Let pi = 〈µi, νi〉(i = 1, 2, · · · , s) be several PFNs. The PFYWGA operator is a function
Ps → P such that

PFYWGAα(p1, p2, · · · , ps) =
s⊗

i=1

piαi ,

where α = (α1, α2, · · · , αs)T is the weight vector of pi with αi > 0 and
s

∑
i=1

αi = 1.
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Theorem 14. Let pi = 〈µi, νi〉(i = 1, 2, · · · , s) be several PFNs, then aggregated value of them by PFYWGA
operation is a PFN and

PFYWGAα(p1, p2, · · · , ps) =
s⊗

i=1
piαi

=

〈√
1−min

(
1,
( s

∑
i=1

(
αi(1− µ2

i )
ϑ
)) 1

ϑ
)
,

√
min

(
1,
( s

∑
i=1

(αiν
2ϑ
i )
) 1

ϑ
)〉

,
(6)

where α = (α1, α2, · · · , αs)T is the weight vector of pi with αi > 0 and
s

∑
i=1

αi = 1.

Proof. By using similar arguments as used in Theorem 2, we can prove this result.

Example 4. Consider Example 2 and by using Theorem 14, the clumped value for the cooking performance of a
chef is

PFYWGAα(p1, p2, p3, p4) =
4⊗

i=1
(pi)αi

=

〈√
1−min(1,

4
∑
i=1

(
αi(1− µ2

i )
ϑ
) 1

ϑ ),

√
min(1,

4
∑
i=1

(αiν
2ϑ
i )

1
ϑ )

〉

=

〈√
1−min(1, (0.2(1− 0.62)2 + 0.3(1− 0.52)2 + 0.2(1− 0.72)2 + 0.3(1− 12)2)

1
2 ,√

min(1, (0.2(0.5)4 + 0.3(0.5)4 + 0.2(0.6)4 + 0.3(0)4)
1
2 )

〉
= 〈0.67, 0.49〉.

Theorem 15 (Idempotency). If all PFNs are identical, i.e., pi = p then

PFYWGA(p1, p2, · · · , ps) = p.

Proof. By using similar arguments as used in Theorem 3, we can prove this result.

Theorem 16 (Boundedness). Let pi = (µi, νi) be several PFNs. Let p− = min(p1, p2, · · · , ps) and
p+ = max(p1, p2, · · · , ps). Then

p− ≤ PFYWGA(p1, p2, · · · , ps) ≤ p+.

Proof. By using similar arguments as used in Theorem 4, we can prove this result.

Theorem 17 (Monotonicity). Consider two collections p′i = {p′1, p′2, · · · , p′s} and pi = {p1, p2, · · · , ps} of
PFNs. If µ′i ≤ µi and ν′i ≥ νi, ∀ i. Then

PFYWGA(p′1, p′2, · · · , p′s) ≤ PFYWGA(p1, p2, · · · , ps).

Proof. By using similar arguments as used in Theorem 5, we can prove this result.

Theorem 18 (Reducibility). Let pi = (µi, νi)(i = 1, 2, · · · , s) be a collection of PFNs with the corresponding
weight vector α = (α1, α2, · · · , αs)T = ( 1

s , 1
s , · · · , 1

s )
T . Then, PFYWGA operator is

PFYWGAα(p1, p2, · · · , ps) =

〈√
1−min

(
1, 1

s

( s

∑
i=1

(
(1− µ2

i )
ϑ
)) 1

ϑ ),

√
min

(
1, 1

s

( s

∑
i=1

(ν2ϑ
i )
) 1

ϑ
)〉

.
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Theorem 19 (Commutativity). Consider the collection pi = (µi, νi)(i = 1, 2, · · · , s) of PFNs. If p′i is the
permutation of pi, then

PFYWGAα(p1, p2, · · · , ps) = PFYWGAα(p′1, p′2, · · · , p′s).

We now define Pythagorean fuzzy Yager ordered weighted geometric aggregation operators.

Definition 11. Let pi = 〈µi, νi〉(i = 1, 2, · · · , s) be a collection of PFNs with the corresponding weight vector

α = (α1, α2, · · · , αs)T with αi > 0 and
s

∑
i=1

αi = 1. The PFYOWGA operator is a function Ps → P such that

PFYOWGAα(p1, p2, · · · , ps) =
s⊗

i=1

(p$(i))
αi ,

where ($(1), $(2), · · · , $(s)) is the permutation of (i = 1, 2, · · · , s) such that p$(i−1) ≥ p$(i),∀ i = 1, 2, · · · , s.

Theorem 20. Let pi = 〈µi, νi〉(i = 1, 2, · · · , s) be a collection of PFNs with the corresponding weight vector

α = (α1, α2, · · · , αs)T with αi > 0 and
s

∑
i=1

αi = 1 then clumped value of them by PFYOWGA operation is a

PFN and

PFYOWGAα(p1, p2, · · · , ps) =
s⊗

i=1
(p$(i))

αi

=

〈√
1−min

(
1,
( s

∑
i=1

(
αi(1− µ2

$(i)
)ϑ
)) 1

ϑ
)
,

√
min

(
1,
( s

∑
i=1

(αiν
2ϑ
$(i)

)
) 1

ϑ
)〉

,
(7)

where ($(1), $(2), · · · , $(s)) is the permutation of (i = 1, 2, · · · , s) such that p$(i−1) ≥ p$(i),∀ i = 1, 2, · · · , s.

Proof. By using similar arguments as used in Theorem 2, we can prove this result.

Example 5. Consider Example 3 and by using Theorem 20, the clumped value for the ability of a candidate is

PFYOWGAα(p1, p2, p3, p4) =
4⊗

i=1
(p$(i))

αi

=

〈√
1−min

(
1,
( 4

∑
i=1

(
αi(1− µ2

$(i)
)ϑ
)) 1

ϑ ),

√
min

(
1,
( 4

∑
i=1

(αiν
2ϑ
$(i)

)
) 1

ϑ
)〉

=

〈√
1−min(1, (0.1(1− 0.82)2 + 0.3(1− 0.82)2 + 0.3(1− 0.72)2 + 0.3(1− 0.52)2)

1
2 ),√

min(1, (0.1(0.3)4 + 0.3(0.5)4 + 0.3(0.5)4 + 0.3(0.6)4)
1
2 )

〉
= 〈0.67, 0.53〉.

We state the following properties without their proofs.

Theorem 21 (Idempotency). If all PFNs are identical, i.e., pi = p then

PFYOWGA(p1, p2, · · · , ps) = p.

Theorem 22 (Boundedness). Let pi = (µi, νi) be a collection of PFNs. Let p− = min(p1, p2, · · · , ps) and
p+ = max(p1, p2, · · · , ps). Then

p− ≤ PFYOWGA(p1, p2, · · · , ps) ≤ p+.
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Theorem 23 (Monotonicity). Let p′i = {p′1, p′2, · · · , p′s} and pi = {p1, p2, · · · , ps} be two collections of
PFNs. If µ′i ≤ µi and ν′i ≥ νi, ∀ i. Then

PFYOWGA(p′1, p′2, · · · , p′s) ≤ PFYOWGA(p1, p2, · · · , ps).

Theorem 24 (Reducibility). Let pi = (µi, νi)(i = 1, 2, · · · , s) be a collection of PFNs with the corresponding
weight vector α = (α1, α2, · · · , αs)T = ( 1

s , 1
s , · · · , 1

s )
T . Then, PFYOWGA operator is

PFYOWGAα(p1, p2, · · · , ps) =

〈√
min(1, 1

s

( s

∑
i=1

(µ2ϑ
$(i)

)
) 1

ϑ ),

√
1−min

(
1, 1

s

( s

∑
i=1

(
(1− ν2

$(i)
)ϑ
)) 1

ϑ
)〉

.

Theorem 25 (Commutativity). Consider the collection pi = (µi, νi)(i = 1, 2, · · · , s) of PFNs. If p′i is the
permutation of pi, then

PFYOWGAα(p1, p2, · · · , ps) = PFYOWGAα(p′1, p′2, · · · , p′s).

Now we define Pythagorean fuzzy Yager hybrid weighted geometric aggregation operators.

Definition 12. A Pythagorean fuzzy Yager hybrid weighted geometric aggregation operator is a mapping

PFYHWGA : Ps → P, with correlated weight vector α = (α1, α2, · · · , αs)T with αi > 0 and
s

∑
i=1

αi = 1

such that

PFYHWGAα(p1, p2, · · · , ps) =
s⊗

i=1
( ṗ$(i))

αi

=

〈√
1−min

(
1,
( s

∑
i=1

(
αi(1− µ̇2

$(i)
)ϑ
)) 1

ϑ
)
,

√
min

(
1,
( s

∑
i=1

(αiν̇
2ϑ
$(i)

)
) 1

ϑ
)〉

,
(8)

where ṗ$(i) is the ith biggest weighted Pythagorean fuzzy values ṗi( ṗi = psαi
i , i = 1, 2, · · · , s) and s is the

balancing coefficient.

5. Applications in Multi-Attribute Decision-Making Problems

In this section, we discuss two multi-attribute decision-making problems under PF environment
using Yager aggregation operators.

5.1. Selection of Top Rank Country in Health Care System

Basically, health care is the recovery and maintenance of human body through prevention,
diagnosis and treatment of diseases and other physical or mental deteriorations. For best health care,
health system should be well-ordered and maintained. There are a lot of things which are counted in
health care system such as psychology, nursing, medicine, physical therapy and many other things.
Every human body needs a good health to spend a happy life. Due to lack of good health care system,
people face different difficulties. A good health system is influenced by economic and social factors
and a best health care system demands solid funding mechanism, a perfectly competent workforce,
well-maintained facilities, etc. The countries which are financially stable with a good accessible health
care system. To determine level of health care quality in every country, there are different factors such
as care process (preventive care measures, coordinated care, and engagement and patient preferences),
access (unavoidability and timeliness), administrative performance, equity, and health care outcomes
(population health and disease-specific health outcomes).

The purpose of this application is to rank the top country among different countries in health
care system according to “World Health Organization” (WHO) by applying PFYWAA and PFYWGA
operators. Let C = {C1, C2, C3} be a set of alternatives (countries), where
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C1 = {represents United Kingdom},
C2 = {represents Netherlands},
C3 = {represents Australia}.

Let Y = {Y1,Y2,Y3} be a set of three attributes, where

Y1 = {represents Care process},
Y2 = {represents Access},
Y3 = {represents Equity},

and α = (0.3, 0.4, 0.3)T be the weight vector of the attributes given by the decision-maker such that
3
∑
i=1

αi = 1. The Pythagorean fuzzy values (µts, νts) of the alternatives according to different attributes

are given in Table 1, where µts is the positive membership degree for which alternative satisfies the
given attribute, given by the decision-maker and νts is the membership degree for which alternative
does not satisfy the given attribute, where µts, νts ∈ [0, 1] and 0 ≤ µ2

ts + ν2
ts ≤ 1.

Table 1. Pythagorean fuzzy numbers.

Countries Care Process Access Equity

UK (0.8, 0.3) (0.7, 0.3) (0.7, 0.3)
Netherlands (0.7, 0.5) (0.9, 0.1) (0.7, 0.4)

Australia (0.8, 0.5) (0.7, 0.5) (0.5, 0.6)

Applying the PFYWAA operator given in Equation 3, to find the aggregate value ξi of each
country corresponding to given attributes and take ϑ = 2.

ξ1 = (0.96, 0),

ξ2 = (1, 0),

ξ3 = (0.89, 0).

Now we find the score values of ξi which are given as,

S(ξ1) = (0.96)2 − (0)2 = 0.92,

S(ξ2) = (1)2 − (0)2 = 1,

S(ξ3) = (0.89)2 − (0)2 = 0.79.

As S(ξ2) > S(ξ1) > S(ξ3). Hence, C2 > C1 > C3. Thus, Netherlands is on the top rank country
in health care system among other two countries.

Now, applying the PFYWGA operator given in Equation 6 to find the aggregate value ξi of each
country corresponding to given attributes

ξ1 = (0.78, 0.82),

ξ2 = (0.57, 0.49),

ξ3 = (0.26, 0.71).

Now we find the score values of ξi which are given as,

S(ξ1) = (0.78)2 − (0.82)2 = −0.06,

S(ξ2) = (0.57)2 − (0.49)2 = 0.08,
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S(ξ3) = (0.26)2 − (0.71)2 = −0.45.

As S(ξ2) > S(ξ1) > S(ξ3). Hence, C2 > C1 > C3. Thus, Netherlands is the top rank country in
health care system among other two countries.

We conclude from Table 2 that by applying both operators, Netherlands is on the top of rank.
Therefore, we can use any operator between these two operators.

Table 2. Comparison analysis of PFYWAA and PFYWGA operators.

Operators S(ξ1) S(ξ2) S(ξ3) Ranking Order

PFYWAA 0.92 1 0.79 C2 > C1 > C3
PFYWGA −0.06 0.08 −0.45 C2 > C1 > C3

The whole method which we have adopted in this application is given in Figure 1.

Selection of different alternatives(countries)
for ranking in health care system

Choose particular attributes for alternatives

Assign weight vector to attributes by decision maker

Compute the aggregation values of alternatives by
PFYWAA and PFYWGA operators

Compute score values

Select the alternative having high score valueOutput

Input

Output

Figure 1. Flow chart to select high rank country in health care system.

5.2. Selection of Top Rank University in Education Sector

Ranking is the mean of selecting the high position of anything or person in any field. Basically,
ranking is a relationship between a set of different sources, in which it can be judged which is superior
than others. All other fields, raking in education sector is too much important. Rankings are the
significantly help maintain and build institutional position and reputation. The high rank of institute
promotes the chances of falling into a prospective student shortlisting process. There are a lot of
ways to help students in identifying the best colleges and universities for them. By visiting different
institutes in particular settings will help to evaluate what feels right. Rankings can help the students to
sort out which institutes are considered the most selective and important. National and international
partnerships and collaborations are also affected by the university rankings. For the university with
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high rank, it will increase the chances of willingness of others to partner with them or support their
membership in helping the academic or professional issues. There is an increasing impact of university
rankings on the higher education associations and their environment, influencing, the decisions
of the future students in their elect of schools, the government policy of financing higher education
institutions along with the way of managing the universities. It is exacting for the ranking organizations
to give the objective picture of the position of different universities in relation to one another.

The objective of this application is to select the top rank university among different universities
by applying PFYWAA and PFYWGA operators. Let U = {U1,U2,U3} be a set of alternatives
(universities), where

U1 = {represents University of Punjab Lahore},
U2 = {represents Quaid-e-Azam University Islamabad},
U3 = {represents University of Education Lahore}.

Let Y = {Y1,Y2,Y3} be a set of three attributes for the selection of universities, where

Y1 = {represents teaching quality},
Y2 = {represents quality assurance},
Y3 = {represents research in natural sciences fields },

and α = (0.3, 0.2, 0.5)T be the weight vector of the attributes given by the decision-maker such that
3
∑
i=1

αi = 1. The PF values (µts, νts) of the alternatives according to different attributes are given in

Table 3, where µts is the positive membership degree for which alternative satisfies the given attribute
and νts is the membership degree for which alternative does not satisfy the given attribute, where
µts, νts ∈ [0, 1] and 0 ≤ µ2

ts + ν2
ts ≤ 1.

Table 3. Pythagorean fuzzy numbers.

Universities Teaching Quality Quality Assurance Research in Natural Sciences Fields

University of Punjab Lahore (0.8, 0.3) (0.7, 0.5) (1, 0)
Quaid-e-Azam University Islamabad (0.7, 0.3) (0.8, 0.3) (0.7, 0.4)

University of Education Lahore (0.5, 0.6) (0.5, 0.5) (0.6, 0.5)

Applying the PFYWAA operator given in Equation 3, to find the aggregate value ξi of each
university corresponding to given attributes and take ϑ = 2.

ξ1 = (1, 0),

ξ2 = (0.95, 0),

ξ3 = (0.71, 0).

The score values of ξi are,
S(ξ1) = (1)2 − (0)2 = 1,

S(ξ2) = (0.95)2 − (0)2 = 0.90,

S(ξ3) = (0.71)2 − (0)2 = 0.50.

As S(ξ1) > S(ξ2) > S(ξ3). Hence, U1 > U2 > U3. Thus, University of Punjab Lahore is the top
rank university in education sector among other two universities.
Now, applying the PFYWGA operator given in Equation 6 to find the aggregate value ξi of each
country corresponding to given attributes

ξ1 = (0.75, 0.40),
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ξ2 = (0.45, 0.45),

ξ3 = (0, 0.70).

Now we find the score values of ξi which are given as,

S(ξ1) = (0.75)2 − (0.40)2 = 0.40,

S(ξ2) = (0.45)2 − (0.45)2 = 0,

S(ξ3) = (0)2 − (0.70)2 = −0.49.

As S(ξ1) > S(ξ2) > S(ξ3). Hence, U1 > U2 > U3. Thus, University of Punjab Lahore is the top
rank university in education sector among other two universities.

We conclude from Table 4 that by applying both operators, University of Punjab Lahore is on the
top of rank. Therefore, we can use any operator between these two operators.

Table 4. Comparison analysis of PFYWAA and PFYWGA operators.

Operators S(ξ1) S(ξ2) S(ξ3) Ranking Order

PFYWAA 1 0.90 0.50 U1 > U2 > U3
PFYWGA 0.40 0 −0.49 U1 > U2 > U3

The whole method which we have adopted in this application is given in Figure 2.

Selection of different alternatives(universities)
for ranking in education sector

Choose particular attributes for alternatives

Assign weight vector to attributes by decision maker

Compute the aggregation values of alternatives by
PFYWAA and PFYWGA operators

Compute score values

Select the alternative having high score valueOutput

Input

Output

Figure 2. Flow chart to select the high rank university in education sector
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6. Comparison Analysis

This section provides the comparison analysis of the proposed Yager aggregation operators under
PF numbers with other existing operators. We compared the results of Pythagorean fuzzy Yager
aggregation operators with Pythagorean fuzzy Dombi aggregation operators [29]. The results obtained
from both operators for Section 5.1 are summarized in Table 5 and Figure 3. Similarly, the results
obtained from both operators for Section 5.2 are summarized in Table 6 and Figure 4.

It is clear that results of Pythagorean fuzzy Dombi weighted geometric aggregation (PFDWGA)
operator are similar to our proposed PFYWAA and PFYWGA operators but results of PFDWAA
operator are different from results of our methods. It is clear that PFDWAA and PFDWGA operators
are representing different results but results are same from both PFYWAA and PFYWGA operators.
Thus, our proposed methods are more general and more flexible than other existing methods to deal
with Pythagorean fuzzy MADM problems.

Table 5. Comparison analysis for Section 5.1 with Pythagorean fuzzy Dombi weighted averaging aggregation
(PFDWAA) and Pythagorean fuzzy Dombi weighted geometric aggregation (PFDWGA) operators.

Methods S(ξ1) S(ξ2) S(ξ3) Ranking Order

PFYWAA 0.92 1 0.79 C2 > C1 > C3
PFYWGA −0.06 0.08 −0.45 C2 > C1 > C3
PFDWAA 0.57 0.25 0.77 C3 > C1 > C2
PFDWGA −0.57 −0.53 −0.77 C2 > C1 > C3

−1.00

−0.80

−0.60

−0.40

−0.20

0.00

0.80

0.60

0.40

0.20

1.00

Four methods’ comparison

PFYWAA

PFYWGA

PFDWAA

PFDWGA

C1 C2 C3

Figure 3. Four methods’ comparison.

Table 6. Comparison analysis for Section 5.2 with Pythagorean fuzzy Dombi weighted averaging aggregation
(PFDWAA) and Pythagorean fuzzy Dombi weighted geometric aggregation (PFDWGA) operators.

Methods S(ξ1) S(ξ2) S(ξ3) Ranking Order

PFYWAA 1 0.90 0.50 U1 > U2 > U3
PFYWGA 0.40 0 −0.49 U1 > U2 > U3
PFDWAA 0.40 0.58 0.84 U3 > U2 > U1
PFDWGA −0.39 −0.58 −0.84 U1 > U2 > U3
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Figure 4. Four methods’ comparison.

7. Conclusions and Future Directions

Aggregation operators are useful to associate a unique representative value for each alternative,
when there are various attributes that apply to any given case. PFSs, a remarkable extension of IFSs,
permit modeling of situations with higher more generality than IFSs, because they still apply in cases
where the membership µ and non-membership ν values sum up to more than 1 but they satisfy
µ2 + ν2 ≤ 1. In this paper, we have benefited from the performance of the Yager t-norms and conorms
to propose six aggregation operators that associate PFSs with finite families of PFSs. They are the
PFYWAA, PFYOWAA, PFYHWAA, PFYWGA, PFYOWGA and PFYHWGA operators. We have also
discussed two MADM problems, i.e., selection of a top-ranked country in health care systems and
top-ranked university according to different attributes. In these problems we have applied both the
PFYWAA and PFYWGA operators to summarize the information corresponding to each alternative.
Then we have derived the appropriate results by the recourse to score functions. These operators
allowed us to assess the value of each alternative in a comparable fashion. We have observed that the
results are the same whether we use the PFYWAA or the PFYWGA operator. We are extending our
study to (i) m-polar fuzzy Yager hybrid weighted operators; (ii) Pythagorean fuzzy soft Yager hybrid
weighted operators, (iii) m-polar fuzzy soft Yager hybrid weighted operators, (iv) Rough m-polar fuzzy
soft Yager hybrid weighted operators, (v) Rough neutrosophic Yager hybrid operators, and (vi) q-rung
picture fuzzy Yager hybrid operators.
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