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Abstract: In this paper, first, we introduce a path for a convex combination of a pseudocontractive
type of mappings with a perturbed mapping and prove strong convergence of the proposed path in a
real reflexive Banach space having a weakly continuous duality mapping. Second, we propose two
modified implicit iterative methods with a perturbed mapping for a continuous pseudocontractive
mapping in the same Banach space. Strong convergence theorems for the proposed iterative methods
are established. The results in this paper substantially develop and complement the previous
well-known results in this area.
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1. Introduction

Let E be a real Banach space, and let E∗ be the dual space of E. Let C be a nonempty closed
convex subset of E. Recall that a mapping f : C → C is called contractive if there exists k ∈ (0, 1)
such that ‖ f x− f y‖ ≤ k‖x− y‖, ∀x, y ∈ C and that a mapping S : C → C is called nonexpansive if
‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Let J denote the normalized duality mapping from E into 2X∗ defined by

J(x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖‖ f ‖, ‖ f ‖ = ‖x‖}, x ∈ E,

where 〈·, ·〉 denotes the generalized duality pair between E and E∗. The mapping T : C → C is called
pseudocontractive (respectively, strong pseudocontractive), if there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2, ∀x, y ∈ C,

(respectively, 〈Tx− Ty, j(x− y)〉 ≤ β‖x− y‖2 for some β ∈ (0, 1)).
The class of pseudocontractive mappings is one of the most important classes of mappings in

nonlinear analysis, and it has been attracting mathematician’s interest. Apart from them being a
generalization of nonexpansive mappings, interest in pseudocontractive mappings stems mainly from
their firm connection with the class of accretive mappings, where a mapping A with domain D(A)

and range R(A) in E is called accretive if the inequality

‖x− y‖ ≤ ‖x− y + s(Ax− Ay)‖,

holds for every x, y ∈ D(A) and for all s > 0.
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Within the past 50 years or so, many authors have been devoting their study to the existence
of zeros of accretive mappings or fixed points of pseudocontractive mappings and several iterative
methods for finding zeros of accretive mappings or fixed points of pseudocontractive mappings.
We can refer to References [1–14] and the references in therein.

In 2007, Morales [15] introduced the following viscosity iterative method for pseudocontractive
mapping:

xt = t f xt + (1− t)Txt, t ∈ (0, 1), (1)

where T : C → E is a continuous pseudocontractive mapping satisfying the weakly inward condition
and f : C → C is a bounded continuous strongly pseudocontractive mapping. In a reflexive Banach
space with a uniformly Gâteaux differentiable norm such that every closed convex bounded subset of
C has the fixed point property for nonexpansive self-mappings, he proved the strong convergence of
the sequences generated by the iterative method in Equation (1) to a point q in Fix(T) (the set of fixed
points of T), where q is the unique solution to the following variational inequality:

〈 f q− q, J(p− q)〉 ≤ 0, ∀p ∈ Fix(T). (2)

In 2009, using the method of Reference [16], Ceng et al. [17] introduced the following modified
viscosity iterative method and modified implicit viscosity iterative method with a perturbed mapping
for a pseudocontractive mapping:

xt = t f xt + rtSxt + (1− t− rt)Txt, t ∈ (0, 1), (3)

where 0 < rt < 1 − t, T : C → C is a continuous pseudocontractive mapping, S : C → C is a
nonexpansive mapping, and f : C → C is a Lipschitz strongly pseudocontractive mapping.{

yn = αnxn + (1− αn)Tyn,

xn+1 = βn f yn + γnSyn + (1− βn − γn)yn,
(4)

and {
xn = αnyn + (1− αn)Tyn,

yn = βn f xn−1 + γnSxn−1 + (1− βn − γn)xn−1,
(5)

where f : C → C is a contractive mapping , x0 ∈ C is an arbitrary initial point, and {αn}, {βn},
{γn} ⊂ (0, 1] such that limn→∞(γn/βn) = 0 and βn + γn < 1. In a reflexive and strictly convex
Banach space with a uniformly Gâteaux differentiable norm, they proved the strong convergence of
the sequences generated by the iterative methods in Equations (3)–(5) to a point q in Fix(T), where q is
the unique solution to the variational inequality in Equation (2). Their results developed and improved
the corresponding results of Song and Chen [11], Zeng and Yao [16], Xu [18], Xu and Ori [19], and
Chen et al. [20].

In this paper, as a continuation of study in this direction, in a reflexive Banach space having a
weakly sequentially continuous duality mapping Jϕ with gauge function ϕ, we consider the viscosity
iterative methods in Equations (3)–(5) for a continuous pseudocontractive mapping T, a continuous
bounded strongly pseudocontractive mapping f , and a nonexpansive mapping S. We establish strong
convergence of the sequences generated by proposed iterative methods to a fixed point of the mapping
T, which solves a variational inequality related to f . The main results develop and supplement the
corresponding results of Song and Chen [11], Morales [15], Ceng et al. [17], and Xu [18] to different
Banach space as well as Zeng and Yao [16], Xu and Ori [19], Chen et al. [20], and the references therein.

2. Preliminaries

Throughout the paper, we use the following notations: “ ⇀ ” for weak convergence, “ ∗
⇀" for

weak∗ convergence, and “→ ” for strong convergence.
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Let E be a real Banach space with the norm ‖ · ‖, and let E∗ be its dual. The value of x∗ ∈ E∗ at
x ∈ E will be denoted by 〈x, x∗〉. Let C be a nonempty closed convex subset of E, and let T : C → C be
a mapping. We denote the set of fixed points of the mapping T by Fix(T). That is, Fix(T) := {x ∈ C :
Tx = x}.

Recall that a Banach space E is said to be smooth if for each x ∈ SE = {x ∈ E : ‖x‖ = 1}, there
exists a unique functional jx ∈ E∗ such that 〈x, jx〉 = ‖x‖ and ‖jx‖ = 1 and that a Banach space E is
said to be strictly convex [21] if the following implication holds for x, y ∈ E:

‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ > 0 ⇒
∥∥∥∥ x + y

2

∥∥∥∥ < 1.

By a gauge function, we mean a continuous strictly increasing function ϕ defined on R+ := [0, ∞)

such that ϕ(0) = 0 and limr→∞ ϕ(r) = ∞. The mapping Jϕ : E→ 2E∗ defined by

Jϕ(x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖‖ f ‖, ‖ f ‖ = ϕ(‖x‖)} for all x ∈ E

is called the duality mapping with gauge function ϕ. In particular, the duality mapping with gauge
function ϕ(t) = t denoted by J is referred to as the normalized duality mapping. It is known that a Banach
space E is smooth if and only if the normalized duality mapping J is single-valued. The following
property of duality mapping is also well-known:

Jϕ(λx) = sign λ

(
ϕ(|λ| · ‖x‖)
‖x‖

)
J(x) for all x ∈ E \ {0}, λ ∈ R, (6)

where R is the set of all real numbers. The following are some elementary properties of the duality
mapping J [21,22]:

(i) For x ∈ E, J(x) is nonempty, bounded, closed, and convex;
(ii) J(0) = 0;
(iii) for x ∈ E and a real α, J(αx) = αJ(x);
(iv) for x, y ∈ E, f ∈ J(x) and g ∈ J(y), 〈x− y, f − g〉 ≥ 0;
(v) for x, y ∈ E, f ∈ J(x), ‖x‖2 − ‖y‖2 ≥ 2〈x− y, f 〉.

We say that a Banach space E has a weakly continuous duality mapping if there exists a gauge
function ϕ such that the duality mapping Jϕ is single-valued and continuous from the weak topology
to the weak∗ topology, that is, for any {xn} ∈ E with xn ⇀ x, Jϕ(xn)

∗
⇀ Jϕ(x). A duality mapping Jϕ

is weakly continuous at 0 if Jϕ is single-valued and if xn ⇀ 0, Jϕ(xn)
∗
⇀ 0. For example, every lp space

(1 < p < ∞) has a weakly continuous duality mapping with gauge function ϕ(t) = tp−1 [21–23]. Set

Φ(t) =
∫ t

0
ϕ(τ)dτ for all t ∈ R+.

Then it is known that Jϕ(x) is the subdifferential of the convex functional Φ(‖ · ‖) at x. A Banach
space E that has a weakly continuous duality mapping implies that E satisfies Opial’s property.
This means that whenever xn ⇀ x and y 6= x, we have lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn −
y‖ [21,23].

The following lemma is Lemma 2.1 of Jung [24].

Lemma 1. ([24]) Let E be a reflexive Banach space having a weakly continuous duality mapping Jϕ with gauge
function ϕ. Let {xn} be a bounded sequence of E and f : E→ E be a continuous mapping. Let g : E→ R be
defined by

g(z) = lim sup
n→∞

〈z− f z, Jϕ(z− xn)〉

for z ∈ E. Then, g is a real valued continuous function on E.
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We need the following well-known lemma for the proof of our main result [21,22].

Lemma 2. Let E be a real Banach space, and let ϕ be a continuous strictly increasing function on R+ such that
ϕ(0) = 0 and limr→∞ ϕ(r) = ∞. Define

Φ(t) =
∫ t

0
ϕ(τ)dτ for all t ∈ R+.

Then, the following inequalities hold:

Φ(kt) ≤ kΦ(t), 0 < k < 1,

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, jϕ(x + y)〉 for all x, y ∈ E,

where jϕ(x + y) ∈ Jϕ(x + y).

The following lemma can be found in Reference [18].

Lemma 3. ([18]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− λn)sn + λnδn, n ≥ 0,

where {λn} and {δn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and ∑∞
n=0 λn = ∞ or, equivalently, ∏∞

n=0(1− λn) = 0,
(ii) lim supn→∞ δn ≤ 0 or ∑∞

n=0 λn|δn| < ∞,

Then, limn→∞ sn = 0.

Let C be a nonempty closed convex subset of a real Banach space E. Recall that S : C → C is
called accretive if I − S is pseudocontractive. If T : C → C is a pseudocontractive mapping, then
I − T is accretive. We denote A = J1 = (2I − T)−1. Then, Fix(A) = Fix(T) and the operator
A : R(2I − T)→ C is nonexpansive and single-valued, where I denotes the identity mapping.

We also need the following result which can be found in Reference [11].

Lemma 4. ([11]) Let C be a nonempty closed convex subset of a real Banach space E, and let T : C → C be a
continuous pseudocontractive mapping. We denote A = (2I − T)−1.

(i) The mapping A is nonexpansive self-mapping on C, i.e., for all x, y ∈ nC, there holds

‖Ax− Ay‖ ≤ ‖x− y‖, and Ax ∈ C.

(ii) If limn→∞ ‖xn − Txn‖ = 0, then limn→∞ ‖xn − Axn‖ = 0.

The following Lemmas, which are well-known, can be found in many books in the geometry of
Banach spaces (see References [21,23]).

Lemma 5. (Demiclosedness Principle) Let C be a nonempty closed convex subset of a Banach space E, and
let T : C → C be a nonexpansive mapping. Then, xn ⇀ x in C and (I − T)xn → y imply that (I − T)x = y.

Lemma 6. If E is a Banach space such that E∗ is strictly convex, then E is smooth and any duality mapping is
norm-to-weak∗-continuous.

Finally, we need the following result which was given by Deimling [4].
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Lemma 7. ([4]) Let C be a nonempty closed convex subset of a Banach space E, and let T : C → C be a
continuous strong pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1). Then, T has a
unique fixed point in C.

3. Convergence of Path with Perturbed Mapping

As we know, the path convergency plays an important role in proving the convergence of iterative
methods to approximate fixed points. In this direction, we first prove the existence of a path for
a convex combination of a pseudocontractive type of mappings with a perturbed mapping and
boundedness of the path.

Proposition 1. Let C be a nonempty closed convex subset of a real Banach space E. Let T : C → C be a
continuous pseudocontractive mapping, let S : C → C be a nonexpansive mapping, and let f : C → C be a
continuous strongly pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1).

(i) There exists a unique path t 7→ xt ∈ C, t ∈ (0, 1), satisfying

xt = t f xt + rtSxt + (1− t− rt)Txt, (7)

provided rt : (0, 1)→ [0, 1− t) is continuous and limt→0(rt/t) = 0.
(ii) In particular, if T has a fixed point in C, then the path {xt} is bounded.

Proof. (i) For each t ∈ (0, 1), define the mapping T(S, f ) : C → C as follows:

T(S, f ) = t f + rtS + (1− t− rt)T,

where 0 < rt < 1− t and limt→0(rt/t) = 0. Then, it is easy to show that the mapping T(S, f ) is a
continuous strongly pseudocontractive self-mapping of C. Therefore, by Lemma 7, T(S, f ) has a unique
fixed point in C, i.e., for each given t ∈ (0, 1), there exists xt ∈ C such that

xt = t f xt + rtSxt + (1− t− rt)Txt.

To show continuity, let t, t0 ∈ (0, 1). Then, there exists j ∈ J(xt − xt0) such that

〈xt − xt0 , j〉 = 〈t f xt + rtSxt + (1− t− rt)Txt − (t0 f xt0 + rtSxt + (1− t0 − rt0)Txt0), j〉
= t〈 f xt − f xt0 , j〉+ (t− t0)〈 f xt0 , j〉+ rt〈Sxt − Sxt0 , j〉+ (rt − rt0)〈Sxt0 , j〉

+ (1− t− rt)〈Txt − Txt0 , j〉+ ((t− t0) + (rt − rt0))〈Txt0 , j〉,

and this implies that

‖xt − xt0‖2 ≤ tβ‖xt − xt0‖2 + |t− t0|‖ f xt0‖‖xt − xt0‖
+ rt‖xt − xt0‖2 + |rt − rt0 |‖Sxt0‖‖xt − xt0‖
+ (1− t− rt)‖xt − xt0‖2 + |t− t0|‖Txt0‖‖xt − xt0‖+ |rt − rt0 |‖Txt0‖‖xt − xt0‖.

and, hence,

‖xt − xt0‖ ≤ tβ‖xt − xt0‖+ |t− t0|‖ f xt0‖+ |rt − rt0 |‖Sxt0‖
+ (1− t− rt)‖xt − xt0‖+ |t− t0|‖Txt0‖+ |rt − rt0 |‖Txt0‖

= (1− (1− β)t)‖xt − xt0‖+ (‖ f xt0‖+ ‖Txt0‖)|t− t0|+ (‖Sxt0‖+ ‖Txt0‖)|rt − rt0 |.

Therefore,

‖xt − xt0‖ ≤
‖ f xt0‖+ ‖Txt0‖

(1− β)t
|t− t0|+

‖Sxt0‖+ ‖Txt0‖
(1− β)t

|rt − rt0 |,



Mathematics 2020, 8, 72 6 of 16

which guarantees continuity.
(ii) By the same argument as in the proof of Theorem 2.1 of Reference [17], we can prove that {xt}

defined by Equation (7) is bounded for t ∈ (0, t0) for some t0 ∈ (0, 1), and so we omit its proof.

The above path of Equation (7) is called the modified viscosity iterative method with perturbed mapping,
where S is called the perturbed mapping.

The following result gives conditions for existence of a solution of a variational inequality:

〈(I − f )q, Jϕ(q− p)〉 ≤ 0, ∀p ∈ Fix(T). (8)

Theorem 1. Let E be a Banach space such that E∗ is strictly convex. Let C be a nonempty closed convex subset
of a real Banach space E. Let T : C → C be a continuous pseudocontractive mapping with Fix(T) 6= ∅, let
S : C → C be a nonexpansive mapping, and let f : C → C be a continuous strongly pseudocontractive mapping
with a pseudocontractive coefficient β ∈ (0, 1). Suppose that {xt} defined by Equation (7) converges strongly to
a point in Fix(T). If we define q := limt→0 xt, then q is a solution of the variational inequality in Equation (8).

Proof. First, from Lemma 6, we note that E is smooth and Jϕ is norm-to-weak∗-continuous.
Since

(I − f )xt = −
1− t− rt

t
(I − T)xt −

rt

t
(I − S)xt,

we have for p ∈ Fix(T)

〈(I − f )xt, Jϕ(xt − p)〉 = − 1− t− rt

t
〈(I − T)xt − (I − T)p, Jϕ(xt − p)〉

+
rt

t
〈(S− I)xt, Jϕ(xt − p)〉.

(9)

Since I − T is accretive and J(xt − p) is a positive-scalar multiple of Jϕ(xt − p) (see Equation (6)),
it follow from Equation (9) that

〈(I − f )xt, Jϕ(xt − p)〉 ≤ rt

t
〈(S− I)xt, Jϕ(xt − p)〉

≤ rt

t
‖(S− I)xt‖ϕ(‖xt − p‖).

(10)

Taking the limit as t→ 0, by limt→0
rt
t = 0, we obtain

〈(I − f )q, Jϕ(q− p)〉 ≤ 0, ∀p ∈ Fix(T).

This completes the proof.

The following lemma provides conditions under which {xt} defined by Equation (7) converges
strongly to a point in Fix(T).

Lemma 8. Let E be a reflexive smooth Banach space having Opial’s property and having some duality mapping
Jϕ weakly continuous at 0. Let C be a nonempty closed convex subset of E. Let T : C → C be a continuous
pseudocontractive mapping with Fix(T) 6= ∅, let S : C → C be a nonexpansive mapping, and let f : C → C
be a continuous bounded strongly pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1).
Then, {xt} defined by Equation (7) converges strongly to a point in Fix(T) as t→ 0.

Proof. First, from Proposition 1 (ii), we know that {xt : t ∈ (0, t0)} is bounded for t ∈ (0, t0) for some
t0 ∈ (0, 1).
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Since f is a bounded mapping and S is a nonexpansive mapping, { f xt : t ∈ (0, t0)} and{Sxt : t ∈
(0, t0)} are bounded. Moreover, noting that xt = t f xt + rtSxt + (1− t− rt)Txt, we have

Txt =
1

1− t− rt
xt −

t
1− t− rt

f xt −
rt

1− t− rt
Sxt,

which implies that

‖Txt‖ ≤
1

1− t− rt
‖xt‖+

t
1− t− rt

‖ f xt‖+
rt

1− t− rt
‖Sxt‖.

Thus, we obtain
‖Txt‖ ≤ 2‖xt‖+ 2t‖ f xt‖+ 2rt‖Sxt‖, ∀t ∈ (0, t0)

and so {Txt : t ∈ (0, t0)} is bounded. This implies that

lim
t→0
‖xt − Txt‖ ≤ lim

t→0
t‖ f xt − Txt‖+ lim

t→0
rt‖Sxt − Txt‖ = 0. (11)

Now, let tm ∈ (0, t0) for some t0 ∈ (0, 1) be such that tm → 0, and let {xm} := {xtm} be a
subsequence of {xt}. Then,

xm = tm f xm + rmSm + (1− tm − rm)Txm.

Let p ∈ Fix(T). Then, we have

xm − p = tm( f xm − p) + rm(Sxm − p) + (1− tm − rm)(Txm − Tp)

and
‖xm − p‖ϕ(‖xm − p‖) = 〈xm − p, Jϕ(xm − p)〉

≤ tm〈 f xm − p, Jϕ(xm − p)〉+ rm〈Sxm − p, Jϕ(xm − p)〉
+ (1− tm − rm)‖xm − p‖ϕ(‖xm − p‖).

Thus, it follows that

‖xm − p‖ϕ(‖xm − p‖) ≤ tm

tm + rm
〈 f xm − p, Jϕ(xm − p)〉+ rm

tm + rm
〈Sxm − p, Jϕ(xm − p)〉. (12)

Hence, we get

〈p− f xm, Jϕ(xm − p)〉 ≤ − tm + rm

tm
‖xm − p‖ϕ(‖xm − p‖) + rm

tm
〈Sxm − p, Jϕ(xm − p)〉,

that is,

〈p− f xm, Jϕ(p− xm)〉 ≥
tm + rm

tm
‖xm − p‖ϕ(‖xm − p‖) + rm

tm
〈p− Sxm, Jϕ(xm − p)〉.

Therefore, we have

〈xm − f xm, Jϕ(p− xm)〉 = 〈xm − p, Jϕ(p− xm)〉+ 〈p− f xm, Jϕ(p− xm)〉

≥ − ‖xm − p‖ϕ(‖xm − p‖) + tm + rm

tm
‖xm − p‖ϕ(‖xm − p‖)

+
rm

tm
〈p− Sxm, Jϕ(xm − p)〉

=
rm

tm
‖xm − p‖ϕ(‖xm − p‖) + rm

tm
〈p− Sxm, Jϕ(xm − p)〉.
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On the other hand, since {xm} is bounded and E is reflexive, {xm} has a weakly convergent
subsequence {xmk}, say, xmk ⇀ u ∈ E. From Equation (11), it follows that

‖xm − Txm‖ ≤ tm‖ f xm − Txm‖+ rm‖Sxm − Txm‖ → 0.

From Lemma 4, we know that the mapping A = (2I − T)−1 : C → C is nonexpansive, that
Fix(A) = Fix(T), and that ‖xm − Axm‖ → 0. Thus, by Lemma 5, u ∈ Fix(A) = Fix(T). Therefore,
by Equation (12) and the assumption that Jϕ is weakly continuous at 0, we obtain

‖xmk − u‖ϕ(‖xmk − u‖) ≤
tmk

tmk + rmk

〈 f xmk − u, Jϕ(xmk − u)〉+
rmk

tmk + rmk

〈Sxmk − u, Jϕ(xmk − u)〉

≤ |〈 f xmk − u, Jϕ(xmk − u)〉|+
rmk

tmk

|〈Sxmk − u, Jϕ(xmk − u)〉| → 0.

Since ϕ is continuous and strictly increasing, we must have xmk → u.
Now, we will show that every weakly convergent subsequence of {xm} has the same limit.

Suppose that xmk ⇀ u and xmj ⇀ v. Then, by the above proof, we have u, v ∈ Fix(T) and xmk → u
and xmj → v. By Equation (12), we have the following for all p ∈ Fix(T):

‖xmk − p‖ϕ(‖xmk − p‖) ≤
tmk

tmk + rmk

〈 f xmk − p, Jϕ(xmk − p)〉+
rmk

tmk + rmk

〈Sxmk − p, Jϕ(xmk − p)〉

≤
tmk

tmk + rmk

〈 f xmk − p, Jϕ(xmk − p)〉+
rmk

tmk

|〈Sxmk − p, Jϕ(xmk − p)〉|

and

‖xmj − p‖ϕ(‖xmj − p‖) ≤
tmj

tmj + rmj

〈 f xmj − p, Jϕ(xmj − p)〉+
rmj

tmj + rmj

〈Sxmj − p, Jϕ(xmj − p)〉

≤
tmj

tmj + rmk

〈 f xmj − p, Jϕ(xmk − p)〉+
rmk

tmk

|〈Sxmk − p, Jϕ(xmk − p)〉|.

Taking limits, we get

Φ(‖u− v‖) = ‖u− v‖ϕ(‖u− v‖) ≤ 〈 f u− v, Jϕ(u− v)〉 (13)

and
Φ(‖v− u‖) = ‖v− u‖ϕ(‖v− u‖) ≤ 〈 f v− u, Jϕ(v− u)〉. (14)

Adding up Equations (13) and (14) yields

2Φ(‖u− v‖) = 2‖u− v‖ϕ(‖u− v‖) ≤ ‖u− v‖ϕ(‖u− v‖) + 〈 f u− f v, Jϕ(u− v)〉
≤ (1 + β)‖u− v‖ϕ(‖u− v‖) = (1 + β)Φ(‖u− v‖).

Since β ∈ (0, 1), this implies Φ(‖u− v‖) ≤ 0, that is, u = v. Hence, {xm} is strongly convergent
to a point in Fix(T) as tm → 0.

The same argument shows that, if tl → 0, then the subsequence {xl} := {xtl} of {xt : t ∈ (0, t0)}
for some t0 ∈ (0, 1) is strongly convergent to the same limit. Thus, as t→ 0, {xt} converges strongly
to a point in Fix(T).

Using Theorem 1 and Lemma 8, we show the existence of a unique solution of the variational
inequality in Equation (8) in a reflexive Banach space having a weakly continuous duality mapping.

Theorem 2. Let E be a reflexive Banach space having a weakly continuous duality mapping Jϕ with gauge
function ϕ, and let C be a nonempty closed convex subset of E. Let T : C → C be a continuous pseudocontractive
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mapping such that Fix(T) 6= ∅, let S : C → C be a nonexpansive mapping, and let f : C → C be a continuous
bounded strongly pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1). Then, there exists
the unique solution in q ∈ Fix(T) of the variational inequality in Equation (8), where q := limt→∞ xt with xt

being defined by Equation (7).

Proof. We notice that the definition of the weak continuity of the duality mapping Jϕ implies that E
is smooth. Thus, E∗ is strictly convex for reflexivity of E. By Lemma 8, {xt} defined by Equation (7)
converges strongly to a point q in Fix(T) as t→ 0. Hence, by Theorem 1, q is the unique solution of
the variational inequality in Equation (8). In fact, suppose that q, p ∈ Fix(T) satisfy the variational
inequality in Equation (8). Then, we have

〈(I − f )q, Jϕ(q− p)〉 ≤ 0 and 〈(I − f )p, Jϕ(p− q)〉 ≤ 0.

Adding these two inequalities, we have

(1− β)Φ(‖q− p‖) = (1− β)‖q− p‖ϕ(‖q− p‖) ≤ 〈(I − f )q− (I − f )p, Jϕ(q− p)〉 ≤ 0,

and so q = p.

As a direct consequence of Theorem 2, we have the following result.

Corollary 1. ([20, Theorem 3.2]) Let E be a reflexive Banach space having a weakly continuous duality
mapping Jϕ with gauge function ϕ, and let C be a nonempty closed convex subset of E. Let T : C → C be a
continuous pseudocontractive mapping such that Fix(T) 6= ∅, and let f : C → C be a continuous bounded
strongly pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1). Let {xt} be defined by

xt = t f xt + (1− t)Txt, ∀t ∈ (0, 1).

Then, as t → 0, xt converges strongly to a some point of T such that q is the unique solution of the
variational inequality in Equation (8).

Proof. Put S = I and rt = 0 for all t ∈ (0, 1). Then, the result follows immediately from Theorem 2.

Remark 1. (1) Theorem 2 develops and supplements Theorem 2.1 of Ceng et al. [17] in the following aspects:

(i) The space is replaced by the space having a weakly continuous duality mapping Jϕ with gauge
function ϕ.

(ii) The Lipischiz strongly pseudocontractive mapping f in Theorem 2.1 in Reference [17] is replaced by
a bounded continuous strongly pseudocontractive mapping f in Theorem 2.

(2) Corollary 1 complements Theorem 2.1 of Song and Chen [11] and Corollary 2.2 of Cent et al. [17]
by replacing the Lipischiz strongly pseudocontractive mapping f in References [11,17] by the bounded
continuous strongly pseudocontractive mapping f in Corollary 3.5 in a reflexive Banach space having a
weakly continuous duality mapping Jϕ with gauge function ϕ.

(3) Corollary 1 also develops Theorem 2 of Morales [15] to a reflexive Banach space having a weakly continuous
duality mapping Jϕ with gauge function ϕ.

4. Modified Implicit Iterative Methods with Perturbed Mapping

First, we prepare the following result.

Theorem 3. Let E be a reflexive Banach space having a weakly continuous duality mapping Jϕ with gauge
function ϕ, and let C be a nonempty closed convex subset of E. Let T : C → C be a continuous pseudocontractive
mapping such that Fix(T) 6= ∅, let S : C → C be a nonexpansive mapping, and let f : C → C be a continuous
bounded strongly pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1). Let {xt} be
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defined by Equation (7). If there exists a bounded sequence {xn} such that limn→∞ ‖xn − Txn‖ = 0 and
q = limt→0 xt, then

lim sup
n→∞

〈 f q− q, Jϕ(xn − q)〉 ≤ 0.

Proof. Using the equality

xt − xn = (1− t− rt)(Txt − xn) + t( f xt − xn) + rt(Sxt − xn)

and the inequality

〈Tx− Ty, Jϕ(x− y)〉 ≤ ‖x− y‖ϕ(‖x− y‖), ∀x, y ∈ C,

we derive

‖xt − xn‖ϕ(‖xt − xn‖) = (1− t− rt)〈Txt − xn, Jϕ(xt − xn)〉+ t〈 f xt − xn, Jϕ(xt − xn)〉
+ rt〈Sxt − xn, Jϕ(xt − xn)〉

= (1− t− rt)(〈Txt − Txn, Jϕ(xt − xn)〉+ 〈Txn − xn, Jϕ(xt − xn)〉
t〈 f xt − xt, Jϕ(xt − xn)〉+ t‖xt − xn‖ϕ(‖xt − xn‖)
+ rt〈Sxt − xt, Jϕ(xt − xn)〉+ rt‖xt − xn‖ϕ(‖xt − xn‖)

≤ ‖xt − xn‖ϕ(‖xt − xn‖) + ‖Txn − xn‖ϕ(‖xt − xn‖)
t〈 f xt − xt, Jϕ(xt − xn)〉+ rt‖Sxt − xn‖ϕ(‖xt − xn‖)

and, hence,

〈xt − f xt, Jϕ(xt − xn)〉 ≤
‖Txn − xn‖

t
ϕ(‖xt − xn‖) +

rt

t
‖Sxt − xt‖ϕ(‖xt − xn‖).

Therefore, by lim supn→∞ ϕ(‖xt − xn‖) < ∞, we have

lim sup
n→∞

〈xt − f xt, Jϕ(xt − xn)〉 ≤ lim sup
n→∞

‖Txn − xn‖
t

ϕ(‖xt − xn‖)

+ lim sup
n→∞

rt

t
‖Sxt − xt‖ϕ(‖xt − xn‖)

= lim sup
n→∞

rt

t
‖Sxt − xt‖ϕ(‖xt − xn‖)

=
rt

t
‖Sxt − xt‖ lim sup

n→∞
ϕ(‖xt − xn‖).

Thus, noting that limt→0 lim supn→∞ ϕ(‖xt − xn‖) < ∞, by Lemma 1, we conclude

lim sup
n→∞

〈 f q− q, Jϕ(xn − q)〉 = lim
t→0

lim sup
n→∞

〈 f xt − xt, Jϕ(xn − xt)〉

≤ lim
t→0

[
rt

t
‖Sxt − xt‖

]
lim
t→0

lim sup
n→∞

ϕ(‖xt − xn‖)

= 0× lim
t→0

lim sup
n→∞

ϕ(‖xt − xn‖) = 0.

This completes the proof.

Theorem 4. Let E be a reflexive Banach space having a weakly continuous duality mapping Jϕ with gauge
function ϕ, and let C be a nonempty closed convex subset of E. Let T : C → C be a continuous pseudocontractive
mapping such that Fix(T) 6= ∅, let S : C → C be a nonexpansive mapping, and let f : C → C be a contractive
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mapping with a contractive coefficient k ∈ (0, 1). For x0 ∈ C, let {xn} be defined by the following iterative
scheme: {

yn = αnxn + (1− αn)Tyn

xn+1 = βn f yn + γnSyn + (1− βn − γn)yn, ∀n ≥ 0,
(15)

where {αn}, {βn}, and {γn} are three sequences in (0, 1] satisfying the following conditions:

(i) limn→∞ αn = 0;
(ii) limn→∞ βn = 0, ∑∞

n=0 βn = ∞;
(iii) limn→∞(γn/βn) = 0, βn + γn ≤ 1, ∀n ≥ 0.

Then, {xn} converges strongly to a fixed point x∗ of T, which is the unique solution of the following
variational inequality

〈(I − f )x∗, Jϕ(x∗ − p)〉 ≤ 0, ∀p ∈ Fix(T). (16)

Proof. First, put zt = t f zt + rtSzt + (1− t− rt)Tzt. Then, it follows from Theorem 2 that, as t → 0,
zt converges strongly to some fixed point x∗ of T such that x∗ is the unique solution in Fix(T) to the
variational inequality in Equation (16).

Now, we divide the proof into several steps.
Step 1. We show that {xn} is bounded. To this end, let p ∈ Fix(T). Then, we have

‖yn − p‖ϕ(‖yn − p‖) = 〈αnxn + (1− αn)Tyn − p, Jϕ(yn − p)〉
≤ (1− αn)〈Tyn − Tp, Jϕ(yn − p)〉+ αn‖xn − p‖ϕ(‖yn − p‖)
≤ (1− αn)‖yn − p‖ϕ(‖yn − p‖) + αn‖xn − p‖ϕ(‖yn − p‖)

and, hence,
‖yn − p‖ ≤ ‖xn − p‖, ∀n ≥ 0.

Thus, we obtain

‖xn+1 − p‖ ≤ βn‖ f yn − p‖+ γn‖Syn − p‖+ (1− βn − γn)‖yn − p‖
≤ βn(‖ f yn − f p‖+ ‖ f p− p‖) + γn(‖Syn − Sp‖+ ‖Sp− p‖)

+ (1− βn − γn)‖xn − p‖
≤ βnk‖yn − p‖+ βn‖ f p− p‖+ γn‖yn − p‖+ γn‖Sp− p‖

+ (1− βn − γn)‖xn − p‖
≤ βnk‖xn − p‖+ βn‖ f p− p‖+ γn‖xn − p‖+ γn‖Sp− p‖

+ (1− βn − γn)‖xn − p‖
= (1− (1− k)βn)‖xn − p‖+ βn‖ f p− p‖+ γn‖Sp− p‖.

(17)

Since limn→∞(γn/βn) = 0, we may assume without loss of generality that γn ≤ βn for all n > 0.
Therefore, it follows from Equation (17) that

‖xn+1 − p‖ ≤ (1− (1− k)βn)‖xn − p‖+ (1− k)βn ·
1

1− k
(‖ f p− p‖+ ‖Sp− p‖)

≤ max
{
‖xn − p‖, 1

1− k
(‖ f p− p‖+ ‖Sp− p‖)

}
.

By induction, we derive

‖xn − p‖ ≤ max
{
‖x0 − p‖, 1

1− k
(‖ f p− p‖+ ‖Sp− p‖)

}
, ∀n ≥ 0.

This show that {xn} is bounded and so is {yn}.
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Step 2. We show that { f yn}, {Syn}, and {Tyn} are bounded. Indeed, observe that

‖ f yn‖ ≤ ‖ f yn − f p‖+ ‖ f p‖ ≤ k‖yn − p‖+ ‖ f p‖

and
‖Syn‖ ≤ ‖Syn − Sp‖+ ‖Sp‖ ≤ ‖yn − p‖+ ‖Sp‖.

Thus, { f yn} and {Syn} are bounded. Since limn→∞ αn = 0, there exist n0 ≥ 0 and a ∈ (0, 1) such
that αn ≤ a for all n ≥ n0. Noting that yn = αnxn + (1− αn)Tyn, we have

Tyn =
1

1− αn
yn −

αn

1− αn
xn

and so
‖Tyn‖ ≤

1
1− αn

‖yn‖+
αn

1− αn
‖xn‖ ≤

1
1− a

‖yn‖+
a

1− a
‖xn‖.

Consequently, the sequence {Tyn} is also bounded.
Step 3. We show that lim supn→∞〈 f x∗ − x∗, Jϕ(yn − x∗)〉 ≤ 0. In fact, from condition (i) and
boundedness of {xn} and {Tyn}, we get

‖yn − Tyn‖ = αn‖xn − Tyn‖ → 0 (n→ ∞). (18)

Thus, it follows from Equation (18) and Theorem 3 that lim supn→∞〈 f x∗ − x∗, Jϕ(yn − x∗)〉 ≤ 0.
Step 4. We show that lim supn→∞〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉 ≤ 0. Indeed, by Equations (15) and (18),
we have

‖xn+1 − yn‖ = ‖βn f yn + γnSyn + (1− βn − γn)yn − (αnxn + (1− αn)Tyn)‖
≤ αn‖xn − Tyn‖+ βn‖ f yn − yn‖+ γn‖Syn − yn‖+ ‖yn − Tyn‖ → 0 (n→ ∞).

Since the duality mapping Jϕ is single-valued and weakly continuous, we have

lim
n→∞
〈 f x∗ − x∗, Jϕ(xn+1 − x∗)− Jϕ(yn − x∗)〉 = 0.

Therefore, we obtain from step 3 that

lim sup
n→∞

〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉 ≤ lim sup
n→∞

〈 f x∗ − x∗, Jϕ(yn − x∗)〉

+ lim sup
n→∞

〈 f x∗ − x∗, Jϕ(xn+1 − x∗)− Jϕ(yn − x∗)〉

= lim sup
n→∞

〈 f x∗ − x∗, Jϕ(yn − x∗)〉 ≤ 0.

Step 5. We show that limn→∞ ‖xn − x∗‖ = 0. In fact, it follows from Equation (15) that

xn+1 − x∗ = βn( f yn − f x∗) + γn(Syn − Sx∗) + (1− βn − γn)(yn − x∗)

+ βn( f x∗ − x∗) + γn(Sx∗ − x∗).

Therefore, using inequalities ‖yn − x∗‖ ≤ ‖xn − x∗‖, ‖ f x− f y‖ ≤ k‖x− y‖, and ‖Sx− Sy‖ ≤
‖x− y‖ and using Lemma 2, we have
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Φ(‖xn+1 − x∗‖) ≤ Φ(‖βn( f yn − f x∗) + γn(Syn − Sx∗) + (1− βn − γn)(yn − x∗)‖)
+ βn〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉+ γn〈Sx∗ − x∗, Jϕ(xn+1 − x∗)〉
≤Φ(βnk‖yn − x∗‖+ γn‖yn − x∗‖+ (1− βn − γn)‖yn − x∗‖)
+ βn〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉+ γn〈Sx∗ − x∗, Jϕ(xn+1 − x∗)〉
≤Φ((1− (1− k)βn)‖xn − x∗‖)
+ βn〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉+ γn〈Sx∗ − x∗, Jϕ(xn+1 − x∗)〉
≤(1− (1− k)βn)Φ(‖xn − x∗‖) + βn〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉
+ γn‖Sx∗ − x∗‖ϕ(‖xn+1 − x∗‖)

≤ (1− λn)Φ(‖xn − x∗‖) + λnδn,

(19)

where λn = (1− k)βn and

δn =
1

1− k

[
〈 f x∗ − x∗, Jϕ(xn+1 − x∗〉+ γn

βn
‖Sx∗ − x∗‖ϕ(‖xn+1 − x∗‖)

]
.

From conditions (ii) and (iii) and from step 4, it is easily seen that ∑∞
n=0 λn = ∞ and

lim supn→∞ δn ≤ 0. Thus, applying Lemma 3 to Equation (19), we conclude that limn→∞ Φ(‖xn −
x∗‖) = 0 and, hence, limn→∞ ‖xn − x∗‖ = 0. This completes the proof.

Theorem 5. Let E be a reflexive Banach space having a weakly continuous duality mapping Jϕ with gauge
function ϕ, and let C be a nonempty closed convex subset of E. Let T : C → C be a continuous pseudocontractive
mapping such that Fix(T) 6= ∅, let S : C → C be a nonexpansive mapping, and let f : C → C be a contractive
mapping with a contractive coefficient k ∈ (0, 1). For x0 ∈ C, let {xn} be defined by the following iterative
scheme: {

xn = αnyn + (1− αn)Txn

yn = βn f xn−1 + γnSxn−1 + (1− βn − γn)xn−1, ∀n ≥ 0,
(20)

where {αn}, {βn}, and {γn} are three sequences in (0, 1] satisfying the following conditions:

(i) limn→∞ αn = 0;
(ii) ∑∞

n=1 βn = ∞;
(iii) limn→∞(γn/βn) = 0, βn + γn ≤ 1, ∀n ≥ 0.

Then, {xn} converges strongly to a fixed point x∗ of T, which is the unique solution of the variational inequality
in Equation (16).

Proof. First, as in Theorem 4, we put zt = t f zt + rtSzt + (1 − t − rt)Tzt. Then, from Theorem 2,
it follows that, as t→ 0, zt converges strongly to some fixed point x∗ of T such that x∗ is the unique
solution in Fix(T) to the variational inequality in Equation (16).

Now, we divide the proof into several steps.
Step 1. We show that {xn} is bounded. To this end, let p ∈ Fix(T). Then, by Equation (20), we have

‖xn − p‖ϕ(‖xn − p‖) = 〈αnyn + (1− αn)Txn − p, Jϕ(xn − p)〉
≤ (1− αn)〈Txn − Tp, Jϕ(xn − p)〉+ αn‖yn − p‖ϕ(‖xn − p‖)
≤ (1− αn)‖xn − p‖ϕ(‖xn − p‖) + αn‖yn − p‖ϕ(‖yn − p‖)

and, hence,
‖xn − p‖ ≤ ‖yn − p‖, ∀n ≥ 0.

Thus, we obtain



Mathematics 2020, 8, 72 14 of 16

‖xn − p‖ ≤ ‖yn − p‖
≤ βn‖ f xn−1 − p‖+ γn‖Sxn−1 − p‖+ (1− βn − γn)‖xn−1 − p‖
≤ βn(‖ f xn−1 − f p‖+ ‖ f p− p‖) + γn(‖Sxn−1 − Sp‖+ ‖Sp− p‖)

+ (1− βn − γn)‖xn−1 − p‖
≤ βnk‖xn−1 − p‖+ βn‖ f p− p‖+ γn‖xn−1 − p‖+ γn‖Sp− p‖

+ (1− βn − γn)‖xn−1 − p‖
= (1− (1− k)βn)‖xn−1 − p‖+ βn‖ f p− p‖+ γn‖Sp− p‖.

(21)

Since limn→∞(γn/βn) = 0, we may assume without loss of generality that γn ≤ βn for all n > 0.
Therefore, it follows from Equation (21) that

‖xn − p‖ ≤ (1− (1− k)βn)‖xn−1 − p‖+ (1− k)βn ·
1

1− k
(‖ f p− p‖+ ‖Sp− p‖)

≤ max
{
‖xn−1 − p‖, 1

1− k
(‖ f p− p‖+ ‖Sp− p‖)

}
.

By induction, we derive

‖xn − p‖ ≤ max
{
‖x0 − p‖, 1

1− k
(‖ f p− p‖+ ‖Sp− p‖)

}
, ∀n ≥ 0.

This show that {xn} is bounded and so is {yn}.
Step 2. We show that { f xn}, {Sxn}, and {Txn} are bounded. Indeed, observe that

‖ f xn‖ ≤ ‖ f xn − f p‖+ ‖ f p‖ ≤ k‖xn − p‖+ ‖ f p‖

and
‖Sxn‖ ≤ ‖Sxn − Sp‖+ ‖Sp‖ ≤ ‖xn − p‖+ ‖Sp‖.

Thus, { f xn} and {Sxn} are bounded. Since limn→∞ αn = 0, there exist n0 ≥ 0 and a ∈ (0, 1) such
that αn ≤ a for all n ≥ n0. Noting that xn = αnyn + (1− αn)Txn, we have

Txn =
1

1− αn
xn −

αn

1− αn
yn

and so
‖Txn‖ ≤

1
1− αn

‖xn‖+
αn

1− αn
‖yn‖ ≤

1
1− a

‖xn‖+
a

1− a
‖yn‖.

Consequently, the sequence {Txn} is also bounded.
Step 3. We show that lim supn→∞〈 f x∗ − x∗, Jϕ(xn − x∗)〉 ≤ 0. In fact, from condition (i) and
boundedness of {xn} and {Txn}, we get

‖xn − Txn‖ = αn‖yn − Txn‖ → 0 (n→ ∞). (22)

Thus, it follows from Equation (22) and Theorem 3 that lim supn→∞〈 f x∗ − x∗, Jϕ(xn − x∗)〉 ≤ 0.
Step 4. We show that limn→∞ ‖xn − x∗‖ = 0. In fact, using the equality

xn − x∗ = αn[βn( f xn−1 − f x∗) + γn(Sxn−1 − Sx∗) + (1− βn − γn)(xn−1 − x∗)]

+ αn[βn( f x∗ − x∗) + γn(Sx∗ − x∗)] + (1− αn)(Txn − x∗)

by Equation (20) and the inequalities 〈Tx − Ty, Jϕ(x − y)〉 ≤ ‖x − y‖ϕ(‖x − y‖) = Φ(‖x − y‖),
‖ f x− f y‖ ≤ k‖x− y‖, and ‖Sx− Sy‖ ≤ ‖x− y‖, from Lemma 2, we derive
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Φ(‖xn − x∗‖) = Φ(αn‖βn( f xn−1 − f x∗) + γn(Sxn−1 − Sx∗) + (1− βn − γn)(xn−1 − x∗)‖)
+ αnβn〈 f x∗ − x∗, Jϕ(xn − x∗)〉+ αnγn〈Sx∗ − x∗, Jϕ(xn − x∗)〉
+ (1− αn)〈Txn − x∗, Jϕ(xn − x∗)〉

≤ αnΦ(βnk‖xn−1 − x∗‖+ γn‖xn−1 − x∗‖+ (1− βn − γn)‖xn−1 − x∗‖)
+ αnβn〈 f x∗ − x∗, Jϕ(xn − x∗)〉+ αnγn〈Sx∗ − x∗, Jϕ(xn − x∗)〉
+ (1− αn)‖xn − x∗‖ϕ(‖xn − x∗‖)

≤ αn(1− (1− k)βn)Φ(‖xn−1 − x∗‖)
+ αnβn〈 f x∗ − x∗, Jϕ(xn − x∗)〉+ αnγn‖Sx∗ − x∗‖ϕ(‖xn − x∗‖)
+ (1− αn)Φ(‖xn − x∗‖).

(23)

By Equation (23), we obtain

Φ(‖xn − x∗‖) ≤ (1− (1− k)βn)Φ(‖xn−1 − x∗‖) + βn〈 f x∗ − x∗, Jϕ(xn − x∗)〉
+ γn‖Sx∗ − x∗‖ϕ(‖xn − x∗‖)

≤ (1− (1− k)βn)‖xn−1 − x∗‖+ βn〈 f x∗ − x∗, Jϕ(xn − x∗)〉+ γn‖Sx∗ − x∗‖M,

(24)

where M > 0 is a constant such that ϕ(‖xn − x∗‖) ≤ M for all n ≥ 1. Put λn = (1− k)βn and

δn =
1

1− k

[
〈 f x∗ − x∗, Jϕ(xn − x∗〉+ γn

βn
‖Sx∗ − x∗‖M

]
.

From conditions (ii) and (iii) and from step 3, it easily seen that ∑∞
n=0 λn = ∞ and lim supn→∞ δn ≤

0. Since Equation (24) reduces to

Φ(‖xn − x∗‖) ≤ (1− λn)Φ(‖xn−1 − x∗‖) + λnδn, (25)

applying Lemma 3 to Equation (25), we conclude that limn→∞ Φ(‖xn − x∗‖) = 0 and, hence,
limn→∞ ‖xn − x∗‖ = 0. This completes the proof.

Remark 2. (1) Theorem 3 develops Theorem 2.3 of Ceng et al. [17] in the following aspects:

(i) The space is replaced by the space having a weakly continuous duality mapping Jϕ with gauge
function ϕ.

(ii) The Lipischiz strongly pseudocontractive mapping f in Theorem 2.3 in Reference [17] is replaced by
a bounded continuous strongly pseudocontractive mapping f in Theorem 3.

(2) Theorem 4 complements Theorem 3.1 as well as Theorem 3.4 of Ceng et al. [17] in a reflexive Banach space
having a weakly continuous duality mapping Jϕ with gauge function ϕ.

(3) Theorem 5 also means that Theorem 3.2 as well as Theorem 3.5 of Ceng et al. [17] hold in a reflexive
Banach space having a weakly continuous duality mapping Jϕ with gauge function ϕ.

(4) Whenever S = I and γn = 0 for all n ≥ 0 in Theorem 5, it is easily seen that Theorem 3.1 Theorem 3.4 of
Song and Chen [11] hold in a reflexive Banach space which has a weakly continuous duality mapping Jϕ

with gauge function ϕ.
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