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Abstract: In this paper, we study a class of Caputo fractional q-difference inclusions in Banach spaces.
We obtain some existence results by using the set-valued analysis, the measure of noncompactness,
and the fixed point theory (Darbo and Mönch’s fixed point theorems). Finally we give an illustrative
example in the last section. We initiate the study of fractional q-difference inclusions on infinite
dimensional Banach spaces.
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1. Introduction

Fractional differential equations and inclusions have attracted much more interest of
mathematicians and physicists which provides an efficiency for the description of many practical
dynamical arising in engineering, vulnerability of networks (fractional percolation on random graphs),
and other applied sciences [1–8]. Recently, Riemann–Liouville and Caputo fractional differential
equations with initial and boundary conditions are studied by many authors; [2,9–14]. In [15–18] the
authors present some interesting results for classes of fractional differential inclusions.

q-calculus (quantum calculus) has a rich history and the details of its basic notions, results and
methods can be found in [19–21]. The subject of q-difference calculus, initiated in the first quarter of
20th century, has been developed over the years. Some interesting results about initial and boundary
value problems of ordinary and fractional q-difference equations can be found in [22–27].

Difference inclusions arise in the mathematical modeling of various problems in economics,
optimal control, and stochastic analysis, see for instance [28–30]. However q-difference inclusions
are studied in few papers; see for example [31,32]. In this article we consider the Caputo fractional
q-difference inclusion

(cDα
q u)(t) ∈ F(t, u(t)), t ∈ I := [0, T], (1)

with the initial condition
u(0) = u0 ∈ E, (2)

where (E, ‖ · ‖) is a real or complex Banach space, q ∈ (0, 1), α ∈ (0, 1], T > 0, F : I × E→ P(E) is a
multivalued map, P(E) = {Y ⊂ E : y 6= ∅}, and cDα

q is the Caputo fractional q-difference derivative
of order α.

This paper initiates the study of fractional q-difference inclusions on Banach spaces.
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2. Preliminaries

Consider the Banach space C(I) := C(I, E) of continuous functions from I into E equipped with
the supremum (uniform) norm

‖u‖∞ := sup
t∈I
‖u(t)‖.

As usual, L1(I) denotes the space of measurable functions v : I → E which are Bochner integrable
with the norm

‖v‖1 =
∫

I
‖v(t)‖dt.

For a ∈ R, we set

[a]q =
1− qa

1− q
.

The q-analogue of the power (a− b)n is

(a− b)(0) = 1, (a− b)(n) = Πn−1
k=0 (a− bqk); a, b ∈ R, n ∈ N.

In general,

(a− b)(α) = aαΠ∞
k=0

(
a− bqk

a− bqk+α

)
; a, b, α ∈ R.

Definition 1 ([21]). The q-gamma function is defined by

Γq(ξ) =
(1− q)(ξ−1)

(1− q)ξ−1 ; ξ ∈ R− {0,−1,−2, . . .}

Notice that Γq(1 + ξ) = [ξ]qΓq(ξ).

Definition 2 ([21]). The q-derivative of order n ∈ N of a function u : I → E is defined by (D0
qu)(t) = u(t),

(Dqu)(t) := (D1
qu)(t) =

u(t)− u(qt)
(1− q)t

; t 6= 0, (Dqu)(0) = lim
t→0

(Dqu)(t),

and
(Dn

q u)(t) = (DqDn−1
q u)(t); t ∈ I, n ∈ {1, 2, . . .}.

Set It := {tqn : n ∈ N} ∪ {0}.

Definition 3 ([21]). The q-integral of a function u : It → E is defined by

(Iqu)(t) =
∫ t

0
u(s)dqs =

∞

∑
n=0

t(1− q)qn f (tqn),

provided that the series converges.

We note that (Dq Iqu)(t) = u(t), while if u is continuous at 0, then

(IqDqu)(t) = u(t)− u(0).
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Definition 4 ([33]). The Riemann–Liouville fractional q-integral of order α ∈ R+ := [0, ∞) of a function
u : I → E is defined by (I0

q u)(t) = u(t), and

(Iα
q u)(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
u(s)dqs; t ∈ I.

Lemma 1 ([34]). For α ∈ R+ and λ ∈ (−1, ∞) we have

(Iα
q (t− a)(λ))(t) =

Γq(1 + λ)

Γ(1 + λ + α)
(t− a)(λ+α); 0 < a < t < T.

In particular,

(Iα
q 1)(t) =

1
Γq(1 + α)

t(α).

Definition 5 ([35]). The Riemann–Liouville fractional q-derivative of order α ∈ R+ of a function u : I → E is
defined by (D0

qu)(t) = u(t), and

(Dα
q u)(t) = (D[α]

q I[α]−α
q u)(t); t ∈ I,

where [α] is the integer part of α.

Definition 6 ([35]). The Caputo fractional q-derivative of order α ∈ R+ of a function u : I → E is defined by
(CD0

qu)(t) = u(t), and

(CDα
q u)(t) = (I[α]−α

q D[α]
q u)(t); t ∈ I.

Lemma 2 ([35]). Let α ∈ R+. Then the following equality holds:

(Iα
q

CDα
q u)(t) = u(t)−

[α]−1

∑
k=0

tk

Γq(1 + k)
(Dk

qu)(0).

In particular, if α ∈ (0, 1), then

(Iα
q

CDα
q u)(t) = u(t)− u(0).

We define the following subsets of P(E) :

Pcl(E) = {Y ∈ P(E) : Y is closed},
Pbd(E) = {Y ∈ P(E) : Y is bounded},
Pcp(E) = {Y ∈ P(E) : Y is compact},
Pcv(E) = {Y ∈ P(E) : Y is convex},
Pcp,cv(E) = Pcp(E) ∩ Pcv(E).

Definition 7. A multivalued map G : E→ P(E) is said to be convex (closed) valued if G(x) is convex (closed)
for all x ∈ E. A multivalued map G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in E for all
B ∈ Pb(E) (i.e. supx∈B{sup{|y| : y ∈ G(x)} exists).

Definition 8. A multivalued map G : E → P(E) is called upper semi-continuous (u.s.c.) on E if G(x0) ∈
Pcl(E); for each x0 ∈ E, and for each open set N ⊂ E with G(x0) ∈ N, there exists an open neighborhood
N0 of x0 such that G(N0) ⊂ N. G is said to be completely continuous if G(B) is relatively compact for every
B ∈ Pbd(E). An element x ∈ E is a fixed point of G if x ∈ G(x).

We denote by FixG the fixed point set of the multivalued operator G.
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Lemma 3 ([28]). Let G : X → P(E) be completely continuous with nonempty compact values. Then G is
u.s.c. if and only if G has a closed graph, that is,

xn → x∗, yn → y∗, yn ∈ G(xn) =⇒ y∗ ∈ G(x∗).

Definition 9. A multivalued map G : J → Pcl(E) is said to be measurable if for every y ∈ E, the function

t→ d(y, G(t)) = inf{|y− z| : z ∈ G(t)}

is measurable.

Definition 10. A multivalued map F : I ×R→ P(E) is said to be Carathéodory if:

(1) t→ F(t, u) is measurable for each u ∈ E;
(2) u→ F(t, u) is upper semicontinuous for almost all t ∈ I.

F is said to be L1-Carathéodory if Equations (1) and (2) and the following condition holds:

(3) For each q > 0, there exists ϕq ∈ L1(I,R+) such that

‖F(t, u)‖P = sup{|v| : v ∈ F(t, u)} ≤ ϕq for all |u| ≤ q and for a.e. t ∈ I.

For each u ∈ C(I), define the set of selections of F by

SF◦u = {v ∈ L1(I) : v(t) ∈ F(t, u(t)) a.e. t ∈ I}.

Let (E, d) be a metric space induced from the normed space (E, | · |). The function Hd : P(E)×
P(E)→ R+ ∪ {∞} given by:

Hd(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(A, b)}.

is known as the Hausdorff-Pompeiu metric. For more details on multivalued maps see the books of
Hu and Papageorgiou [28].

LetMX be the class of all bounded subsets of a metric space X.

Definition 11. A function µ :MX → [0, ∞) is said to be a measure of noncompactness on X if the following
conditions are verified for all B, B1, B2 ∈ MX .

(a) Regularity, i.e., µ(B) = 0 if and only if B is precompact,
(b) invariance under closure, i.e., µ(B) = µ(B),
(c) semi-additivity, i.e., µ(B1 ∪ B2) = max{µ(B1), µ(B2)}.

Definition 12 ([36,37]). Let E be a Banach space and denote by ΩE the family of bounded subsets of E. the map
µ : ΩE → [0, ∞) defined by

µ(M) = inf{ε > 0 : M ⊂ ∪m
j=1Mj, diam(Mj) ≤ ε}, M ∈ ΩE,

is called the Kuratowski measure of noncompactness.

Theorem 1 ([38]). Let E be a Banach space. Let C ⊂ L1(I) be a countable set with |u(t)| ≤ h(t) for a.e. t ∈ J
and every u ∈ C, where h ∈ L1(I,R+). Then φ(t) = µ(C(t)) ∈ L1(I,R+) and verifies

µ

({∫ T

0
u(s) ds : u ∈ C

})
≤ 2

∫ T

0
µ(C(s)) ds,

where µ is the Kuratowski measure of noncompactness on the set E.
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Lemma 4 ([39]). Let F be a Carathéodory multivalued map and Θ : L1(I) → C(I); be a linear continuous
map. Then the operator

Θ ◦ SF◦u : C(I)→ Pcv,cp(C(I)), u 7→ (Θ ◦ SF◦u)(u) = Θ(SF◦u)

is a closed graph operator in C(I)× C(I).

Definition 13. Let E be Banach space. A multivalued mapping T : E → Pcl,b(E) is called k−set-Lipschitz
if there exists a constant k > 0, such that µ(T(X)) ≤ kµ(X) for all X ∈ Pcl,b(E) with T(X) ∈ Pcl,b(E). If
k < 1, then T is called a k−set-contraction on E.

Now, we recall the set-valued versions of the Darbo and Mönch fixed point theorems.

Theorem 2 ((Darbo fixed point theorem) [40]). Let X be a bounded, closed, and convex subset of a Banach
space E and let T : X → Pcl,b(X) be a closed and k−set-contraction. Then T has a fixed point.

Theorem 3 ((Mönch fixed point theorem) [41]). Let E be a Banach space and K ⊂ E be a closed and convex
set. Also, let U be a relatively open subset of K and N : U → Pc(K). Suppose that N maps compact sets into
relatively compact sets, graph(N) is closed and for some x0 ∈ U, we have

conv(x0 ∪ N(M)) ⊃ M ⊂ U and M = U (C ⊂ M countable) imply M is compact (3)

and
x /∈ (1− λ)x0 + λN(x) ∀x ∈ U\U, λ ∈ (0, 1). (4)

Then there exists x ∈ U with x ∈ N(x).

3. Existence Results

First, we state the definition of a solution of the problem found in Equations (1) and (2).

Definition 14. By a solution of the problem in Equations (1) and (2) we mean a function u ∈ C(I) that satisfies
the initial condition in Equation (2) and the equation (CDα

q u)(t) = v(t) on I, where v ∈ SF◦u.

In the sequel, we need the following hypotheses.

Hypothesis 1. (H1). The multivalued map F : I × E→ Pcp,cv(E) is Carathéodory.

Hypothesis 2. (H2). There exists a function p ∈ L∞(I,R+) such that

‖F(t, u)‖P = sup{‖v‖C : v(t) ∈ F(t, u)} ≤ p(t);

for a.e. t ∈ I, and each u ∈ E,

Hypothesis 3. (H3). For each bounded set B ⊂ C(I) and for each t ∈ I, we have

µ(F(t, B(t)) ≤ p(t)µ(B(t)),

where B(t) = {u(t) : u ∈ B},

Hypothesis 4. (H4) The function φ ≡ 0 is the unique solution in C(I) of the inequality

Φ(t) ≤ 2p∗(Iα
q Φ)(t),
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where p is the function defined in (H3), and

p∗ = esssupt∈I p(t).

Remark 1. In (H3), µ is the Kuratowski measure of noncompactness on the space E.

Theorem 4. If the hypotheses (H1)–(H3) and the condition

L :=
p∗T(α)

Γq(1 + α)
< 1

hold, then the problem in Equations (1) and (2) has at least one solution defined on I.

Proof. Consider the multivalued operator N : C(I)→ P(C(I)) defined by:

N(u) =
{

h ∈ C(I) : h(t) = µ0 +
∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs; v ∈ SF◦u

}
. (5)

From Lemma 2, the fixed points of N are solutions of the problem in Equations (1) and (2). Set

R := ‖u0‖+
p∗T(α)

Γq(1 + α)
,

and let BR := {u ∈ C(I) : ‖u‖∞ ≤ R} be the bounded, closed and convex ball of C(I). We shall
show in three steps that the multivalued operator N : BR → Pcl,b(C(I)) satisfies all assumptions of
Theorem 2.

Step 1. N(BR) ∈ P(BR).
Let u ∈ BR, and h ∈ N(u). Then for each t ∈ I we have

h(t) = u0 +
∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs,

for some v ∈ SF◦u. On the other hand,

‖h(t)‖ ≤ ‖u0‖+
∫ t

0

(t− qs)(α−1)

Γq(α)
‖v(s)‖dqs

≤ ‖u0‖+
∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)dqs

≤ ‖u0‖+ esssupt∈I p(t)
∫ T

0

(t− qs)(α−1)

Γq(α)
dqs

= ‖u0‖+
p∗T(α)

Γq(1 + α)
.

Hence
‖h‖∞ ≤ R, and so N(BR) ∈ P(BR).

Step 2. N(u) ∈ Pcl(BR) for each u ∈ BR.
Let {un}n≥0 ∈ N(u) such that un −→ ũ in C(I).Then, ũ ∈ BR and there exists fn(·) ∈ SF◦u be such
that, for each t ∈ I, we have

un(t) = u0 +
∫ t

0

(t− qs)(α−1)

Γq(α)
fn(s)dqs.



Mathematics 2020, 8, 91 7 of 12

From (H1), and since F has compact values, then we may pass to a subsequence if necessary to
get that fn(·) converges to f in L1(I), and then f ∈ SF◦u. Thus, for each t ∈ I, we get

un(t) −→ ũ(t) = u0 +
∫ t

0

(t− qs)(α−1)

Γq(α)
f (s)dqs.

Hence ũ ∈ N(u).

Step 3. N satisfies the Darbo condition.
Let U ⊂ BR, then for each t ∈ I, we have

µ((NU)(t)) = µ({(Nu)(t) : u ∈ U}).

Let h ∈ N(u). Then, there exists f ∈ SF◦u such that for each t ∈ I, we have

h(t) = u0 +
∫ t

0

(t− qs)(α−1)

Γq(α)
f (s)dqs.

From Theorem 1 and since U ⊂ BR ⊂ C(I), then

µ((NU)(t)) ≤ 2
∫ t

0
µ

({
(t− qs)(α−1)

Γq(α)
f (s) : u ∈ U

})
dqs.

Now, since f ∈ SF◦u and u(s) ∈ U(s), we have

µ({(t− qs)(α−1) f (s)}) = (t− qs)(α−1)p(s)µ(U(s)).

Then

µ((NU)(t)) ≤ 2
∫ t

0
µ

({
(t− qs)(α−1)

Γq(α)
f (s)

})
dqs.

Thus

µ((NU)(t)) ≤ 2p∗
∫ t

0

(t− qs)(α−1)

Γq(α)
µ(U(s))dqs.

Hence

µ((NU)(t)) ≤ 2p∗T(α)

Γq(1 + α)
µ(U).

Therefore,
µ(N(U)) ≤ Lµ(U),

which implies the N is a L−set-contraction.
As a consequence of Theorem 2, we deduce that N has a fixed point that is a solution of the problem in
Equations (1) and (2).

Now, we prove an other existence result by applying Theorem 3.

Theorem 5. If the hypotheses (H1) − (H4) hold, then there exists at least one solution of our problem in
Equations (1) and (2).

Proof. Consider the multivalued operator N : C(I) → P(C(I)) defined in Equation (5). We shall
show in five steps that the multivalued operator N satisfies all assumptions of Theorem 3.
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Step 1. N(u) is convex for each u ∈ C(I).
Let h1, h2 ∈ N(u), then there existv1, v2 ∈ SF◦u such that

hi(t) = µ0 +
∫ t

0

(t− qs)(α−1)

Γq(α)
vi(s)dqs; t ∈ I, i = 1, 2.

Let 0 ≤ λ ≤ 1. Then, for each t ∈ I, we have

(λh1 + (1− λ)h2)(t) =
∫ t

0

(t− qs)(α−1)

Γq(α)
(λv1(s) + (1− λ)v2(s))dqs.

Since SF◦u is convex (because F has convex values), we have λh1 + (1− λ)h2 ∈ N(u).

Step 2. For each compact M ⊂ C(I), N(M) is relatively compact.
Let (hn) be any sequence in N(M), where M ⊂ C(I) is compact.We show that (hn) has a convergent
subsequence from Arzéla–Ascoli compactness criterion in C(I). Since hn ∈ N(M) there are un ∈ M
and vn ∈ SF◦un such that

hn(t) = µ0 +
∫ t

0

(t− qs)(α−1)

Γq(α)
vn(s)dqs.

Using Theorem 1 and the properties of the measure µ, we have

µ({hn(t)}) ≤ 2
∫ t

0
µ

({
(t− qs)(α−1)

Γq(α)
vn(s)

})
dqs. (6)

On the other hand, since M is compact, the set {vn(s) : n ≥ 1} is compact. Consequently, µ({vn(s) :
n ≥ 1}) = 0 for a.e. s ∈ I. Furthermore

µ({(t− qs)(α−1)vn(s)}) = (t− qs)(α−1)µ({vn(s) : n ≥ 1}) = 0.

for a.e. t, s ∈ I. Now Equation (6) implies that {hn(t) : n ≥ 1} is relatively compact for each t ∈ I. In
addition, for each t1, t2 ∈ I; with t1 < t2, we have

‖hn(t2)− hn(t1)‖

≤
∥∥∥∥∥
∫ t2

0

(t2 − qs)(α−1)

Γq(α)
p(s)dqs−

∫ t1

0

(t1 − qs)(α−1)

Γq(α)
p(s)dqs

∥∥∥∥∥
≤
∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
p(s)dqs

+
∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α)

p(s)dqs

≤ p∗Tα

Γq(1 + α)
(t2 − t1)

α

+ p∗
∫ t1

0

|(t2 − qs)(α−1) − (t1 − qs)(α−1)|
Γq(α)

dqs

→ 0 as t1 −→ t2.

(7)

This shows that {hn : n ≥ 1} is equicontinuous. Consequently, {hn : n ≥ 1} is relatively compact
in C(I).

Step 3. The graph of N is closed.
Let (un, hn) ∈ graph(N), n ≥ 1, with(‖un − u‖, ‖hn − h‖) → (0.0), as n → ∞. We have to show
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that (u, h) ∈ graph(N). (un, hn) ∈ graph(N) means that hn ∈ N(un), which implies that there exists
vn ∈ SF◦un , such that for each t ∈ I,

hn(t) = u0 +
∫ t

0

(t− qs)(α−1)

Γq(α)
vn(s)dqs.

Consider the continuous linear operator Θ : L1(I)→ C(I),

Θ(v)(t) 7→ hn(t) = u0 +
∫ t

0

(t− qs)(α−1)

Γq(α)
vn(s)dqs.

Clearly, ‖hn(t) − h(t)‖ → 0 as as n → ∞. From Lemma 4 it follows that Θ ◦ SF is a closed graph
operator. Moreover, hn(t) ∈ Θ(SF◦un). Since un → u, Lemma 4 implies

h(t) = u0 +
∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs.

for some v ∈ SF◦u.

Step 4. M is relatively compact in C(I).
Let M ⊂ U; with M ⊂ conv({0} ∪ N(M)), and let M = C; for some countable set C ⊂ M. the set
N(M) is equicontinuous from Equation (7). Therefore,

M ⊂ conv({0} ∪ N(M)) =⇒ M is equicontinuous.

By applying the Arzéla–Ascoli theorem; the set M(t) is relatively compact for each t ∈ I. Since
C ⊂ M ⊂ conv({0} ∪ N(M)), then there exists a countable set H = {hn : n ≥ 1} ⊂ N(M) such that
C ⊂ conv({0} ∪ H). Thus, there exist un ∈ M and vn ∈ SF◦un such that

hn(t) = u0 +
∫ t

0

(t− qs)(α−1)

Γq(α)
vn(s)dqs.

From Theorem 1, we get

M ⊂ C ⊂ conv({0} ∪ H)) =⇒ µ(M(t)) ≤ µ(C(t)) ≤ µ(H(t)) = µ({hn(t) : n ≥ 1}).

Using now the inequality Equation (6) in step 2, we obtain

µ(M(t)) ≤ 2
∫ t

0
µ

({
(t− qs)(α−1)

Γq(α)
vn(s)

})
dqs.

Since vn ∈ SF◦un and un(s) ∈ M(s), we have

µ(M(t)) ≤ 2
∫ t

0
µ

({
(t− qs)(α−1)

Γq(α)
vn(s) : n ≥ 1

})
dqs.

Also, since vn ∈ SF◦un and un(s) ∈ M(s), then from (H3) we get

µ({(t− qs)(α−1)vn(s); n ≥ 1}) = (t− qs)(α−1)p(s)µ(M(s)).

Hence

µ(M(t)) ≤ 2p∗
∫ t

0

(t− qs)(α−1)

Γq(α)
µ(M(s))dqs.
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Consequently, from (H4), the function Φ given by Φ(t) = µ(M(t)) satisfies Φ ≡ 0; that is, µ(M(t)) = 0
for all t ∈ I. Finally, the Arzéla–Ascoli theorem implies that M is relatively compact in C(I).

Step 5. The priori estimate.
Let u ∈ C(I) such that u ∈ λN(u) for some 0 < λ < 1. Then

u(t) = λu0 + λ
∫ t

0

(t− qs)(α−1)

Γq(α)
v(s)dqs,

for each t ∈ I, where v ∈ SF◦u. On the other hand,

‖u(t)‖ ≤ ‖u0‖+
∫ t

0

(t− qs)(α−1)

Γq(α)
‖v(s)‖dqs

≤ ‖u0‖+
∫ t

0

(t− qs)(α−1)

Γq(α)
p(s)dqs

≤ ‖u0‖+
p∗T(α)

Γq(1 + α)
.

Then

‖u‖ ≤ ‖u0‖+
p∗T(α)

Γq(1 + α)
:= d.

Set
U = {u ∈ Cγ : ‖u‖ < 1 + d}.

Hence, the condition in Equation (4) is satisfied. Finally, Theorem 3 implies that N has at least one
fixed point u ∈ C(I) which is a solution of our problem in Equations (1) and (2).

4. An Example

Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞

∑
n=1
|un| < ∞

}
be the Banach space with the norm

‖u‖E =
∞

∑
n=1
|un|.

Consider now the following problem of fractional 1
4−difference inclusion(cD

1
2
1
4

un)(t) ∈ Fn(t, u(t)); t ∈ [0, e],

u(0) = (1, 0, . . . , 0, . . .),
(8)

where

Fn(t, u(t)) =
t2e−4−t

1 + ‖u(t)‖E
[un(t)− 1, un(t)]; t ∈ [0, e],

with u = (u1, u2, . . . , un, . . .). Set α = 1
2 , and F = (F1, F2, . . . , Fn, . . .).

For each u ∈ E and t ∈ [0, e], we have

‖F(t, u)‖P ≤ p(t),

with p(t) = t2e−t−4. Hence, the hypothesis (H2) is satisfied with p∗ = e−2. A simple computation
shows that conditions of Theorem 5 are satisfied. Hence, the problem in Equation (8) has at least one
solution defined on [0, e].
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5. Conclusions

We have provided some sufficient conditions guaranteeing the existence of solutions for
some fractional q-difference inclusions involving the Caputo fractional derivative in Banach spaces.
The achieved results are obtained using the fixed point theory and the notion of measure of
noncompactness. Such notion requires the use of the set-valued analysis conditions on the right-hand
side, like the upper semi-continuity. In the forthcoming paper we shall provide sufficient conditions
ensuring the existence of weak solutions by using the concept measure of weak noncompactness, the
Pettis integration and an appropriate fixed point theorem.
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