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Abstract: In some clinical studies, assessing covariate effect types indicating whether a covariate is
predictive and/or prognostic is of interest, in addition to the study endpoint. Recently, for a case with
a binary outcome, Chiba (Clinical Trials, 2019; 16: 237–245) proposed the new concept of covariate
effect type, which is assessed in terms of four response types, and showed that standard subgroup
or regression analysis is applicable only in certain cases. Although this concept could be useful
for supplementing conventional standard analysis, its application is limited to cases with a binary
outcome. In this article, we aim to generalize Chiba’s concept to continuous and time-to-event
outcomes. We define covariate effect types based on four response types. It is difficult to estimate the
response types from the observed data without making certain assumptions, so we propose a simple
method to estimate them under the assumption of independent potential outcomes. Our approach is
illustrated using data from a clinical study with a time-to-event outcome.
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1. Introduction

In certain clinical studies, it is important to assess covariate effect types to indicate whether a
covariate is predictive and/or prognostic in the context of treatment effectiveness. Clark et al. [1]
defined a predictive factor as a factor associated with the response or lack of response to a particular
therapy, while a prognostic factor is a factor associated with the clinical outcome in the absence of
therapy, or with the application of a standard therapy. To assess whether a covariate is predictive
and/or prognostic, subgroup or regression analysis is often used [2]. For a case with a binary outcome,
on the difference scale, a binary covariate Z is predictive if

δ ≡
{
Pr(Y = 1|X = 1, Z = 1) − Pr(Y = 1|X = 0, Z = 1)

}
−
{
Pr(Y = 1|X = 1, Z = 0) − Pr(Y = 1|X = 0, Z = 0)

} (1)

is not zero, where X is the treatment arm (X = 1 for the experimental treatment and X = 0 for the
control treatment) and Y is the outcome (Y = 1 for response and Y = 0 for no response). If δ is close to
zero, Z is prognostic if

γ ≡ Pr(Y = 1|X = 0, Z = 1) − Pr(Y = 1|X = 0, Z = 0) (2)

is not zero.
Recently, for cases with a binary outcome, Chiba [3] proposed assessing covariate effect types

based on four response types [4] defined in terms of the potential outcome of Y if X is x, Y(x), rather than
δ and γ as above. The four response types are defined as follows:

• Activated subjects, who would show a response regardless of the treatment they received; that is,{
Y(1), Y(0)

}
= (1, 1);
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• Causative subjects, who would show a response only if they received the experimental treatment;
that is,

{
Y(1), Y(0)

}
= (1, 0);

• Preventive subjects, who would show a response only if they received the control treatment;
that is,

{
Y(1), Y(0)

}
= (0, 1);

• Inert subjects, who would not show a response regardless of the treatment they received; that is,{
Y(1), Y(0)

}
= (0, 0).

Based on the four response types, measures of the covariate effect types are defined as follows [3]:

ηkl ≡ Pr
{
Y(1) = k, Y(0) = l

∣∣∣Z = 1
}
− Pr

{
Y(1) = k, Y(0) = l

∣∣∣Z = 0
}

(3)

for k, l = 0, 1. Then, η10 can be used instead of a current common measure for predicting the
effectiveness of the experimental treatment, i.e., δ in (1). η10 > 0 indicates that the proportion of
subjects who would show a response only if they received the experimental treatment is higher in the
subgroup where Z = 1 than in the subgroup where Z = 0. In addition, we can consider predictability
for the effectiveness of the control treatment (or the harm caused by the experimental treatment) by η01.
Instead of a current common measure for a prognostic factor, i.e., γ in (2), η11 can be used. η11 > 0
indicates that the proportion of subjects who would show a response regardless of the treatment they
received is higher in the subgroup where Z = 1 than in the subgroup where Z = 0.

Applying the potential outcome Y(x) to (1) under the assumption of Y(x)⊥X
∣∣∣Z , which indicates

that Y(x) is independent from X given Z, the following relationship between (1) and (3) is obtained:

δ =
[
Pr

{
Y(1) = 1

∣∣∣Z = 1
}
− Pr

{
Y(0) = 1

∣∣∣Z = 1
}]
−

[
Pr

{
Y(1) = 1

∣∣∣Z = 0
}
− Pr

{
Y(0) = 1

∣∣∣Z =
}]

= η10 − η01.
(4)

Similarly, the following relationship holds between (2) and (3):

γ = Pr
{
Y(0) = 1

∣∣∣Z = 1
}
− Pr

{
Y(0) = 1

∣∣∣Z = 0
}

= η11 + η01.
(5)

Obviously, if η01 , 0, the currently used definition of covariate effect types does not correspond to
the new definition in (3). Except for the special case of η01 = 0, under the current definition, the two
characteristics of covariate effect cannot be separated from each other. In actual clinical studies, the aim
is to assess covariate effect type on the basis of (3) rather than (1) and (2). However, (3) can be applied
only when an outcome is binary and not when an outcome is continuous or time-to-event-based. In this
article, we aim to generalize (3) to continuous and time-to-event outcomes. We provide a definition
of measures of covariate effect types in Section 2 and propose a simple method to estimate those
measures in Section 3. In Section 4, our approach is illustrated using data from a clinical study with a
time-to-event outcome. Finally, in Section 5, the performance of the proposed approach and directions
for future work in this area are discussed.

2. Definition of Measures of Covariate Effect Types

In the following, we mainly discuss a case with a time-to-event outcome T. However, this discussion
can also be applied to a case with a continuous outcome as a special case without censored data
in which a larger value represents a better response. X and Z are the same as in Section 1; i.e.,
X is a binary treatment arm and Z is a binary covariate. T(x) is the potential outcome of T if X
had been set to x. Unfortunately, it is not possible to observe the values of both T(1) and T(0); i.e.,
T = T(1)X + T(0)(1−X) [5]. We use the stable unit treatment value assumption under which a single
version of each treatment is available and there is no interference among subjects [6,7].

When an outcome is time-to-event, the response type
{
T(1), T(0)

}
cannot be classified into four

types unlike in the case of a binary outcome described in Section 1. However, if we set a cut-off point
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tc, the time-to-event outcome can be regarded as a binary variable; then, we can consider the following
four response types.

Definition 1 (Response type). Using a cut-off point tc, the response type can be classified into the following
four types:

• Activated subjects (type 11 subjects), whose outcomes would be larger than or equal to tc, regardless of the
treatment they received; that is,

{
T(1) ≥ tc, T(0) ≥ tc

}
;

• Causative subjects (type 10 subjects), whose outcomes would be larger than or equal to tc if they received
the experimental treatment, but would be smaller than tc if they received the control treatment; that is,{
T(1) ≥ tc, T(0) < tc

}
;

• Preventive subjects (type 01 subjects), whose outcomes would be smaller than tc if they received the
experimental treatment, but would be larger or equal to tc if they received the control treatment; that is,{
T(1) < tc, T(0) ≥ tc

}
;

• Inert subjects (type 00 subjects), whose outcomes would be smaller than tc, regardless of the treatment they
received; that is,

{
T(1) < tc, T(0) < tc

}
.

All subjects belong to one of these four types, although we cannot know which type a subject
belongs to. We denote a proportion of the kl subjects of the total subjects as Pkl(tc); i.e.,

Pkl(tc) ≡ [Pr
{
T(1) ≥ tc, T(0) ≥ tc

}
]kl[Pr

{
T(1) ≥ tc, T(0) < tc

}
]k(1−l)

× [Pr
{
T(1) < tc, T(0) ≥ tc

}
](1−k)l[Pr

{
T(1) < tc, T(0) < tc

}
](1−k)(1−l),

(6)

and the proportion in the stratum with Z = z as Pkl,z(tc). Then, P11(t) + P10(t) = Pr
{
T(1) ≥ t

}
corresponds to the survival probability under the experimental condition and P11(t) + P01(t) =

Pr
{
Y(0) ≥ t

}
is that under the control condition. For a continuous outcome, they correspond to one

minus the cumulative density function.
Using Pkl,z(tc), we can simply define measures of covariate effect types at the cut-off point tc by

θkl(tc) ≡ Pkl,1(tc) − Pkl,0(tc). (7)

This is essentially the same as ηkl in (3). Unfortunately, θkl(tc) with a fixed tc cannot be applied as
a general definition of measures of covariate types. If there is a medically meaningful cut-off point,
the outcome is no longer time-to-event (continuous); rather, it is binary. If the cut-off point tc has no
medical significance, it is not valuable to use a fixed cut-off point. Pkl(tc) and Pkl,z(tc) with a fixed
cut-off point tc may also not be useful. Using these probabilities with tc changed on the interval,
we define the restricted mean probability (RMP) as follows.

Definition 2 (Restricted mean probability). The restricted mean probability for response type on the interval
[ta, tb], Pkl, is defined by the following formula:

Pkl ≡
1

tb − ta

∫ tb

ta

Pkl(tc)dtc

for k, l = 0, 1.

In this definition, ta and tb will usually be set to ta = 0 and tb = tτ, respectively, where tτ is the
truncation time; for a continuous outcome, these values will be set to the minimum and maximum
values of the observed outcome, respectively. Pkl,z in the stratum with Z = z is defined in the same
manner. Pkl is the restricted expectation of Pkl(tc) on the interval [ta, tb]. Then, Pkl is interpreted as the
mean proportion of type kl subjects when the cut-off point is changed from ta to tb.
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It is important to note that Pkl is related to E[min
{
max

{
T(x), ta

}
, tb

}
], which is the restricted

expectation of the potential outcome T(x) on the interval [ta, tb].

Lemma 1. We have the following relationships between Pkl and E[min
{
max

{
T(x), ta

}
, tb

}
]:

E[min
{
max

{
T(1), ta

}
, tb

}
] = (tb − ta)

(
P11 + P10

)
+ ta,

E[min
{
max

{
T(0), ta

}
, tb

}
] = (tb − ta)

(
P11 + P01

)
+ ta.

The proof is given in Appendix A. The difference between these two equations indicates that the
restricted average causal effect on the interval [ta, tb] can be expressed as (tb − ta)

(
P10 − P01

)
. Notably,

when ta = 0 and tb = tτ, tτ
(
P11 + P10

)
and tτ

(
P11 + P01

)
correspond to the restricted mean survival times

(RMSTs) [8–10], which are equal to the areas under the survival curves on the interval [0, tτ] under the
experimental and control conditions, respectively. Similarly, tτ

(
P01 + P00

)
and tτ

(
P10 + P00

)
correspond

to the restricted mean time lost [9] under the experimental and control conditions, respectively.
We give a general definition of measures of covariate effect types using Pkl,z, which is the RMP of

a given response type in the stratum with Z = z.

Proposition 1. We define a measure of covariate effect type as θkl ≡ Pkl,1 − Pkl,0 for k, l = 0, 1.

The interpretation of θkl is similar to that of ηkl in (3) for a case with a binary outcome. As a
prediction measure, we use θ10 and θ01. θ10 > 0 implies the subgroup where Z = 1 contains a higher
proportion of subjects who would survive longer by receiving the experimental treatment than the
subgroup where Z = 0. Then, Z predicts the effectiveness of the experimental treatment, and we say
that Z is “augmented-causative”. If θ10 < 0, we say that Z is “depleted-causative”. In a similar sense,
θ01 is a prediction measure of the effectiveness of the control treatment (or for the harm associated
with proceeding with the experimental treatment).

We note that for a case with a time-to-event (continuous) outcome, we can obtain results similar
to (4) and (5) when the outcome is binary. Using Proposition 1 and Lemma 1, the prediction and
prognosis measures based on conventional standard analysis, δ′ and γ′, can be expressed as functions
of θkl on the difference scale.

Corollary 1. We have the following equations:

δ′ ≡ (E1,1 − E0,1) − (E1,0 − E0,0) = (tb − ta)
(
θ10 − θ01

)
,γ′ ≡ E0,1 − E0,0 = (tb − ta)

(
θ11 + θ01

)
,

where Ex,z ≡ E[min
{
max

{
T(x), ta

}
, tb

}∣∣∣Z = z].

On the basis of this corollary, θ11 in Proposition 1 can be related to the prognosis under the current
standard analysis. Similar to the currently used standard analysis, if θ10 is close to θ01, which implies
that δ′ is close to zero, Z is prognostic if θ11 is not zero. θ11 > 0 implies that the mean survival time is
longer for subjects in the subgroup where Z = 1 than the subgroup where Z = 0, regardless of the
treatment they received. In this case, we say that Z is “augmented-activated”. In contrast, when θ11 < 0,
we say that Z is “depleted-activated”.

Finally, we emphasize that Corollary 1 indicates that the results of the current standard analysis
can be properly interpreted when θ01 = 0; however, this may not be the case when θ01 , 0. On the
other hand, our measure of covariate effect type can assess whether a covariate is predictive and/or
prognostic, even when θ01 , 0.
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3. Estimation of Measures of Covariate Effect Types

Unfortunately, θkl in Proposition 1 cannot be identified based on the observed data without
making certain assumptions, because the joint probability of Y(1) and Y(0) cannot be estimated [11,12].
Therefore, we use two assumptions that are often applied in the context of the pairwise comparison
based on Pr

{
T(x) > T(1− x)

}
[13–15].

Assumption 1 (Ignorable treatment assignment). The potential outcome T(x) is independent of the
treatment arm X ; i.e., T(x)⊥X . It is also assumed that T(x)⊥X

∣∣∣Z .

Assumption 2 (Independent potential outcome). Two potential outcomes are independent of each other;
i.e., T(1)⊥T(0).

Assumption 1 is often made in randomized trials. Although some authors have discussed methods
to infer Pr

{
T(x) > T(1− x)

}
without Assumption 2 [16,17], the methods are impractical as they tend to

be complex and/or require considerable computational effort.

Corollary 2. Pkl(tc) in (6) is identified under Assumptions 1 and 2 as follows:

Pkl(tc) = [Pr{T ≥ tc|X = 1}]k[Pr{T〈tc|X = 1}]1−k
× [Pr{T ≥ tc|X = 0}]l[Pr{T〈tc|X = 0}]1−l.

Pkl,z(tc) in the stratum with Z = z is also identified under Assumptions 1 and 2, thus allowing Pkl,z in
Definition 2 and θkl in Proposition 1 to be identified.

We propose a method to estimate Pkl in Definition 2 based on the formula in Corollary 2. Let us
denote the observed event occurrence or censoring time as t1 < · · · < t j < · · · < tD in which the time
points in both arms are included. Then, we can use the cut-off point tc as a discrete value taking only
the same value as t j; that is, it is sufficient to consider t1, . . . , tD as the cut-off points. We also set the
interval [ta, tb] to [0, tτ], where tτ (≤ tD) is the truncation time. These settings yield the following
formula to estimate Pkl.

Proposition 2. For a time-to-event outcome, we estimate Pkl,z(tc) with truncation time tτ under Assumptions
1 and 2 as follows:

P̂kl(tc) =
{
Ŝ1(tc−1)

}k{
1− Ŝ1(tc−1)

}1−k{
Ŝ0(tc−1)

}l{
1− Ŝ0(tc−1)

}1−l
,

where t0 = 0 and Sx(tc−1) ≡ Pr{T ≥ tc|X = x} is the survival probability estimated using the Kaplan–Meier
method. Then, we estimate Pkl by

P̂kl =
1
τ

τ∑
c=1

(tc − tc−1)P̂kl(tc).

Censoring is considered when estimating Sx(tc−l by the Kaplan–Meier method. In a similar
manner, Pkl,z(tc) and Pkl,z are estimated by applying Proposition 2 to the stratum with Z = z. Thus,
θkl,z(tc), in (7) and θkl,z in Proposition 1 can be estimated based on the observed data. It is obvious

from Proposition 2 that τ
(
P̂11 + P̂10

)
and τ

(
P̂11 + P̂01

)
are consistent with the estimators of the RMST

in the arm with X = x.

To derive the formulas to estimate Pkl(tc) and Pkl for a continuous outcome without censoring,
let us suppose that t1 < · · · < tj < · · · tD are the observed values of the continuous outcome. The interval
[ta,tb] is set to [t1,tD]. Here, we denote the number of subjects taking the value tj in the experimental arm

as nj and that in the control arm as mj. Then, Pkl
(
t j
)

and Pkl are estimated by the following formulas.
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Proposition 3. For a continuous outcome, we estimate Pkl(tc) and Pkl under Assumptions 1 and 2 by

P̂kl(tc) =
(∑

j≥c n j
n

)k(∑
j≤c−1 n j

n

)1−k(∑
j≥c m j
m

)l(∑
j≤c−1 m j

m

)1−l
,

P̂kl =
1

tD−t1

D∑
c=2

(tc − tc−1)P̂kl(tc),

where n =
∑D

j=1 n j and m =
∑D

j=1 m j.

Let us denote the outcome values as t1
j1

( j1 = 1, . . . , D1) for subjects in the experimental arm and

t0
j0
( j0 = 1, . . . , D0) for those in the control arm. Then, in relation to Lemma 1, we have Lemma 2 below.

Lemma 2. When P̂kl(tc) and P̂kl in Proposition 3 are used, the following equations hold:

(tD − t1)
(
P̂11 + P̂10

)
+ t1 = 1

n

D1∑
j1=1

n j1 t1
j1

,

(tD − t1)
(
P̂11 + P̂01

)
+ t1 = 1

m

D0∑
j0=1

m j0 t0
j0

.

The proof is given in Appendix B. In this lemma, the right sides correspond to the arithmetic
means in the arm with X = x. As the arithmetic mean is a plausible estimate of E{T|X = x},
the left sides are plausible estimates of unrestricted rather than restricted expectation of T(x), E

{
T(x)

}
,

under Assumption 1.

4. Illustration

We illustrate our measure of covariate effect type using the clinical data set of Ohashi and
Hamada [18]. The purpose of that study was to determine whether the survival time is longer with use
of radiation during surgery (X = 1) than without it (X = 0) in subjects with pancreatic cancer. As it
was an observational study, Assumption 1 would not hold. Nevertheless, we analyzed the data under
this assumption, so the following analyses are for illustrative purposes only.

We explored the covariate effect type in the context of radiation effectiveness in the pancreatic
cancer site, which was subclassified as pancreatic head (Z = 1) or “other” (Z = 0). In the pancreatic head
subgroup, 51 subjects received radiation during surgery and 14 subjects did not. In the other subgroup,
nine subjects (including one censored subject) received radiation and nine did not. The survival curves
in both subgroups are shown in Figure 1. Table 1 summarizes the RMST estimates and differences
between arms in both subgroups, with 95% confidence intervals (CIs). For the estimation, the truncation
time was set to the maximum observed time, 21.6 (months), because the final survival probability was
zero in both arms in both subgroups.

Table 1. Restricted mean survival times (RMSTs) for the arms with and without radiation, for the
pancreatic head and “other” subgroups, and the RMST differences between the two arms.

Subgroup Arm RMST RMST Difference (95% CI 1)

Pancreatic head
Radiation 5.508 1.236 (–1.127, 3.600)

No radiation 4.271

Other
Radiation 9.963 5.585 (1.947, 9.223)

No radiation 4.378
1 Confidence intervals (CIs) were derived based on a normal approximation.

Before applying our approach, we first applied the current standard analysis given by δ′ and γ′ in
Corollary 1. Using the RMST estimates in Table 1, δ̂′ = −4.349 (95% CI: –8.687, –0.011) and γ̂′ = −0.106
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(95% CI: –2.635, 2.422). As δ̂′ < 0, it was concluded that the cancer site would be a predictive factor, i.e.,
if the cancer site is not the pancreatic head, surgery is expected to be more effective with radiation than
without it.
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Figure 1. Survival curves for the arms with and without radiation during surgery: (a) pancreatic head
subgroup; (b) “other” subgroup.

Next, we applied the approach proposed in this article. Figure 2 shows P̂kl,z(tc) in each subgroup
when the cut-off point tc was changed from 0 to 21.6 (months). The proportions of activated and inert
subjects decreased and increased monotonically over time, respectively, as shown in Figure 2a,d; this is
to be expected given Proposition 2. Figure 2b shows that the proportion of causative subjects is lower
in the pancreatic head subgroup than in the other subgroup. Figure 2c shows that the proportion of
preventive subjects was small, especially in the other subgroup. Figure 3 shows the differences in the
estimated proportions between the two subgroups; i.e., θ̂kl(tc) in (7). In Figure 3, we can clearly see
that the cancer site is “depleted-activated” until approximately six months. Then, over the period from
6 to 12 months, the cancer site is “depleted-causative.”
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Figure 3. Differences in the proportions of type kl subjects between the pancreatic head and
“other” subgroups.

The estimates of Pkl in Definition 2 and θkl in Proposition 1 are summarized in Table 2. In the

table, θ̂10 = −0.145 implies that the mean proportion of causative subjects in the pancreatic head
subgroup on the interval [0, 21.6] (12.9%) was 14.5% lower than that in the other subgroup (27.4%).
This indicates that the cancer site is “depleted-causative”. However, for some subjects, the cancer site

might be “activated-preventive” because θ̂01 = 0.057, although the absolute value is smaller than that

of θ̂10 (−0.145). The cancer site might also be considered as “depleted-activated” because θ̂11 = −0.062.

In the context of prediction and prognosis, as
∣∣∣∣θ̂10

∣∣∣∣ > ∣∣∣∣θ̂01

∣∣∣∣ > 0, it is concluded that the cancer site
would be a predictive factor of the effectiveness of radiation, and possibly also of the harm caused by
radiation, albeit to a lesser extent.

Table 2. Restricted mean probabilities (RMPs) of the four response types by subgroups of cancer site
and the RMP differences between the two subgroups.

Response Type Subgroup RMP (
¯
Pkl) RMP Difference

(
θkl

) (
95% CI 1

)
Activated
(Type 11)

Pancreatic head 0.126
−0.062 (−0.134, 0.017)

Other 0.188

Causative
(Type 10)

Pancreatic head 0.129
−0.145 (−0.267, −0.026)

Other 0.274

Preventive
(Type 01)

Pancreatic head 0.072 0.057 (0.010, 0.119)
Other 0.015

Inert
(Type 00)

Pancreatic head 0.673 0.149 (−0.007, 0.307)
Other 0.524

1 Confidence intervals (CIs) were yielded as percentiles for the bootstrap distribution with 2000 samples.

The results generated using our approach were similar to those obtained via the current standard

analysis; however, the magnitude was different. The difference is attributed to θ̂01 = 0.057 , 0,
where our approach could not rule out, based on the data, a harmful effect of radiation in some
subjects, especially in the pancreatic head subgroup. The value of δ̂′ estimated by the current standard

analysis was −4.439, while it is converted to −0.201 (−4.349/21.6); this is 0.057 less than the value of θ̂10

(−0.145) derived by our approach, as seen in Corollary 1. Similarly, γ̂′ = −0.106 is converted to −0.005

(−0.106/21.6); this is 0.057 larger than the value of θ̂11 (−0.062). As a result, γ̂′ is closer to zero than θ̂11.

5. Conclusion

In this article, we extended the concept of the covariate effect type proposed by Chiba [3] from the
case with a binary outcome to cases with time-to-event and continuous outcomes. This was achieved
by using all cut-off points on the interval [ta, tb], where the respective values of ta and tb are zero and
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the truncation time in a case with a time-to-event outcome and the minimum and maximum observed
values in a case with a continuous outcome. A proportion of the kl subjects for each cut-off point
is Pkl(tc) in (6), and the mean of Pkl(tc) is the RMP, Pkl, in Definition 2. As discussed in Sections 2
and 3, the RMP is related to the arithmetic mean, which corresponds to the RMST for a case with a
time-to-event outcome.

In some studies, a covariate of interest may be a continuous variable, rather than a binary variable
discussed in this article. Unfortunately, our approach cannot be applied for a continuous covariate.
However, a continuous covariate can be partitioned into two subgroups by finding the optimal
threshold value to split it using a popular method such as receiver operating characteristic (ROC)
curve analysis [19]. Recently, partitioning methods based on a combination of multivariate covariates
have also been discussed [20]. These methods will facilitate the use of our approach.

Our measures of covariate effect types can easily be calculated by merging two data sets for
the experimental and control arms including the rows of times and survival probabilities, which are
automatically generated using commercial software such as SAS (SAS Institute, Cary, NC, USA)
and R (R Foundation for Statistical Computing, Vienna, Austria). For example, to derive P̂11(tc) =

Ŝ1(tc−1)Ŝ0(tc−1), we can use a procedure to generate a Kaplan–Meier plot. Then, we obtain respective

data sets including
{
t1

j1
, Ŝ1(tc−1)

}
and

{
t0

j0
, Ŝ0(tc−1)

}
. P̂11(tc) is derived by merging these two data

sets. The RMP estimate, P̂11, is calculated by summing the areas of rectangles, which are calculated
by applying a lag function. This process to estimate Pkl can be applied to a case with a continuous
outcome by setting the minimum value of the outcome to zero, i.e., by using t j − t1. It is also easy to
extend the method to observational studies by using a weighted survival curve [21] derived based on
the propensity score [22].

A limitation of our approach is the requirement that the assumption of independent potential
outcomes (Assumption 2) is used when estimating the measures of covariate effect types. Unfortunately,
we cannot verify whether this assumption holds in actual studies based on the observed data. Additional
work is necessary to develop a simple method to estimate our measures of covariate effect types
without using the assumption of independent potential outcomes.

Current standard analysis is suitable for assessing prediction and prognosis of a covariate when
θ01 = 0, which implies that a covariate is not predictable for the effectiveness of the control treatment
(or for the harm caused by the experimental treatment). However, when θ01 , 0, whether the current
approach is appropriate is somewhat questionable unlike for our approach. Thus, our approach
can supplement the current standard analysis, despite the limitation of requiring the assumption of
independent potential outcomes.

Funding: This research was funded by Grant-in-Aid for Scientific Research from Japan Society for the Promotion
of Science, grant number 19K11871.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A Proof of Lemma 1

Let us denote the probability density function of T(1) = tc as f (tc), and the cumulative density
function as F(tc). Then, the left side of the first equation in Lemma 1 can be expressed as follows:

E[min
{
max

{
T(1), ta

}
, tb

}
] =

∫
∞

−∞
tc f (tc)dtc

=
∫ ta

−∞
ta f (tc)dtc +

∫ tb
ta

tc f (tc)dtc +
∫
∞

tb
tb f (tc)dtc

= ta[F(tc)]
ta
−∞

+
∫ tb

ta

[{
tcF(tc)

}′
− F(tc)

]
dtc + tb[F(tc)]

∞

tb

= −
∫ tb

ta
[1− Pr

{
T(1) ≥ tc

}
]dtc + tb

=
∫ tb

ta

{
P11(tc) + P10(tc)

}
dtc + ta

= (tb − ta)
(
P11 + P10

)
+ ta.
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The second equation in Lemma 1 is derived in a similar manner.

Appendix B Proof of Lemma 2

Using Proposition 3, P̂11(tc) + P̂10(tc) =
∑
j≥c

n j/n holds. This implies that the value of P̂11(tc) +

P̂10(tc) does not change when applying the cut-off point for the observed outcome value in the control

group. Therefore, for P̂11 + P̂10, it is sufficient to consider only the observed outcome values in the
experimental arm. Then, the left side of the first equation in Lemma 2 can be expressed as follows:

(tD − t1)
(
P̂11 + P̂10

)
+ t1 =

D1∑
j1=2

{(
t1

j1
− t1

j1−1

)∑
j≥ j1

n j

n

}
+

t1
∑

j≥1 n j
n

= 1
n

 D1∑
j1=1

t1
j1

D1∑
j= j1

n j

− D1∑
j1=2

t1
j1−1

D1∑
j= j1

n j




= 1
n

D1−1∑
j1=1

t1
j1

D1∑
j= j1

n j

+ nD1 t1
D1
−

D1−1∑
j1=2

t1
j1

D1∑
j= j1+1

n j




= 1
n

D1∑
j= j1

n j1 t1
j1

The second equation in Lemma 2 is derived in a similar manner.
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