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Abstract: This paper considers a multi-period supplier selection and order allocation problem for
a green supply chain system that consists of a single buyer and multiple heterogeneous suppliers.
The buyer sells multiple products to end customers and periodically replenishes each item’s inventory
using a periodic inventory control policy. The periodic inventory control policy used by the buyer
starts every period with an order size determination of each item and the subsequent supplier
selection to fulfill the orders. Because each supplier in the system is different from other suppliers in
the types of carrying items, delivery distance, item price, and quantity discount schedule, the buyer’s
problem becomes a complicated optimization problem. For the described order size and supplier
selection problem of the buyer, we propose a nonlinear integer programming model and develop
two different algorithms to enhance the usability of the model in a real business environment with a
large amount of data. The algorithms are developed to considerably cut computational time and at
the same time to generate a good feasible solution to a given supplier selection and order allocation
problem. Computational experiments that were conducted to test the efficiency of the algorithms
showed that they can cut as much as 99% of the computational time and successfully find feasible
solutions, deviating not more than 3.4% from the optimal solutions.

Keywords: nonlinear programming; multi-period supplier selection and order allocation; single
buyer; multiple suppliers

1. Introduction

In a highly competitive and uncertain business environment, efficient supply chain construction
and management becomes an increasingly important issue to maintain a leading edge (Ware et al. [1]).
Among the various kinds of business decision-making problems occurring in a supply chain, supplier
selection and order allocation problems are considered to have a significant impact on the successful
operation of a retail business. For this and additional reasons, many previous researchers dealt with
similar problems with different particular features of such operations (Fox et al. [2], Chen et al. [3],
Kiesmüller et al. [4], Lian et al. [5], Kim et al. [6]). Refer to Yao and Minner [7] for a review of papers in
this area. Recently, many complicated new characteristics have emerged for the supply chains. One such
complication is caused by processes related to carbon emissions, such as maximum carbon emission limits,
emission capacity trading, and costs related to such activities. A more realistic supplier selection and order
allocation problem should thus include such additional features and have a high degree of computational
complexity. The problem introduced in this paper belongs to a sustainable supplier selection and order
allocation (SSS & OA) problem. Figure 1. from Zimmer et al. [8], which shows a classification of the SSS &
OA problems in terms of the modeling approach, indicates that our problem belongs to the mathematical
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programming category. Specifically, we analyze in this paper a realistic SSS & OA problem for a single
buyer carrying multiple types of products and selling to end customers. We also note that, to make the
best decision for the coming period, it is necessary to include data for several future periods in addition to
the data for the immediate coming period. We thus define our problem as a supplier selection and order
allocation problem with multiple periods of planning horizon and with several realistic characteristics,
including carbon emissions and price discounts offered by suppliers.

1 

 

 

Figure 1. Classification of the sustainable supplier selection model in Zimmer et al. [8].

Although several solution methodologies have been introduced for a similar problem in previous
research, there has not been an efficient solution methodology to routinely solve a large-scale real
orders and supplier selection problem such as the one introduced in this paper. Park et al. [9] is the
example of such methodologies. They introduced a nonlinear programming model for a replenishment
problem with a single buyer and multiple buyers and proposed an implementation procedure for the
model. Kim et al. [10] formulated a mixed integer linear programming model for a similar SSS & OA
problem for a single buyer and multiple supplier system. They proposed a branch-and-freeze algorithm
to handle real problems with millions of constraints and variables. However, these two solution
methodologies cannot be applied directly to our model because the methodologies are developed
using unique properties of a specific model. The size of our model describing a real problem frequently
exceeds thousands of constraints and variables. Because our model is a nonlinear integer programming
model, it is very hard to get a feasible solution in reasonable amount of time by using an existing
optimization package. Considering this research need, we develop two heuristic algorithms to solve
a larger instance of the introduced model. Computer experiments showed that the algorithms are
sufficiently fast for these bigger problems and also perform to a desired level of accuracy.

2. Literature Review

A large number of papers have been published for the supplier selection and order allocation
problem. Review papers, including Yao and Minner [7] and Zimmer et al. [8], state that the subjects
and methodologies of the supplier selection problems are very wide. The subjects range from
supplier selection criteria analysis to supplier development (Haeri and Rezaei [11], Alikhani et al. [12]).
Methodologies used for analysis include qualitative (e.g., Delphi method), mathematical optimization
(for example, refer to Bektur [13], Jia et al. [14], Mohammed et al. [15], Moheb-Alizadeh and
Handfield [16] for multi-objective optimization), mathematical analytical (e.g., AHP, TOPSIS,
game theory), AI (artificial intelligence), and combined models (Ghalehkhondabi et al. [17],
Memari et al. [18]). Among numerous topics that appear in the SSS & OA area, we narrowly
focus our previous research review on SSS & OA problems considering quantity discount and carbon
emissions in the mathematical optimization category.

2.1. Supplier Selection and Order Allocation Considering Quantity Discount

Supplier selection and order allocation problems, including a quantity discount, have been
analyzed several times due to the importance of the topic. In the real business world, the most
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frequently used quantity discount scheme is the all-unit quantity discount. Benton [19] presented
an efficient heuristic procedure for a multiple-supplier inventory model with multiple items and
all-unit quantity discounts. Chang et al. [20] studied a problem with an all-unit quantity discount,
variable lead-time, and stochastic demand and formulated a mixed-integer programming model. Kang
and Lee [21] analyzed a multi-period replenishment problem under an all-unit quantity discount
and constant demand. They constructed a multiple objective programming model to determine the
optimal order amount, which can lead to the minimization of total costs and the maximum yield rate.
Afterward, Ayhan and Kilic [22] analyzed a supplier selection problem with all-unit quantity discounts
and proposed a two-stage approach to determine the best suppliers and orders for each selected
supplier. There also exist numerous works for other kinds of discount schedules; the incremental one
can be found in Chaudhry et al. [23], Lee et al. [24], and Kang and Lee [25]. Business volume discount
problems were analyzed in Sadrian and Yoon [26] and Dahel [27], to name a few.

2.2. Supplier Selection and Order Allocation Considering Carbon Emissions

Low carbon emissions with an environmentally sustainable inventory policy are considered the
essential factor for business operations in green supply-chain management. In this area, many works
have been published considering carbon emission requirements. Carbon emission constraints include
carbon capacity trading, carbon taxes, and strict emissions restrictions. Konur and Schaefer [28] studied
an integrated inventory control and transportation planning problem with carbon emissions regulations.
They proposed an EOQ (economic order quantity) model with transportation under carbon regulation
policies. Hammami et al. [29] first dealt with the carbon emissions tax and carbon emissions cap on the
model. Salehi et al. [30] analyzed the integrated problem of green truck transport schedules and driver
assignment issues. They proposed a multi-objective model to minimize the total carbon emissions and total
transportation costs. Kaur and Singh [31] solved an environmentally sustainable procurement problem
using a nonlinear integer programming model. The model aims to optimize the replenishment plan of
a buyer considering carrier selection under uncertainty and environmental sustainability requirements.
Lamba et al. [32] developed a nonlinear integer programming model to decide the optimal lot size.
Their problem includes multiple periods, multiple products, multiple suppliers, and carbon emissions costs.

In addition, works on the supplier selection problem incorporating carbon emissions costs are
described in Martí et al. [33], Gurtu et al. [34], Elhedhli and Merrick [35]. Kim et al. [10] studied
a large-scale supplier selection and order allocation problem with a minimum order quantity or
minimum purchase amount. They developed an integer linear programming model for the problem
and proposed an efficient algorithm based on the branch and bound method.

2.3. Research Gaps and the Distinct Features of Our Work

As shown in the Table 1 comparison, this is the first study to consider a more realistic procurement
problem that includes a quantity discount and carbon emissions. The completed mathematical model
includes almost all the various important features, such as production capacity, warehouse capacity,
transportation lead time, and distance. The formulated model is a nonlinear integer programming
model, which is very hard to solve to a desired level of accuracy using currently available commercial
packages. For example, a popular commercial solver failed to generate a feasible solution for a small
instance of such a problem with 8 items, 8 suppliers, and 12 time periods, let alone the optimal solution
during our computational experiment. When we consider that much bigger models with thousands of
constraints and variables will be necessary for a real-world application, we notice a need to develop
more efficient solution methodologies for handling such complex data-oriented problems. Our model,
as well as proposed algorithms, partially satisfy this need by providing a model and solution methods
for dealing with important but computationally difficult problems.
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Table 1. Comparison of related studies regarding the inventory problem under various constraints.

Author(S)

Number of Items Number of Suppliers Number of Periods Demand Process Constraints
Transportation

Lead Time
Model Type

Single Multi Single Multi Single Multi Deterministic
Stochastic Quantity

Discount
Carbon

Emission
Sustainability

Stationary Non-Stationary

Benton [19] 3 3 3 3 3 MIP

Chaudhry et al. [19] 3 3 3 3 3 MIP

Sadrian and Yoon [22] 3 3 3 3 3 MIP

Dahel [27] 3 3 3 3 3 MIP

Chang et al. [20] 3 3 3 3 3 3 MIP

Shin and Benton [36] 3 3 3 3 3 3 EOQ

Kang and Lee [25] 3 3 3 3 3 MIP

Kang and Lee [21] 3 3 3 3 3 MIP

Lee et al. [24] 3 3 3 3 3 MIP

Meena and Sarmah [37] 3 3 3 3 3 NLP1

Konur and Schaefer [28] 3 3 3 3 3 3 EOQ

Ayhan and Kilic [22] 3 3 3 3 3 MIP

Gurtu et al. [34] 3 3 3 3 EOQ

Hammami et al. [29] 3 3 3 3 3 3 MIP

Salehi et al. [30] 3 3 3 3 3 3 NLP1

Kaur and Singh [28] 3 3 3 3 3 3 NLP1

Lamba et al. [32] 3 3 3 3 3 3 NLP1

Park et al. [9] 3 3 3 3 3 3 NLP1

Kim et al. [10] 3 3 3 3 3 3 3 MIP

This model 3 3 3 3 3 3 3 3 3 NLP1
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The remainder of this paper is structured as follows. A problem definition, concerned system
description, and mathematical model are discussed in the following Section. Section 4 introduces two
algorithms for the proposed model. Section 5 provides a computational experiment to test the validity
and efficiency of the algorithms. In Section 6, implications and conclusions are discussed.

3. Mathematical Model

3.1. System Description and Assumptions

The single buyer in the system carries multiple types of products for sale to end-customers. At the
beginning of each period, the buyer should determine each item’s order amount and select suppliers to
fulfill the orders. Each supplier in the system is heterogeneous in terms of carrying item type, price and
discount schedules, delivery distance, and lead times. Our research objective sought in this paper is
to find an efficient solution methodology which can construct a good SSS & OA plan for the buyer.
The plan should minimize the sum of relevant costs occurring to the buyer during a planning horizon
and, at the same time, satisfy all the constraints set to the buyer. Assumptions made for the problem
can be summarized as follows.

3.2. List of Assumptions

• The fixed amount of major ordering cost is charged per order to a supplier.
• The minor ordering cost is charged for each item type included in an order.
• The holding cost is incurred in proportion to the level of on-hand inventory.
• The supplier offers an all-unit quantity discount schedule for each carried item.
• The buyer can purchase items from a spot market but at a higher price than the regular price of

a supplier.
• The buyer has limited warehouse capacity.
• Each supplier has a limited production capacity.
• Only one type of vehicle is available with a known container volume.
• A per-vehicle transportation cost is incurred in proportion to the delivery distance from a supplier

to the buyer.
• The carbon emission capacity can be traded at the end of the planning horizon.
• The carbon emissions occur from the inventory items, order placement, item handling,

and transportation.

3.3. Mathematical Formulation

Indices:

i item number, i = 1, 2, · · · , I,
j supplier number, j = 1, 2, · · · , J,
t planning period, t = 1, 2, · · · , T,

ηi, j
price break of item i in a discount schedule specified
by supplier j, ηi, j = 1, 2, · · · , Ni, j.

Parameters:

Ĵ(i) set of suppliers who sell item i, ∀i,
Î( j) set of item numbers sold by supplier j, ∀ j,
fi,t buyer’s forecast of demand for item i during period t, ∀i, t,
lbqi, j,ηi, j

lower bound quantity of supplier j for price break ηi, j of item i, ∀i, ηi, j, j ∈ ĵ(i),

ubqi, j,ηi, j
upper bound quantity of supplier j for price break ηi, j of item i, ∀i, ηi, j, j ∈ ĵ(i),

ui, j per-period maximum purchase limit for item i set by supplier j,∀i, j ∈ ĵ(i),
vi volume of item i, ∀i,
wt buyer’s warehouse capacity during period t, ∀t,
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mj j major ordering cost of supplier j, ∀ j,
mii, j minor ordering cost of item i of supplier j, ∀i, j ∈ Ĵ(i),
hci unit holding cost of item i, ∀i,
sci unit shortage cost of item i, ∀i,
tc j,t transportation cost per vehicle per unit distance of supplier j in t period, ∀t, j ∈ Ĵ(i),
ps

i,t unit purchase price of item i from spot market of during period t, ∀i, t,
pi, j,ηi, j unit purchase price of item i of supplier j in price break range of ηi, j, ∀i, ηi, j, j ∈ ĵ(i),
l j delivery lead time of supplier j, ∀ j,
x̃i,j,t purchase order made at past period t of item i to supplier j, ∀i, j ∈ Ĵ(i), t = −1,−2, · · · , 1− l j,
zi,0 inventory position of item i at the start of the present period (period 1), ∀i,
C carbon cap for the entire planning period,
cp carbon price per unit,
CEo

t carbon emission from placing an order in period t, ∀t,
CEh

t carbon emission from holding inventory in period t, ∀t,
CEv

t carbon emission from handling items in period t, ∀t,
Ω capacity of the vehicle,
d j distance of supplier j from the buyer, ∀ j,
ρ carbon emission factor for transportation,
M a large number.

Decision variables:

pDC
i,k,t unit discount price of item i paid to supplier j during period t, ∀i, t, j ∈ Ĵ(i),

xi, j,1 purchase quantity of item i from supplier j for the present period, ∀i, j ∈ Ĵ(i),
xi, j,t planned purchase quantity of item i from supplier j for the future period t,

∀i, j ∈ Ĵ(i), t = 2, · · · , T,
xs

i,1 purchase quantity of item i from the spot market at the start of the present period, ∀i,
xs

i,t planned purchase quantity of item i from the spot market for the future period t, ∀i, t,
ILi,t inventory level of item i at the end of period t, ∀i, t,

RLi,t
replenishment level (inventory position) of item i at the start of period t after the arrival of
orders scheduled to arrive during period t, ∀i, t,

nc j,t number of carriers required by supplier j in period t, ∀ j, t,
CE+

t /CE−t residual/excess of carbon cap in period t, ∀t,
βMI

i, j,t binary variable for controlling the minor ordering cost, ∀i, j, t,

βMJ
j,t binary variable for controlling the major ordering cost, ∀ j, t,
βDC

i, j,t,ηi, j
binary variable for controlling the discount price, ∀i, j, t, ηi, j.

3.4. Model Formulation

In this section, we introduce the objective function and constraints of the model for the defined
problem. For the objective function, we derive the cost factors that collectively define the function.

3.4.1. Objective Function

The objective function consists of the item purchase price paid to the suppliers or to the spot
market, the major and minor ordering costs, purchase costs, holding and shortage costs, transportation
costs, and carbon-related costs.

With regard to the major and minor ordering costs, the major ordering cost is expressed by
Equation (1).

Major ordering cost =
T∑

t=1

J∑
j=1

mj jβ
MJ
j,t , (1)

where ∑
i∈Î( j)

xi, j,t ≤MβMJ
j,t ,∀ j, t, (2)
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βMJ
j,t binary variable,∀ j, t. (3)

The minor ordering cost is represented by Equation (4).

Minor ordering cost =
T∑

t=1

I∑
i=1

∑
j∈ Ĵ(i)

mii,βMI
i, j,t, (4)

where
xi, j,t ≤MβMI

i, j,t, ∀i, t, j ∈ Ĵ(i), (5)

βMI
i, j,t binary variable, ∀i, t, j ∈ Ĵ(i). (6)

Purchase cost: the purchase cost is composed of the prices paid to each supplier and to the spot
market. It is expressed as Equation (7).

Purchase cost =
T∑

t=1

I∑
i=1

∑
j∈ Ĵ(i)

pDC
i, j,txi, j,t +

T∑
t=1

I∑
i=1

ps
i,tx

s
i,t. (7)

Holding and shortage costs: the per-period holding cost for an item is the average inventory level
multiplied by the holding cost. Summing it over all item types and all periods gives the expected
holding cost occurring during the planning horizon.

Holding cost =
1
2

T∑
t=1

I∑
i=1

hci
(
RLi,t + IL+

i,t

)
. (8)

The shortage cost for the planning horizon can be calculated similarly.

Shortage cost =
T∑

t=1

I∑
i=1

sciIL−i,t. (9)

Transportation cost: the transportation cost for a supplier is the number of vehicles used multiplied
by the distance and by the per-vehicle unit distance transportation cost. Summing this for the planning
horizon gives the following transportation cost factor.

transportation cost =
T∑

t=1

J∑
j=1

nc j,ttc j,td jβ
MJ
j,t . (10)

Carbon-related cost: the carbon-related cost is derived from the cost or from the profit occurred
by purchasing or from the profit by selling the capacity. It is expressed as in Equation (11)

Excess carbon cost = cp
T∑

t=1

(CE+
t −CE−t ). (11)

Based on the above cost factors, we can complete the objective function as follows:

T =
T∑

t=1

 I∑
i=1

(
1
2 hci

(
RLi,t + IL+

i,t

)
+ sciIL−i,t + ps

i,tx
s
i,t

)
+

J∑
j=1

(
mj jβ

MJ
j,t + nc j,ttc j,td jβ

MJ
j,t

)
+

I∑
i=1

∑
j∈Ĵ(i)

(
mii,βMI

i, j,t + pDC
i, j,txi, j,t

)
+cp

T∑
t=1

(CE+
t −CE−t ).

(12)

The following sections discuss the constraints required for our model.
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3.4.2. Constraints for the Discounted Purchase Price

To assign the correct discount price based on a discount schedule offered by a supplier, we include
the following Equations (13)–(16) as constraints.

pDC
i, j,t =

Ni, j∑
ηi, j=1

pi, j,ηi, jβ
DC
i, j,t,ηi, j

, ∀i, t, j ∈ Ĵ(i), (13)

lbqi,k,ηi, j
+ M

(
βDC

i, j,t,ηi, j
− 1

)
≤ xi, j,t < ubqi, j,ηi, j

+ M
(
1− βDC

i, j,t,ηi, j

)
,∀i, t, ηi, j, j ∈ Ĵ(i), (14)

Ni, j∑
ηi, j=1

βDC
i, j,t,ηi, j

= 1, ∀i, t, j ∈ Ĵ(i), (15)

βDC
i, j,t,ηi, j

binary variable, ∀i, j, ηi, j, j ∈ Ĵ(i). (16)

Equations (14)–(16) ensure that only one variable, βDC
i, j,t,ηi, j

among all the binary variables in (16),

has the value of one when the order amount xi, j,t belongs to the price break range of
(
lbqi,k,ηi, j

, ubqi, j,ηi, j

)
and forces all other βDC

i, j,t,ηi, j
variables to become zero. By these binary variables, Equation (13) assigns

an appropriate price value to the purchase price variable, pDC
i, j,t.

3.4.3. Constraints for Carbon Emissions

J∑
j=1

T∑
t=1

CEo
tβ

MJ
j,t +

I∑
i=1

T∑
t=1

CEh
t ILi,t +

I∑
i=1

J∑
j=1

T∑
t=1

CEv
t xi, j,t + ρ

J∑
j=1

T∑
t=1

nc j,td j +
T∑

t=1

CE−t = C +
T∑

t=1

CE+
t . (17)

The carbon emissions constraint makes the total carbon emitted, which is given in the left-hand
side of Equation (17) equal to the total carbon emission capacity set for the planning horizon.

3.4.4. Mathematical Model for the Defined Problem

Based on the above objective function and constraints, a mathematical model for our problem
is completed. Since it contains several nonlinear functions, the model is categorized as a nonlinear
integer programming model.

NLP1 : Minimize T , (18)

subject to

ILi,t−1 +
∑

j∈ Ĵ(i)|l j=0

xi, j,t +
∑

j ∈ Ĵ(i)|l j ≥ 1
t− l j ≤ 0

x̃i, j,t−l j +
∑

j ∈ Ĵ(i)|l j ≥ 1
t− l j > 0

xi, j,t−l j + xs
i,t = RLi,t, ∀i, t, (19)

RLi,t − fi,t = ILi,t, ∀i, t, (20)

ILi,t = IL+
i,t − IL−i,t, ∀i, t, (21)

xi, j,t ≤ ui, j,∀i, t, j ∈ Ĵ(i), (22)

I∑
i=1

viRLi,t ≤ wt, ∀t, (23)
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∑
i∈Î( j)

xi, j,t ≤MβMJ
j,t , ∀ j, t, (24)

xi, j,t ≤MβMI
i, j,t, ∀i, t, j ∈ Ĵ(i), (25)

nc j,t =

∑I
i=1 xi, j,tvi

Ω
, ∀ j, t, (26)

Constraints (13)–(17),
xi, j,t ≥ 0, βMI

i, j,t binary,∀i, j ∈ Ĵ(i), t, (27)

xs
i,t, RLi,t, IL+

i,t, IL−i,t ≥ 0, ∀i, t, (28)

βMJ
j,t binary,nc j,t nonnegative integer, ∀ j, t, (29)

ILi,t real, ∀i, t, (30)

CE+
t , CE−t ≥ 0 ∀t, (31)

M large real number. (32)

Equation (19) regulates the replenishment level, initial inventory, and arrivals of previous orders
and spot market orders. Equation (20) controls the start and end of period inventories. Equation (21) is
for the on-hand inventory and the shortage. Equation (22) is for the maximum purchase limit and (23)
is for the warehouse capacity limit. Equations (24) and (25) are for the minor and major ordering cost
allocation. Finally, number of carriers required for transportation is set by Equation (26).

The completed model, NLP1, has nonlinear terms in the objective function, as well as many binary
and general integer variables. It thus belongs to a nonlinear integer programming model, which is
known to be very hard to solve. NLP1 has a total of T + 3IT + 2JT + 4IJT + IJTmax

i, j
ηi, j+1 constraints

and 2T + 5IT + 2JT + 2IJT + IJTmax
i, j
ηi, j variables. For a problem having 30 item types, 10 suppliers,

20 time periods, and a maximum of 5 price breaks, NLP1 will have a total of 56,221 constraints and
45,440 variables, among which 36,200 variables are integer ones. In the retail industry, it is not rare to
meet a buyer handling thousands of item types and hundreds of suppliers. The current practice is to
install a heavy and costly commercial retail supply chain management system specifically tailored to a
retailer. Our approach is not to find a general method to substitute such a system. Rather, our results
can contribute to improving a small portion of such a system. Even with this practical target in mind,
we still have a big obstacle to the practical application of our model. The problem is that it is hard
to find any existing commercial solver that can find a feasible solution, not to mention the optimal
one, for this sort of model. It is thus essential to develop an efficient solution method that can handle
reasonably big problems frequently encountered in the real world to improve the usability of our
model. In the following section, we discuss the background and procedures of such methods.

4. Methodology

The computational complexity of NLP1 is mainly caused by the nonlinear terms and integer
variables. Based on this observation, we develop two different quick and handy algorithms. For the
first algorithm, we note that there is a relationship between purchase quantity (xi, j,t) and indication
variables for major and minor ordering costs (βMI

i, j,t, β
MJ
j,t ). The relationship can be described as follows:

if xi, j,t has a positive (integer or real) value, then βMI
i, j,t, β

MJ
j,t must be equal to 1. If xi, j,t has a value of 0,

then βMI
i, j,t, β

MJ
j,t also have the value of 0.
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4.1. Binary Variables Removal of NLP1 (BON)

The first algorithm, called BON, solves NLP1 without the binary variables (βMI
i, j,t, β

MJ
j,t ) to remove

the nonlinear terms in the objective function, which lowers the computational complexity. The output
of this modified model provides a feasible solution to the original model because the output satisfies all
the constraints of the original model. The objective function value generated from the modified model
is not a legitimate one because the major and minor ordering costs are omitted from the calculation.
Using this output, however, we can construct an accurate cost function value, including ordering costs.
By solving the less complex modified model and reconstructing an objective function value, we can
considerably cut computational time, and can solve a much bigger problem. However, this method
cannot guarantee the optimality of a solution obtained because it is only a feasible one, which is not
necessarily optimal. The key to the success of this heuristic approach thus depends on how close the
output is to the optimal solution of the original model. This question will be answered later in the
computational experiments section.

Algorithm BON

Step 1: Removal of binary variables

Step 1.1 All βMI
i, j,t, β

MJ
j,t in NLP1 are set to 1 in NLP1.

Step 1.2 Solve the modified problem.
Step 1.3 If the modified problem is infeasible, then stop (the original problem is infeasible.).

Step 2: Reconstruct cost function value, including ordering costs

Step 2.1 Set all binary variables (βMI
i, j,t, β

MJ
j,t ) corresponding to xi, j,t > 0 to 1.

Step 2.2 Calculate objective function value by adding the ordering costs with restored binary
variables in Step 2.1.

Step 2.3 Prepare a solution using the output in Steps 1.2 and 2.1. Generate it as a solution and the
value from Step 2.2 as its corresponding objective function value.

Step 3: Stop.

4.2. Relaxation of NLP1 (RON)

Another heuristic approach we have taken is to replace the binary variables (βMI
i, j,t, β

MJ
j,t ) with

real-valued bounded variables. When we remove the integer restriction from the variables, then they
can have any nonnegative value. Because they are binary originally, we can set the upper bound of each
binary variable to 1. This kind of relaxation can be found in the branch and bound method in the integer
linear programming area. We can refer to integer programming textbooks such as Nowak [38] for a
detailed discussion of relaxation methods of integer optimization model and relationships between the
original model and a relaxed model. The second algorithm using this relaxation is named RON and
can be described as follows:

4.3. Finiteness and Convergence of the Proposed Algorithms

The first algorithm (BON) solves a relaxed version of the original nonlinear integer programming
model, which is another NLP. There are many known algorithms for NLP, which theoretically converges
to a local optimum point in finite number of iterations. When we use a commercial optimization
package to implement Step 1.2 of BON, the implementation will be finished within a finite time limit.
The remaining Steps of BON do not have a convergence or finiteness issue. Similarly, the second
algorithm (RON) solves an NLP model twice in Step 1.2 and Step 2.3, which arrives at a local optimal
point in finite iterations if the original model is feasible. From these observations, we can be sure that two
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algorithms are finite and converge to a local optimum point of the relaxed model. The generated output
will be a feasible solution to the original model if the model is feasible. Otherwise, both algorithms
will terminate after completing Step 1.3 and indicate the infeasibility of the original model (if the
relaxed problem is infeasible, the original problem is also infeasible). Finally, a reconstructed model in
Step 2.3 of RON cannot be infeasible when Step 1 generates a feasible solution. Thus, infeasibility is
not considered in Step 2.3.

Algorithm RON

Step 1: Apply the relaxation to NLP1

Step 1.1 Transform the binary variables in NLP1 into 0 ≤ βMI
i, j,t, β

MJ
j,t ≤ 1.

Step 1.2 Solve the relaxed problem.
Step 1.3 If the modified problem is infeasible, then stop (the original problem is infeasible.).

Step 2: Construct a modified model using the output in Step 1 and resolve

Step 2.1 Identify the binary variables with positive values in the output obtained in Step 1.2.
Step 2.2 Construct a modified model by setting all binary variables with positive values in Step 2.1

to 1.
Step 2.3 Resolve the model in Step 2.2 and generate the output as a solution.

Step 3: Stop.

5. Numerical Experiments

5.1. Design of Experiments

We performed experiments to test the efficiency of the algorithms introduced in the previous
section. The measure of efficiency is obtained by comparing the objective function value of the solutions
from the algorithms with the ones obtained by existing commercial solvers, GAMS/LINDO GLOBAL
(version 25.1.2). The test was performed using a PC with Microsoft 10 OS, 3.4 GHz CPU (Intel Core i7),
and 24 GB of RAM.

The following virtual supply chain system is chosen for the test.

• The number of item types ranges from 2 to 24.
• The number of suppliers is set from 2 to 8. Each supplier sells from 2 to 24 item types.
• Unit time is set to 1 week.
• Transportation lead time is 1 week.
• The planning horizon length is twenty-four time units, which corresponds to a half year.
• The end customer’s demand for each product is assumed to be normally distributed.

The normal distribution is frequently used in many previous papers including Shin and Benton [36],
Kang and Lee [25], and Park et al. [9]. The demand data for our test were generated from a normal
distribution with the mean and standard deviation set to values randomly generated from uniform
distributions, U(200, 1000) and U(20, 100). The forecast necessary for implementing the test was
prepared using the IBM SPSS statistics package. Other input parameters for the experiment are
described in Tables 2–6.
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Table 2. Input parameters for the experiment.

Buyer’s Warehouse
Capacity (wt)

A Large Number
(M)

Carbon Cap
(C)

Capacity of the
Vehicle (Ω)

Initial Inventory
Level (zi,0)

5000 1,000,000 U(0.5, 1.5) × d̂i
∗ 50 0

d̂i
∗

stands for the average demand forecast for period t.

Table 3. Input parameters for items.

Item Holding Cost
(hi)

Shortage Cost
(bi)

Volume
(vi)

Spot Market Price
(ps

i,t)

All items U(0.1, 0.2) U(10, 15) U(1, 3) U(11, 16)

U stands for a uniform distribution.

Table 4. Input parameters for suppliers.

Supplier Major Ordering
Cost (Ak)

Transportation
Cost (tcj,t)

Minor Ordering
Cost(ai,k)

Per-Period Production
Capacity (ui,k,t)

Distance from
Suppliers to

BuyerAll Items All Items

All
suppliers U(200, 250) U(2, 4) U(0.1, 0.2) U(1.5, 2.5) × d̂i

∗ U(50, 200)

d̂i
∗

stands for the average demand forecast for period t.

Table 5. Input parameters for carbon emissions cost.

Supplier Carbon Price
Per Unit (cp)

Carbon Emission
Factor (ρ)

Ordering
(CEo

t )
Holding

(CEh
t )

Handling
(CEv

t )

All
suppliers 2 0.5 N

(
10, 0.12

)
N

(
1.0, 0.12

)
N

(
0.2, 0.22

)
N stands for a normal distribution.

Table 6. Discount schedules of suppliers.

Item
Price Break

(ni,k)
All Suppliers

Purchase Amount (xi,k,t) Unit Price (pi,k,ni,k
)

All
items

1 0—U(150, 300) N
(
4, 0.52

)
2 (Initial value + 1) to (Initial value + 200) 95% of N

(
4, 0.52

)
3 (Initial value + 201) to (Initial value + 400) 90% of N

(
4, 0.52

)
4 (Initial value + 401) to infinite value 85% of N

(
4, 0.52

)
Initial value means a starting value generated from U(150, 200).

5.2. Efficiency Measure

We performed an experiment with the experimental design described in the previous section.
Each set of the tests was repeated 10 times to obtain an averaged performance. The efficiency measure
defined in Equation (33) is the percent deviation of the total average cost.

Percent deviation =
Compared method′ s objective value−NLP1′ s objective value

NLP1′ s objective value
× 100. (33)
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5.3. Test Result

The results of the experiments are summarized in Table 7. The optimal objective function value
and CPU time of NLP1 and the two proposed algorithms, BON and RON, are listed. In the rightmost
column, the average percent deviation from the optimal objective function value is shown. We observe
in Table 7 that it took 3.78 CPU seconds using GAMS/LINDO to solve the NLP1 model for experiment
No. 1, which is for a system with two items, two suppliers, and four planning periods. The optimal
objective function value is USD 31,155. For the same problem, the BON and RON algorithms generated
solutions whose objective function values are 1.17% and 0.19% away from the optimal function value,
respectively, and they saved 88.36% and 85.45% of CPU time to get this result compared with the one
obtained by GAMS/LINDO.

Table 7. Comparison between NLP1, BON, and RON for a variety of problem sizes.

No. I S P

NLP1 BON RON Avg. Percent
Deviation

(BON/RON)
Total
Cost

CPU
Time

Total
Cost

CPU Time
(% Cut)

Total
Cost

CPU Time
(% Cut)

1 2 2 4 31,155 0:00:03.78 31,521 0:00:00.44
(88.36%) 31,215 0:00:00.55

(85.45%) (1.17%/0.19%)

2 2 4 4 31,174 0:01:45.51 32,134 0:00:00.85
(99.19%) 32,097 0:00:00.97

(99.08%) (3.08%/2.96%)

3 2 4 8 66,334 0:16:40.28 67,666 0:00:01.80
(99.82%) 66,529 0:00:01.72

(99.83%) (2.01%/0.29%)

4 4 4 8 138,233 0:16:40.53 142,829 0:00:04.38
(99.56%) 139,135 0:00:04.18

(99.58%) (3.32%/0.65%)

5 4 4 12 207,872 0:16:41.16 210,863 0:00:08.99
(99.09%) 209,192 0:00:08.41

(99.16%) (1.44%/0.64%)

6 8 4 12 481,258 0:17:03.39 485,182 0:00:44.27
(95.67%) 483,118 0:00:44.80

(95.62%) (0.82%/0.39%)

7 8 8 12 n/a 0:21:21.56 485,248 0:08:20.84 468,414 0:04:01.05 n/a
8 8 8 24 n/a 17:17:33.51 1,080,852 0:33:32.87 953,318 0:22:37.40 n/a

I: item, S: supplier, P: period

For somewhat more complex problems, particularly No. 2 to No. 5, a similar efficiency is
observed. The solution quality of the proposed algorithms is within 3.32% of the optimal objective
function values. The CPU time savings reaches up to 99.83% with a minimum savings value of 99.08%.
GAMS/LINDO took 17 min and 3.39 s in CPU time to solve the model in problem No. 6, whereas
two proposed algorithms consumed around 5% of the CPU time compared to GAMS/LINDO and
successfully produced solutions deviating less than 1% from the optimal solution. For more complex
problems, No. 7 and 8, GAMS/LINDO could not find a feasible solution for the given models until the
termination of the solver’s run, which ranged from 21 CPU minutes to more than 17 CPU hours. For
the same problems, however, the two proposed algorithms could find feasible solutions within 23 CPU
minutes. The overall performance of RON is consistently better than BON in terms of solution quality
and also in computation time. We can note that the tested problem size is much smaller than the one
found in real applications. Therefore, we can say that the two proposed algorithms will be very useful
in handling much bigger real-world problems for which a global optimal solution cannot be found in
practically acceptable time.

6. Implications and Conclusions

6.1. Implications

This study offers a useful tool for decision makers who must regularly make supplier selection
and order allocation decisions in a complex real-world environment. For these kinds of problems,
we present a nonlinear integer programming model that includes many realistic aspects of real
problems. This original model can have thousands of constraints and variables to describe a real
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buyer-supplier system to a desired accuracy. The current solution methods programmed in many
popular commercial solvers cannot handle this kind of complex problem. To provide a useful and
practical tool for this difficult situation, we developed two algorithms that can obtain a good feasible
solution for the problem. During the computational experiments, the two algorithms, RON in particular,
showed superb performance in cutting computational time, while simultaneously providing a good
feasible solution. The results imply that these two algorithms can considerably increase the size of a
solvable problem and contribute to the overall usability of such optimization models developed using
complex data.

6.2. Conclusions

This paper proposes a supplier selection and order allocation model for a green supply-chain
system that consists of a single buyer and multiple heterogeneous suppliers. Each supplier in the
model is different from the others in various characteristics, including the type of carried items as well
as price discount schedules. In addition, each supplier is located a different distance away from the
buyer, which is closely related to the carbon emission requirements. The problem analyzed in this
paper is the buyer’s integrated decision problem to construct a good replenishment plan. A non-linear
integer programming model was formulated for the buyer’s decision problem. We observed that a
realistic size of such a problem frequently far exceeds the solvable size limit of the latest commercial
solvers. To improve the usability of the proposed model, we have developed two algorithms which
can solve such a big problem quickly and accurately.

The first heuristic algorithm (BON) is developed using a linearization of the NLP1 model.
It provides near-optimal solutions with up to 0.85 percent deviation on average from the optimal
solutions. The second heuristic algorithm is consistently more efficient than the first one. It can
cut computational time by as much as 99.83% compared with that consumed by GAMS/LINDO.
High solution quality is also maintained by providing feasible solutions with less than 3% deviation in
the objective function value from the optimal one. The desirable properties of these algorithms are
observed when we attempt to solve slightly more complex problems. For these problems, with the
number of constraints and decision variables reaching up to the hundreds, GAMS/LINDO failed to
generate a feasible solution. On the other hand, the two proposed algorithms could find feasible
solutions without much difficulty.

Future research in this area of study may include an extension to a multi-objective problem to
consider cost factors and also environmental factors. Another interesting direction is the migration
to a problem found in a multiple-stage supply chain. Application of our algorithms to complex
optimization problems in the area of machine learning and artificial intelligence will be interesting
research tasks. Finally, the optimal design of the discount schedules for a supplier in a similar system
is another interesting topic.
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