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Abstract: This note concerns a product of equilateral hyperbolas induced by the quaternionic product
considered in a projective manner. Several properties of this composition law are derived and, in this
way, we arrive at some special numbers as roots or powers of unit. Using the algebra of octonions,
we extend this product to oriented equilateral hyperbolas and to pairs of equilateral hyperbolas.
Using an inversion we extend this product to Bernoulli lemniscates and q-lemniscates. Finally,
we extend this product to a set of conics. Three applications of the given products are proposed.
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1. Introduction

The aim of this paper is to introduce some products of the set of equilateral hyperbolas and give
some extensions of them. For our hyperbolas considered in a projective way we use the well-known
product of quaternions to define a first product, denoted �c. Since the c-square of the unit hyperbola
H(1) : x2 − y2 − 1 = 0 is the degenerate hyperbola H(0) : x2 − y2 = 0 we introduce a second product,
denoted �pc. A detailed study of both of these products is the content of Section 2. By looking at
examples, as well as to roots/powers of the unit 1 ∈ R, we obtain some remarkable numbers, some of
them algebraic but other of difficult nature.

Starting from the above results, some interesting extensions are obtained. In Section 3, using an inversion,
we extend the above products from the set of equilateral hyperbolas to the sets of Bernoulli lemniscates
and q-lemniscates. A strong motivation for this extension is that equilateral hyperbolas share with Bernoulli
lemniscates the property of having rational chord-length parametrization, as in pointed out in Reference [1]
(p. 210).

In Section 4 we give another extension of the products of equilateral hyperbolas to a larger set
of conics QΓ0 and we prove that �c is a commutative and associative law and has a neutral element,
thus the triple

(
QΓ0 ,⊕,�c

)
is a field isomorphic to the field of complex numbers. For some particular

values of the parameters, we obtain the product of equilateral hyperbolas considered in the first section.
Using also an inversion, in Section 5 we extend the product on conics from QΓ0 to other curves.
Inspired by the expression of an octonion as a pair of quaternions, we introduce in Section 6

an octonionic product of pairs of equilateral hyperbolas. For this new composition law we compute
the square of a fixed pair and several products involving the unit hyperbola H(1). We note that the
products of the first section are commutative while the considered product of pairs of equilateral
hyperbolas is not.
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In the last section, we propose three applications of the given products. The first two of them are
regarding hyperbolic objects, namely the reduced equilateral hyperbola He : xy = 1 and hyperbolic
matrices, but, in general, concerns with multi-valued maps. The last possible application returns to
the Euclidean plane geometry and defines a chain of labels for a given polygon. This application can
be put in correspondence with the recent studies on the moduli space of polygons, studies based on
Reference [2].

We note that the present study is the hyperbolic counter-part of a similar work concerning circles
in Reference [3] while a more general Clifford product for EPH-cycles is introduced in Reference
[4]. In fact, the present paper is a natural continuation of Reference [3] due to the Lambert’s and
Riccati’s analogies between the circle and the equilateral hyperbola as are exposed in Reference [5],
also published as Reference [6].

2. Quaternionic Product of Hyperbolas and Quaternionic Product of Oriented Hyperbolas

The starting point of this paper is the identification of a given equilateral hyperbola H in the
Euclidean plane with coordinates (x, y):

H : x2 − y2 + ax + by + c = 0 (1)

with a quaternion:
q(H) = c + ai + bj + k = (c, a, b, 1) ∈ R4. (2)

The quaternion q(H) is pure imaginary if and only if the origin O(0, 0) belongs to H. Let us point out
that the given hyperbola is expressed in a projective manner since the coefficient of the quadratic part is
chosen as being 1. Hence the set of equilateral hyperbolas is a 3-dimensional projective subspace of
the 5-dimensional projective space of conics. Our study will be a mix of elements from Euclidean and
projective geometry.

From the real algebra structure of the quaternions it follows a product of equilateral hyperbolas:

H1 �c H2 := q−1(q(H1) · q(H2)), (3)

where the dot of the right-hand side denotes the product of quaternions. For Hi, i = 1, 2 given by
(ai, bi, ci) we derive immediately:

q(H1 �c H2) = (a1b2 − a2b1 + c1 + c2)k + (b1 − b2 + a1c2 + a2c1)i + (a2 − a1 + b1c2 + b2c1)j+

+ (c1c2 − 1− a1a2 − b1b2), (4)

which gives non-commutative expressions for the coefficients of i, j and k and commutative expression
for the free term.

Due to the chosen projective setting we restrict our study to equilateral hyperbolas H(r) already
centered in O; hence their set is a 1-dimensional projective subspace of the projective spaces considered
above. For such a hyperbola we have:

H(r) : x2 − y2 − r = 0, (a, b, c) = (0, 0,−r) (5)

and hence the Equation (4) yields:

q(H(r1)�c H(r2)) = (c1 + c2)k + (c1c2 − 1) = −(r1 + r2)k + (r1r2 − 1). (6)
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From the properties of quaternionic product we have that the above product can be also expressed in
matrix product manner:

(−r2, 0, 0, 1) ·


−r1 0 0 1

0 −r1 1 0
0 −1 −r1 0
−1 0 0 −r1

 = (r1r2 − 1, 0, 0,−(r1 + r2)). (7)

We derive the product law:

H(r1)�c H(r2) = H(R), R :=
r1r2 − 1
r1 + r2

. (8)

In conclusion, on the set M = (0,+∞) we define a non-internal law of composition:

r1 �c r2 :=
r1r2 − 1
r1 + r2

< min{r1, r2} (9)

and the rest of this section concerns with several of its properties.
Remark 1.1 We have:

H(r1)�c H(r2) = H(r1 �c r2). (10)

Property 1.1 The product �c is commutative and associative but does not have a neutral element:

r1 �c r2 �c r3 =
r1r2r3 − (r1 + r2 + r3)

r1r2 + r2r3 + r3r1 − 1
, r3

�c =
r3 − 3r
3r2 − 1

, r >
1√
3

. (11)

Property 1.2 With ri = tan ϕi we get:

tan ϕ1 �c tan ϕ2 := − cot(ϕ1 + ϕ2). (12)

Property 1.3 Concerning the unit hyperbola H(1) : x2 − y2 = 1 we have:

r�c 1 =
r− 1
r + 1

< min{1, r}, lim
r→+∞

(r�c 1) = 1. (13)

In particular, the unit hyperbola is the square root of the degenerate hyperbola, H(1)�c H(1) = H(0) :
x2 − y2 = 0; in fact [q(H(1))]2 = (k− 1)2 = −2k. With a rational r = x

y :

x
y
�c 1 =

x− y
x + y

,
1
2
�c 1 = −1

3
. (14)

For example, two remarkable positive numbers are provided by the radius involved in the well-known
Hopf fibration as the Riemannian submersion S3(1) → S2( 1

2 ) and hence we compute: 1�c 2 = 1
3 .

Also, the eccentricity of an equilateral hyperbola is
√

2 and 1�c
√

2 = 3− 2
√

2,
√

2
2
�c =

1
2
√

2
.

Property 1.4 Concerning the squares we have:

r2
�c =

r2 − 1
2r

< r, (tan ϕ)2
�c = − cot(2ϕ), (r2

�c)�c 1 =
r2 − 2r− 1
r2 + 2r− 1

(15)

and the first relation (15) means that �c is a “shrinking” composition. The �c-square root of 1 is
the number:

c√1 := 1 +
√

2 = 2.4142135 . . . = tan
3π

8
, (

c√1)2 − 2 c√1− 1 = 0 (16)
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while the �c-square root of c
√

1 is the number:

2c√1 := 1 +
√

2 +
√

4 + 2
√

2 = 5.027339 . . . , (
2c√1)2

�c =
c√1. (17)

Let us remark that c
√

1 is exactly the silver ratio Ψ := 1 +
√

2 and we point out that Ψ is a quadratic
Pisot-Vijayaraghavan number considered as solution of:

x2 − 2x− 1 = 0. (18)

The conjugate of Ψ with respect to this algebraic equation is:

−Ψ−1 = 1−
√

2 = −0.44 . . . . (19)

Let us point out that from the point of view of endomorphisms on smooth manifolds the silver mean
is treated in Reference [7] (p. 16) and a fourth order square root of unit is called almost electromagnetic
structure in Reference [8] (p. 721). The continuous fraction of these remarkable numbers are easy to
compute with Mathematica; we use the standard expression for these continuous fractions:

c√1 = [2; 2̄], 2c√1 = [5; 36, 1, 1, 2, 1, 2, 1, 6, . . .]. (20)

The usual inverses of c
√

1 is:

1
c
√

1
=
√

2− 1 = 0.414235 . . . = cot
3π

8
. (21)

Property 1.5 Recall that the quaternion (2) has an Euclidean norm:

‖q(H(r))‖2 = 1 + a2 + b2 + c2 = 1 + r2 ≥ 1 (22)

and then the given square (15) is:

r2
�c =

‖q(H(r))‖2 − 2
2
√
‖q(H(r))‖2 − 1

. (23)

Property 1.6 We extend the previous products from hyperbolas to oriented hyperbolas
that is, pairsH := (H, ε := ±1) with ε ∈ {±1}. Then we introduce:

H1 �c H2 := (H1 �c H2, ε1 · ε2). (24)

Remark 1.2 We can avoid the degeneration (H(1))2
�c

= H(0) by considering the para-complex
algebra R[X]/(X2 − 1) instead of the complex algebra. Since in this new algebra the square of k is +1
we arrive at a new product �pc on R∗+ = (0,+∞):

x�pc y =
xy + 1
x + y

. (25)

The product �pc is commutative with x�pc 1 = 1 and:

x2
�pc =

x2 + 1
2x

, x�pc y�pc z =
xyz + x + y + z

xy + yz + zx + 1
, tan ϕ1 �pc tan ϕ2 =

cos(ϕ2 − ϕ1)

sin(ϕ1 + ϕ2)
. (26)
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3. The Extension via Inversion of the Quaternionic Product to Bernoulli Lemniscates and
Q-Lemniscates

In Reference [9] it is proved, using purely geometrical means, that the image of an equilateral
hyperbola with foci F1 and F2 by an inversion Ir with respect to the circle centered in O and with radius
r = |OF1| = |OF2| is a Bernoulli lemniscate with the same foci F1 and F2. We start this section with
a complex approach in order to achieve easier the extension to the quaternionic approach.

Thus, we will prove the above assertion using complex numbers. Firstly, we associate to every
point (x, y) in the Euclidean plane the complex number z = x + iy ∈ C. As z′ = Ir(z) = αz with

α ∈ R∗+ and |Ir(z)| · |z| = r2 we have |αz| · |z| = r2, so α =
r2

|z|2
=

r2

z · z and therefore the equation of

the inversion Ir is:

z′ = Ir(z) =
r2

z
. (27)

The equation:
H(a2) : x2 − y2 = a2, (28)

of the equilateral hyperbola with foci
(
±a
√

2, 0
)

, taking into account that x2− y2 = Re
(
z2) = z2 + z2

2
,

can be written as:
H(a2) : z2 + z2 = 2a2. (29)

The image of the above equilateral hyperbola by the inversion Ir has the equation(
z2 + z2) r4 = 2a2 (zz)2. Taking into account that z · z = x2 + y2 we obtain

(
x2 + y2)2

=
r4

a2

(
x2 − y2)

which is the equation of a Bernoulli lemniscate with foci
(
± r2

a
√

2
, 0
)

.

As the equilateral hyperbola has the foci
(
±a
√

2, 0
)

while the Bernoulli lemniscate has the foci(
± r2

a
√

2
, 0
)

the foci are preserved by the inversion Ir if and only if a
√

2 =
r2

a
√

2
that is, r = a

√
2.

More exactly, the image by the inversion Ir of the equilateral hyperbola H
(

r2

2

)
that has the foci (±r, 0)

is the Bernoulli lemniscate L(r) with the same foci, having the equation
(
x2 + y2)2

= 2r2 (x2 − y2).
Remark 2.1 Let L(r) be the Bernoulli lemniscate with parameter r > 0; more precisely 2r is the

distance between the foci of L(r). Then we can introduce the products of Bernoulli lemniscates L(r1)

and L(r2) in the same manner as the products of equilateral hyperbolas:

L(r1)�c L(r2) := L(r1 �c r2), L(r1)�pc L(r2) := L(r1 �pc r2).

All the properties proved for quaternionic products of equilateral hyperbolas are also true for
quaternionic products of Bernoulli lemniscates.

Returning now to the initial equilateral hyperbola its Equation (28) is expressed as:

||MF1| − |MF2|| = 2a = const. (30)

This property could be proved using pure geometric or analytic geometry means but we give a proof
using complex numbers. Indeed, since x2− y2 = a2, the foci are F1(−a

√
2, 0), F2(+a

√
2, 0), the vertices

are V1(−a, 0), V2(+a, 0), thus for M of affix z, we have:

||MF1| − |MF2||2 =

∣∣∣∣√(z + a
√

2
) (

z + a
√

2
)
−
√(

z− a
√

2
) (

z− a
√

2
)∣∣∣∣2 =

=

∣∣∣∣2zz + 4a2 − 2
√(

z + a
√

2
) (

z + a
√

2
) (

z− a
√

2
) (

z− a
√

2
)∣∣∣∣ = ∣∣∣∣2zz + 4a2 − 2

√
(z2 − 2a2)

(
z2 − 2a2

)∣∣∣∣ =
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=

∣∣∣∣2zz + 4a2 − 2
√
(zz)2 − 2a2(z2 + z2) + 4a4

∣∣∣∣ = ∣∣∣∣2zz + 4a2 − 2
√
(zz)2 − 2a2 · 2a2 + 4a4

∣∣∣∣ = 4a2.

In the same order of ideas, a well known property of a current point M on a Bernoulli lemniscate,
given by the equation: (

x2 + y2
)2

= a2
(

x2 − y2
)

(31)

is:

|MF1| · |MF2| = |OF1| · |OF2| =
a2

2
= const. (32)

The foci are F1

(
− a√

2
, 0
)

, F2

(
+

a√
2

, 0
)

and thus for M of affix z we have:

|MF1|2 |MF2|2 =

(
z +

a√
2

)(
z̄ +

a√
2

)(
z− a√

2

)(
z̄− a√

2

)
=

=

(
z2 − a2

2

)(
z̄2 − a2

2

)
= z2z̄2 − a2 z2 + z̄2

2
+

a4

4
=

a4

4
, because z2z̄2 = a2 z2 + z̄2

2
is (31) written

in a complex form.
Recall that the inversion Ir with r = a

√
2 preserves the foci F1,2. In this case, a current point M

on the equilateral hyperbola H
(

r2

2

)
, with foci F1,2 (±r) and vertices V1,2

(
± r√

2

)
, has the property

||MF1| − |MF2|| = r
√

2 = const. and a current point M on its image by this inversion Ir, the Bernoulli
lemniscate L(r) given by the equation

(
x2 + y2)2

= 2r2 (x2 − y2), with the same foci, has the property
|MF1| · |MF2| = |OF1| · |OF2| = r2 = const.

We are going to extend these constructions in a quaternionic setting. First we recall that
M (x, y, z, w) ∈ R4 has the quaternionic affix q = x + yi + zj + wk. We say that the hyperquadric
in R4 defined by the equation:

Hq(a2) : x2 − y2 − z2 − w2 = a2 (33)

is a q-equilateral hyperboloid. We can define its foci as the points
(
±a
√

2, 0, 0, 0
)

.
Also we say that:

Lq(a2) :
(

x2 + y2 + z2 + w2
)2

= a2
(

x2 − y2 − z2 − w2
)

is the Bernoulli q-lemniscate with the points
(
± a√

2
, 0, 0, 0

)
as foci.

In the following we will show that the names q-equilateral hyperboloid and Bernoulli q-lemniscate
are fully justified because the main properties of equilateral hyperbola and Bernoulli lemniscate stated
above in complex context are also preserved in quaternionic context.

Proposition 1. The relation (30), specific to a hyperbola, holds also true for a q-equilateral hyperboloid.

Proof. We proceed in a similar way as for equilateral hyperbola:

||MF1| − |MF2||2 =

∣∣∣∣√(q + a
√

2
) (

q + a
√

2
)
−
√(

q− a
√

2
) (

q− a
√

2
)∣∣∣∣2 =

=

∣∣∣∣2qq + 4a2 − 2
√(

q + a
√

2
) (

q + a
√

2
) (

q− a
√

2
) (

q− a
√

2
)∣∣∣∣ = ∣∣∣∣2qq + 4a2 − 2

√
(q2 − 2a2)

(
q2 − 2a2

)∣∣∣∣ =
=

∣∣∣∣2qq + 4a2 − 2
√
(qq)2 − 2a2(q2 + q2) + 4a4

∣∣∣∣ = ∣∣∣∣2qq + 4a2 − 2
√
(qq)2 − 2a2 · 2a2 + 4a4

∣∣∣∣ = 4a2.
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Remark 2.2 In a similar way with the quaternionic products on equilateral hyperbolas we can
introduce the quaternionic products of q-equilateral hyperboloids Hq(r1) and Hq(r2):

Hq(r1)�c Hq(r2) = Hq(r1 �c r2), Hq(r1)�pc Hq(r2) = Hq(r1 �pc r2).

Recall that the equilateral hyperbola (28) can be written in a complex form as (29) and,
in an analogous way, the q-equilateral hyperboloid (33) can be written in a quaternionic form as:

Hq(a2) : q2 + q̄2 = 2a2. (34)

Analogously to the usual inversion (27) we can define a quaternionic inversion on R4 \ {0}:

q′ = Ir(q) =
r2

q̄
(35)

and it is easy to see that I2
r := Ir ◦ Ir = id thus, as in the case of the planar inversion, Ir is an involution.

Proposition 2. The image of the q-equilateral hyperboloid (34) by the inversion Ir is a Bernoulli q-lemniscate.

Proof. We have (q′)2 + (q̄′)2 = 2a2 or
r4

q̄2 +
r4

q2 = 2a2, thus:

(qq̄)2 =
r4

a2
q2 + q̄2

2
.

Using the coordinates in R4 the above equation has the form:

(
x2 + y2 + z2 + w2

)2
=

r4

a2

(
x2 − y2 − z2 − w2

)
, (36)

which is the equation of the Bernoulli q-lemniscate with foci
(
± r2

a
√

2
, 0, 0, 0

)
.

Remark 2.3 Since the q-equilateral hyperboloid has the foci
(
±a
√

2, 0, 0, 0
)

while its image by

the inversion Ir is the Bernoulli q-lemniscate with the foci
(
± r2

a
√

2
, 0, 0, 0

)
, the foci are preserved by

the inversion Ir if and only if a
√

2 =
r2

a
√

2
, that is, r = a

√
2. More exactly, the image by the inversion Ir

of the q-equilateral hyperboloid that has the foci (±r, 0, 0, 0), that is, having the equation x2− y2− z2−

w2 =
r2

2
is the Bernoulli q-lemniscate with the same foci, having the equation

(
x2 + y2 + z2 + w2)2

=

2r2 (x2 − y2 − z2 − w2).
Proposition 3. The relation (32), specific to a Bernoulli lemniscate, holds also true for a Bernoulli q-lemniscate.

Proof. We proceed in a similar way as previously for the Bernoulli lemniscate but now in a quaternionic
setting. We have:

|MF1|2 |MF2|2 =

(
q +

a√
2

)(
q +

a√
2

)(
q− a√

2

)(
q− a√

2

)
=

=

(
q2 − a2

2

)(
q2 − a2

2

)
= q2q2 − a2 q2 + q̄2

2
+

a4

4
=

a4

4
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since q2q2 = a2 q2 + q̄2

2
is the Equation (36) in quaternionic form. Thus, since |MF1| |MF2| = 2a2 =

|OF1| |OF2| the conclusion follows.

Remark 2.4 In a similar way with the quaternionic products of Bernoulli lemniscates we can
introduce two quaternionic products of Bernoulli q-lemniscates:

Lq(r1)�c Lq(r2) = Lq(r1 �c r2), Lq(r1)�pc Lq(r2) = Lq(r1 �pc r2).

4. The Extension of the Quaternionic Product on Conics

Let us consider a pure imaginary quaternion q0 = ai + bj + dk and the set:

Qq0 = {c + αq0; c, α ∈ R} .

If q0 6= 0 then we can identify Qq0 with R2 and even with C, as we see below.
Let us consider q1 = c1 + α1q0 and q2 = c2 + α2q0 ∈ Qq0 . It follows, by a straightforward

computation, that:
q1 · q2 = c3 + α3q0,

where:

c3 = c1c2 − α1α2(a2 + b2 + d2) = c1c2 − α1α2∆0, with ∆0 = a2 + b2 + d2, α3 = α1c2 + α2c1. (37)

Remark 3.1 Taking into account the skew-symmetry of the multiplication of quaternionic units
i, j, k they do not appear in the expression of q2

0: q2
0 = (ai + bj + dk)2 = −∆0 ∈ R. Therefore, if q1,

q2 ∈ Qq0 with q1 = c1 + α1q0 and q2 = c2 + α2q0 then we have q1 + q2 = (c1 + c2) + (α1 + α2)q0 ∈ Qq0

and q1· q2 ∈ Qq0 , thus Qq0 is stable at the sum and multiplication defined this way.
Moreover, the quaternionic product induces on Q∗q0

= Qq0\{0} a group structure isomorphic
with the multiplicative group on C∗. Since Qq0 ⊂ Q is a vector subspace, generated by {1, q0}, we can
consider also the additive group structure on Qq0 . Thus, using these two operations, Qq0 is a field
isomorphic with the field C.

Remark 3.2 The isomorphism is given by f : Qq0 −→ C with f (c + αq0) = c + α
√

∆0i for every
q = c + αq0 ∈ Qq0 . Note that q0 = ai + bj + dk is arbitrarily chosen, but fixed, therefore a, b and d
are fixed, thus ∆0 is fixed. Taking into account these considerations, every q = c + αq0 ∈ Qq0 can be
written as the pair q = (c, α) and hence f can be written more simple as f (c, α) = c + α

√
∆0i.

Let Γ be a conic in the Euclidean plane given by:

Γ : x2 + dy2 + ax + by + c = 0.

We associate to Γ the quaternion q(Γ) = c + ai + bj + dk = (c, a, b, d) ∈ R4.
Considering two conics:

Γ1 : x2 + α1dy2 + α1ax + α1by + c1 = 0, Γ2 : x2 + α2dy2 + α2ax + α2by + c1 = 0,

where a, b, d, c1, c2, α1, α2 ∈ R we can associate a conic Γ3 = Γ1 �cΓ2 corresponding to the product
and a conic Γ4 = Γ1 ⊕Γ2 corresponding to the sum of the corresponding quaternions q1 = q(Γ1) and
q2 = q(Γ2):

Γ3 = Γ1 �c Γ2 = q−1 (q (Γ1) · q (Γ2)) : x2 + α3dy2 + α3ax + α3by + c3 = 0,

Γ4 = Γ1 ⊕ Γ2 = q−1 (q (Γ1) + q (Γ2)) : x2 + α4dy2 + α4ax + α4by + c4 = 0,

where c3 and α3 are given by formulas (37) and α4 = α1 + α2, c4 = c1 + c2.
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Thus, we can consider now the conic Γ0 : x2 + dy2 + ax + by = 0 and also the set of
associated conics:

QΓ0 =
{

Γ : x2 + αdy2 + αax + αby + c = 0; c, α ∈ R
}

.

Remark 3.3 With a straightforward computation one can prove that �c is a commutative and
associative law and has a neutral element; namely the element corresponding to c = 1, α = 0,
therefore it is the (imaginary) conic x2 + 1 = 0.

Remark 3.4 As we note before q0 can be arbitrarily chosen, but then it is fixed, therefore a, b and
d are fixed. But once q0 is fixed, the family is unique; so with this hypothesis, for a conic Γ ∈ QΓ0 ,
the corresponding c and α are unique. Of course, a given conic can be seen as belonging to several
families, but once the conical family is fixed, the corresponding c and α are unique; therefore the above
operations on an arbitrary, but fixed family QΓ0 are well defined, as they are defined on this given
family (as for example for the case of a natural number, which can be seen as belonging to several
classes of congruence modulo k where k can be chosen arbitrarily, but fixed, and operations are defined
on this given congruence class). This approach has an important advantage because any conic can
be considered.

Property. The triple
(
QΓ0 ,⊕,�c

)
is a field isomorphic to the field of complex numbers.

Remark 3.5 Let us look more on the product defined above, considering (c, α) as parameters
in Qq0 or QΓ0 . We have that the product of (c1, α1) and (c2, α2) corresponds to the parameters
(c1c2 − α1α2∆0, α1c2 + α2c1), where ∆0 = −q2

0. It is easy to see that the product factorizes to the
projective space P1 that is, we can define

[c1, α1]�c,∆0 [c2, α2] = [c1c2 − α1α2∆0, α1c2 + α2c1] .

The corresponding group structure is isomorphic with the multiplicative circular group S1.
Remark 3.6 The neutral element for �c,∆0 is (1, 0).
Remark 3.7 Let us consider α1c2 + α2c1, α1, α2 6= 0. Thus we obtain that the

product of [c1, α1] =

[
c1

α1
, 1
]

and [c2, α2] =

[
c2

α2
, 1
]

corresponds to [c1c2 − α1α2∆0, α1c2 + α2c1] =

[
c1c2 − α1α2∆0

α1c2 + α2c1
, 1
]
=


c1

α1

c2

α2
− ∆0

c1

α1
+

c2

α2

, 1

.

Therefore the product �c defined in the first section comes from the product �c,1 when restricted
to the classes {[r, 1] ; r > 0}.

Remark 3.8 If ∆0 = 1 then we can consider restrictions of the product �c,1 from P1 = P1
1 ∪ P1

2
to P1

1 or P1
2 , where P1

1 = {[r, 1] ; r ∈ R} and P1
2 = {[1, r] ; r ∈ R}. We have to note that the products

restricted to P1
1 and P1

2 are partial. Indeed, for example, if r ∈ R, then [r, 1]�c,1 [−r, 1] =
[
−r2 − 1, 0

]
=

[1, 0] ∈ P1
2 . One can explain now why �c does not have a neutral element when it is restricted to the

classes {[r, 1] ; r > 0} or even to P1
1 , since the neutral element [1, 0] ∈ P1

2 does not belong to these sets.
Notice also that the sum of parameters do not factorize to an additive law in the projective space P2.

Remark 3.9 More particulary, for α1 = α2 = 1, a = b = 0 and d = −1, we obtain the composition
law associated to the family of equilateral hyperbolas considered also in first section.

Remark 3.10 Let us consider the determinants:

δ =

∣∣∣∣∣ 1 0
0 αd

∣∣∣∣∣ = αd, ∆ =

∣∣∣∣∣∣∣∣∣∣
1 0

aα

2
0 αd

bα

2
aα

2
bα

2
c

∣∣∣∣∣∣∣∣∣∣
= −1

4
α
(

b2α− 4cd + a2dα2
)

.

associated to a conic in a family QΓ0 . It is easy to see that the family does not always have only one
type of conic. For example, in the case a = b = 0, d = −1, we have δ = α and ∆ = −c. If αc 6= 0 then
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all the conics are non-degenerated with the center in origin; for α > 0 all the conics are hyperbolas;
for α < 0 all the conics are ellipses; they are all real for c < 0 and all imaginary for c > 0.

Remark 3.11 For x = (c, a, b, α) ∈ R4 we associate the quaternion q (x) = c + (αa) i + (αb) j and
the conic Px : x2 + αax + αby + c = 0.

For (a, b) ∈ R2 we consider Q(a,b) = {q (x) = c + (αa) i + (αb) j : c, α ∈ R} and
P(a,b) = {Px : c, α ∈ R}. If x1 = (c1, a, b, α1), x2 = (c2, a, b, α2) ∈ R4 then:

q (x1) · q (x2) = (c1 + (α1a) i + (α1b) j) (c2 + (α2a) i + (α1b) j) =

=
(

c1c2 − α1α2

(
a2 + b2

))
+ a (α1c2 + α2c1) i + b (α1c2 + α2c1) j = q (x3)

where:
x3 =

(
c1c2 − α1α2

(
a2 + b2

)
, a, b, α1c2 + α2c1

)
,

thus the quaternionic product is a composition law that is internal on Q(a,b). It induces also an internal
composition law on P(a,b).

Remark 3.12 We have Px1 �c,∆ Px2 = Px3 where ∆ = a2 + b2 and Px1 , Px2 , Px3 ∈ P(a,b).
Property. The quaternionic product on Q(a,b) and the induced composition law on P(a,b) are

commutative, associative, but has not always neutral elements.

5. Using the Inversion to Extend the Quaternionic Product on QΓ0 to Other Curves

Let us consider a more general case, that is, the following equation x2 + dy2 + c = 0, c 6= 0.
As above, to every point (x, y) in the Euclidean plane we associate z = x + iy ∈ C. The inversion Ir

with respect to the circle centered in O and with radius r is given by z′ = Ir(z) =
r2

z
. We analyze now

two different cases.
◦ If d < 0 then we have d = −δ2, so the equation x2− (δy)2 + c = 0 is the equation of a hyperbola

and can be written as (z + z)2 + δ2 (z− z)2 + 4c = 0. Therefore, the image of this hyperbola by the
inversion Ir has the equation:

(
r2

z
+

r2

z

)2

+ δ2
(

r2

z
− r2

z

)2

+ 4c = 0 ⇐⇒ (z + z)2

z2z2 + δ2 (z− z)2

z2z2 +
4c
r4 = 0 ⇐⇒

(z2 + z2)(1 + δ2) + 2zz(1− δ2) +
4c
r4 z2z2 = 0 ⇐⇒

2(x2 − y2)(1 + δ2) + 2(x2 + y2)(1− δ2) +
4c
r4

(
x2 + y2

)2
= 0. (38)

For δ = ±1 the Equation (38) is (x2 − y2) +
c
r4

(
x2 + y2)2

= 0 ⇐⇒
(

x2 + y2)2
=

r4

−c
(

x2 − y2),
which is the equation of a Bernoulli lemniscate. Let us note that for c < 0 we have an usual equation

of a Bernoulli lemniscate because
r4

−c
> 0; for c > 0 the equation can be written as

(
y2 + x2)2

=

r4

c
(
y2 − x2) where

r4

c
> 0, therefore, with a change of coordinates, we have also an equation of

a Bernoulli lemniscate.
For δ 6= ±1 the Equation (38) is (x2 − δ2y2) +

c
r4

(
x2 + y2)2

= 0 ⇐⇒
(
x2 + y2)2

=

r4

−c
(

x2 − δ2y2) which is (with the above discussion for c < 0, but also for c > 0) the equation of

a generalized lemniscate.
Thus, if d < 0 for every type of above lemniscates L1, L 2 and L3, taking into account �c,∆

introduced in the previous section, we have L1 �c,∆ L 2 = L3, where ∆ = δ4.
Remark 4.1 For α1 = α2 = 1 and δ = ±1 the above product has the same form as the product �c

on the family of Bernoulli lemniscates, considered in Section 3.
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◦ If d > 0 then we have d = δ2, so the equation is x2 + (δy)2 + c = 0, which is the equation of
an ellipse when δ 6= ±1 or of a circle when δ = ±1 and can be written as (z + z)2− δ2 (z− z)2 + 4c = 0.
Therefore, the image of this curve (ellipse or circle) by the inversion Ir has the equation:

(
r2

z
+

r2

z

)2

− δ2
(

r2

z
− r2

z

)2

+ 4c = 0 ⇐⇒

(z + z)2

z2z2 − δ2 (z− z)2

z2z2 +
4c
r4 = 0 ⇐⇒ (z2 + z2)(1− δ2) + 2zz(1 + δ2) +

4c
r4 z2z2 = 0 ⇐⇒

2(x2 − y2)(1− δ2) + 2(x2 + y2)(1 + δ2) +
4c
r4

(
x2 + y2

)2
= 0. (39)

For δ = ±1 the Equation (39) is (x2 + y2) +
c
r4

(
x2 + y2)2

= 0 ⇐⇒
(
x2 + y2) = r4

−c
, x2 + y2 6= 0,

which is the equation of a real circle (for c < 0 ) or an imaginary circle (for c > 0); for x2 + y2 = 0 the
circle is degenerated in a point (the origin). Therefore, the image of the circle by the inversion Ir is also
a circle.

Using �c,∆ introduced in previous section, we have C1 �c,∆ C 2 = C3, where ∆ = δ4 and C1, C2

and C3 are circles.
Remark 4.2 For α1 = α2 = 1 and δ = ±1 we obtain the composition law associated to the above

family of circles (see Reference [3]).

For δ 6= ±1 the Equation (39) is
(

x2 + y2)2
=

r4

−c
(
x2 + δ2y2), which is: – for c < 0, it is the

equation of a Booth lemniscate (an oval of Booth with 0 as an isolated point, for δ 6= 0, or a pair
of externally tangent circles for δ = 0) or, – for c > 0, it is the equation of a curve degenerated in
a double point.

Therefore for δ 6= ±1, the image of the ellipse by the inversion Ir is a Booth lemniscate or a curve
degenerated in a point.

We have L1 �c,∆ L 2 = L3, where ∆ = δ4 and L1, L2 and L3 are lemniscates as above.
Remark 4.3 If d = 0 then the equation x2 + ax + by + c = 0 of parabolic type form can be written

as: (z + z)2 + 2a(z + z)− 2b(z− z)i + 4c = 0. Therefore, the image of this curve by the inversion Ir

has the equation:

(
r2

z
+

r2

z

)2

4
+ a

r2

z
+

r2

z
2

− b

r2

z
− r2

z
2

i + c = 0 ⇐⇒ r4 (z + z)2

4z2z2 +
ar2 (z + z)

2zz
− br2 (z− z)

2zz
i + c = 0 ⇐⇒

r4 (z + z)2 + 2zz (z + z) ar2− 2zz (z− z) br2i+ 4cz2z2 = 0 ⇐⇒ r4x2 + r2 (ax + by)
(

x2 + y2
)
+ c
(

x2 + y2
)2

= 0.

For a = c = 0 corresponding to the canonic form of the parabolic type form equation we have:

r2x2 + by
(

x2 + y2) = 0 ⇐⇒ y =
−r2x2

b (x2 + y2)
⇐⇒ y

(
x2 + y2) = 2

(
−r2

2b

)
x2,

which is the equation of a cissoid of Diocles. We have D1 �c,∆ D 2 = D3, where ∆ = b2 and D1, D 2, D3

are cissoids of Diocles.

6. An Extension to Octonionic Product for Pairs of Hyperbolas

Recall that an octonion o ∈ O can be thought as a pair of quaternions o := (q1, q2) and their
non-associative product is:

o1 · o2 = (p1, p2) · (q1, q2) := (p1q1 − q̄2 p2, q2 p1 + p2q̄1) (40)
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with bar for the usual conjugation of quaternions. It follows that a pair of hyperbolas P = (H1, H2)

can be considered as an octonion o(P) := (q(H1), q(H2)) and we define the product:

P1 �o P2 = o(P1) · o(P2). (41)

If Hi = H(ri), 1 ≤ i ≤ 4 then a long but straightforward computation yields:

(r1, r2)�o (r3, r4) :=
(

r1r3 − r2r4 − 2
r1 + r2 + r3 − r4

,
r1r4 + r2r3

r1 + r3 + r4 − r2

)
(42)

with the conditions:
r1 + r2 + r3 6= r4, r1 + r3 + r4 6= r2. (43)

Remark 5.1 (i) The quaternionic product is not commutative but the product �c is commutative.
The octonionic product �o is also non-commutative.
(ii) Having the model of the first section we can introduce an octonionic product on pairs of oriented
hyperbolas with (ε1ε3, ε2ε4) on the second slot.

Examples 5.1 (i) Considering the unit hyperbola on the first pair it results:

(1, 1)�o (r3, r4) =

(
r3 − r4 − 2
r3 + r4 + 2

, 1
)

, r3 + r4 + 2 6= 0. (44)

(ii) Considering the unit hyperbola in the second pair we have:

(r1, r2)�o (1, 1) =
(

r1 − r2 − 2
r1 + r2

,
r1 + r2

r1 − r2 + 2

)
, r1 + r2 6= 0, r1 − r2 6= −2. (45)

(iii) The squares are given by:

(r1, r2)
2
�o =

(
r2

1 − r2
2 − 2

2r1
, r2

)
, r1 6= 0. (46)

For example (2, 1)2
�o

= ( 1
4 , 1).

(iii) If the unit hyperbola is distributed in both factors we have:

(r1, 1)�o (r3, 1) =
(

r1r3 − 3
r1 + r3

, 1
)

, r1 + r3 6= 0, (47)

(1, r2)�o (1, r4) =

(
−r2r4 − 1
r2 − r4 + 2

,
r + 2 + r4

r4 − r2 + 2

)
, r2 − r4 /∈ {±2}. (48)

The last products with H(1) are: (r1, 1)�o (1, r4) =
(

r1−r4−2
r1−r4+2 , r1r4+1

r1+r4

)
, r1 − r4 6= −2, r1 + r4 6= 0,

(1, r2)�o (r3, 1) =
(

r3−r2−2
r2+r3

, r2r3+1
r3−r2+2

)
, r2 + r3 6= 0, r3 + 2 6= r2.

(49)

From (47) it results the squares:

(r, 1)2
�o =

(
r2 − 3

2r
, 1
)

, r 6= 0. (50)
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7. Applications

In this section we consider three applications of the given product.
Application 6.1 We define a 2-valued composition law on the main sheet of the reduced

equilateral hyperbola:
He : xy = 1, x, y ∈ (0,+∞). (51)

For a point P ∈ He let:
max (P) := max{xP, yP} ≥ 1. (52)

We define a product on He \ {E(1, 1)}:

P1 �c P2 = {A, B ∈ He; xA = max(P1)�c max(P2) = yB}. (53)

This product is available only for P1 6= P2 and its form is:

P1 �c P2 =
{

A
(

max(P1)�c max(P2), 1
max(P1)�cmax(P2)

)
, B
(

1
max(P1)�cmax(P2)

, max(P1)�c max(P2)
)}

. (54)

When xA = max(P1) = r1 and xB = max(P2) = r2 then the product has the explicit form:

P1 �c P2 =

(
r1,

1
r1

)
�c

(
r2,

1
r2

)
=

{
A
(

r1r2 − 1
r1 + r2

,
r1 + r2

r1r2 − 1

)
, B
(

r1 + r2

r1r2 − 1
,

r1r2 − 1
r1 + r2

)}
. (55)

For example,
(

2,
1
2

)
�c

(
3,

1
3

)
=

(
1
2

, 2
)
�c

(
1
3

, 3
)

=

(
2,

1
2

)
�c

(
1
3

, 3
)

=

(
1
2

, 2
)
�c

(
3,

1
3

)
=

{E(1, 1)}, hence the point E(1, 1) ∈ He belongs to the image of this composition law; more general, E is
obtained for r2 = r1+1

r1−1 , when r1 = max(P1) and r2 = max(P2), but, as it can be seen in this example,
the pair of points is not unique.

Remark 6.1 We can define another 2-valued composition law on the main sheet of He,
in an analogous way, by replacing the product �cwith the product �pc.

Application 6.2 Another multi-valued product can be introduced on the set of hyperbolic matrices
following the approach of Section 5 from Reference [3]. A matrix γ ∈ SL2(R) is called hyperbolic if its
eigenvalues are real and distinct; let us denotes SLH

2 (R) their set. Since the characteristic polynomial
of arbitrary γ is:

fγ(x) = x2 − tr(γ)x + det(γ) = x2 − tr(γ)x + 1 (56)

it follows that γ ∈ SLH
2 (R) if and only if |tr(γ)| > 2 and then its eigenvalues are reciprocal numbers.

Let e(γ) be the eigenvalue whose absolute value is larger than 1 and define the norm of γ as:

N(γ) := e(γ)2. (57)

We introduce a product on SLH
2 (R):

γ1 �c γ2 =
{

γ ∈ SLH
2 (R); e(γ) = e(γ1)�c e(γ2)

}
. (58)

From (9) the norm of an arbitrary γ ∈ γ1 �c γ2 is:

N(γ) = N(γ1 �c γ2) = (e(γ1 �c γ2))
2 =

(
e(γ1)e(γ2)− 1
e(γ1) + e(γ2)

)2

(59)

=
e(γ1)

2e(γ2)
2 + 1− 2e(γ1)e(γ2)

e(γ1)2 + e(γ2)2 + 2e(γ1)e(γ2)
=

N(γ1)N(γ2) + 1− 2
√

N(γ1)N(γ2)

N(γ1) + N(γ2) + 2
√

N(γ1)N(γ2)
.
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For example fix γ ∈ SLH
2 (R) of diagonal form:

γ = γ(R) = diag
(

R,
1
R

)
, R > 1. (60)

We have to note that γ2
�c

=
{

γ
′ ∈ SLH

2 (R); e(γ
′
) = e(γ)�c e(γ)

}
6= ∅ ⇐⇒ R2 − 1

2R
> 1 that is,

R > 1 +
√

2. The first relation (14) yields the norm of an arbitrary γ
′ ∈ γ(R)2

�c
, when R > 1 +

√
2:

N(γ
′
) = e(γ

′
)2 = (e(γ(R))�c e(γ(R)))2 =

(
R2 − 1

2R

)2

< R2 = N(γ(R)). (61)

Notice that for R ∈ (1, 1 +
√

2) the set γ2
�c

= ∅, thus we can not consider N(γ
′
).

Remark 6.2 We introduce here a matrix intermezzo in relationship with the matrix product (7).
We associate a 2× 2 matrix to the hyperbola H(R) through:

m(H(R)) :=

(
−R 1
−1 −R

)
= −RI2 +

(
0 1
−1 0

)
= −RI2 + m(k) (62)

and then, as is expected:

− (R1 + R2)m(H(R1 �c R2)) = m(H(R1)) ·m(H(R2)). (63)

The elements of this correspondence are:

tr(m(H(R))) = −2R, det(m(H(R))) = R2 + 1, fm(H(R))(x) = (x + R)2 + 1. (64)

Remark 6.3 We can make in an analogous way all the above constructions, replacing �c product
by �pc product.

Remark 6.4 The relations (64) and the analogues ones for the product �pc are useful to
obtain expressions for �c and for �pc respectively in terms of trace and/or determinant of the
corresponding matrices.

Application 6.3 In this application we associate a p-label to each vertex of a polygon P = P1...Pn

with p ∈ {c, pc}. We denote the length li = ‖PiPi+1‖ ∈ M = (0,+∞) and then the p-number of the
vertex Pi is defined as:

pi := li−1 �p li. (65)

For example, let the right triangle ∆ABC with legs ‖AB‖ = 3 and ‖AC‖ = 4. Then

cA = l‖CA‖ �c l‖AB‖ = 4�c 3 =
11
7

, cB =
7
4

, cC =
19
9

and the c-chain of ∆ABC is:

c(∆ABC) := (cA, cB, cC) =

(
11
7

,
7
4

,
19
9

)
, (66)

pcA = l‖CA‖ �pc l‖AB‖ = 4�pc 3 =
13
7

, pcB = 2, pcC =
7
3

and the pc-chain of ∆ABC is:

pc(∆ABC) := (pcA, pcB, pcC) =

(
13
7

, 2,
7
3

)
. (67)

Also, a (regular) polygon with sides of length 1, as ci = 1�c 1 = 0, i = 1, n, has a vanishing
c-chain and, as pci = 1�pc 1 = 1, i = 1, n, a constant pc-chain (1, . . . , 1) .

Remark 6.5 Conversely, knowing the c-chain or the pc-chain of a polygon P we can deduce the
length of some of its sides.
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If the c-chain of ∆ABC is (0, 0, 0) we have l1l2 = l2l3 = l3l1 = 1 =⇒ l1 = l2 = l3 = 1 and ∆ABC
is equilateral with sides of length 1.

If a quadrilateral ABCD has a vanishing c-chain we have l1l2 = l2l3 = l3l4 = l4l1 = 1 =⇒
l1 = l3 = l and l2 = l4 =

1
l

, therefore ABCD is a parallelogram with opposite sides of equal length,

l and
1
l

respectively.
If a polygon P has n = 2k + 1 sides and a vanishing c-chain we have l1l2 = l2l3 = . . . = l2kl2k+1 =

l2k+1l1 = 1 =⇒ l1 = l2 = . . . = l2k = 1, therefore P is a polygon with all sides of length 1.
we have l1l2 = l2l3 = . . . = l2k−1l2k = l2kl1 = 1 =⇒ l1 = l3 = . . . = l2k−1 = l and

l2 = l4 = . . . = l2k =
1
l

, therefore P is a polygon with odd sides of length l and even sides of length
1
l

.

If the pc-chain of a polygon P is a constant pc-chain (1, . . . , 1), we have lili+1 + 1 = li + li+1 ⇐⇒
(li − 1) (li+1 − 1) = 0, i = 1, n, ln+1 ≡ l1 ⇐⇒

(l1 − 1) (l2 − 1) = . . . = (ln−1 − 1) (ln − 1) = (ln − 1) (l1 − 1) = 0. We deduce the
following properties.

If the pc-chain of ∆ABC is (1, 1, 1), we have (l1 − 1) (l2 − 1) = (l2 − 1) (l3 − 1) =

(l3 − 1) (l1 − 1) = 0; if l1 6= 1, then l2 = l3 = 1 and if l1 = 1, then at least one of l2 or l3 has the
length equal to 1, thus ∆ABC is isosceles with two sides of length 1.

If a quadrilateral ABCD has a constant pc-chain (1, 1, 1, 1), we have (l1 − 1) (l2 − 1) =

(l2 − 1) (l3 − 1) = (l3 − 1) (l4 − 1) = (l4 − 1) (l1 − 1) = 0; if l1 6= 1, then at least l2 = l4 = 1 and
if l1 = 1, then at least two of l2, l3 or l4 have the length equal to 1, therefore ABCD is a quadrilateral
with two opposite sides of length 1.

If a polygon P has a constant pc-chain (1, . . . , 1) and n = 2k + 1 sides, then, in the same way,
we deduce that P has at least k + 1 sides of length 1 and if P has n = 2k sides, then P has at least k
sides of length 1. Thus, if a polygon P has n sides and a constant pc-chain (1, . . . , 1), then P has at

least
[

n + 1
2

]
sides of length 1.

Thus, it is useful to know the c-chain or the pc-chain of a polygon P because we can deduce
relations involving the length of its sides.

Author Contributions: M.C. and M.P. contributed equally to this work. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are greatly indebted to three anonymous referees for their valuable remarks
which has substantially improved the initial submission.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sánchez-Reyes, J.; Fernández-Jambrina, L. Curves with rational chord-length parametrization. Comput. Aided
Geom. Des. 2008, 25, 205–213. [CrossRef]

2. Kapovich, M.; Millson, J. On the moduli space of polygons in the Euclidean plane. J. Differ. Geom. 1995, 42,
430–464. [CrossRef]

3. Crasmareanu, M. Quaternionic product of circles and cycles and octonionic product for pairs of circles.
Iran. J. Math. Sci. Inform. 2020, in press.

4. Crasmareanu, M. Clifford product of cycles in EPH geometries and EPH-square of elliptic curves. An. Stiint.
Univ. Al. I. Cuza Iasi Mat. 2020, 66, 147–160.

5. Barnett, J.H. Enter, stage center: The early drama of the hyperbolic functions. Math. Mag. 2004, 77, 15–45.
[CrossRef]

http://dx.doi.org/10.1016/j.cagd.2007.11.003
http://dx.doi.org/10.4310/jdg/1214457237
http://dx.doi.org/10.1080/0025570X.2004.11953223


Mathematics 2020, 8, 1686 16 of 16

6. Barnett, J.H. Enter, stage center: The early drama of the hyperbolic functions. In Euler at 300; MAA Spectrum,
Math. Assoc. America: Washington, DC, USA, 2007; pp. 85–103.
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