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Abstract: It is well known that a partial tilting module may not be completed to a tilting module.
However, it is still unknown whether a partial tilting module can be completed to a silting complex.
The affirmative answer to this question will give an affirmative answer to the well-known rank question
for tilting modules. In this paper, we prove that a partial tilting simple module can always be completed
to a silting complex. More generally, we give the sufficient conditions for a partial tilting module to be
completed to a silting complex.
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1. Introduction

In this paper, we always let R be an artin algebra. As usual, modR denotes the category of all finitely
generated left R-modules, Db(modR) denotes the correspondent bounded derived category, and Kb(PR)

is the bounded homotopy category of finitely generated projective modules. Finally, the Grothendieck
group of R is denoted by K0(R).

Let T be an R-module. As usual, we denote this using addT, the class of all direct summands of
direct sums of copies of T. Recall that a module T ∈ modR is said to be tilting [1,2] if it satisfies the
following conditions:

(i) The projective dimension of T is finite;
(ii) Exti

R(T, T) = 0 for all i > 0;
(iii) There is a finite coresolution of R by objects of addT, i.e., an exact sequence 0→ R→ T0 → · · · →

Tn → 0 with each Ti ∈ addT, for some n.

Modules satisfying the first two conditions are called partial tilting modules.
A classical tilting module is just a tilting module of a projective dimension of no more than 1. In [3],

Bongartz proved that, for classical tilting modules, the third condition can be replaced by the following
rank-condition:

(rank-condition): the number of distinct indecomposable direct summands of T is equal to the rank of K0(R).
As to the general tilting modules of finite projective dimension, it was often asked whether the

analogue of the Bongartz’ result holds to [4], which is the following question.

Rank Question for tilting modules: Is a partial tilting module that satisfies the rank-condition always tilting?

We note that every tilting module satisfies the rank-condition, see, for instance, [1]. Therefore, the
question is whether the converse holds for partial tilting modules.

This question has been studied for thirty years and there are some partial answers, as presented
in [4]. However, it is still open now and no new answers have been found.

The idea that Bongartz used for classical tilting modules was to show that a partial tilting module
of a projective dimension no more than 1, say, T, can always be completed to a classical tilting module,
i.e., T ⊕ T′ is an example of a classical tilting module T′. Therefore, according to his idea, the following
question is presented.
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Complement Question for partial tilting modules: Can a partial tilting module always be completed to a
tilting module? In another words, for a partial tilting module T, is there a module T′ such that T⊕ T′ becomes a
tilting module?

It is easy to see that a positive answer to the Complement Question for partial tilting modules
implies a positive answer to the Rank Question for tilting modules. In [4], Rickard and Schofield proved
that the Complement Question for partial tilting modules has a positive answer for algebra of finite
representation type. However, they also gave a counter-example to the question. Thus, the Complement
Question for partial tilting modules has a negative answer in general.

Note that the counter-example by Rickard and Schofield is a partial tilting simple module of
projective dimension 2 over a finite dimensional algebra of global dimension 4, so the Complement
Question for partial tilting modules is not a direct corollary of the famous finitistic dimension conjecture.
We do not know if there are further connections between them.

The above two questions were extended to tilting complexes by Rickard [5]. Let T ∈ Db(modR).
Recall that T is tilting [5] if it satisfies the folliwing conditions:

(1) T ∈ Kb(PR);
(2) HomD(T, T[i]) = 0 holds for each i 6= 0;
(3) Kb(PR) is generated by T, i.e., 〈addT〉 = Kb(PR), where 〈addT〉 denotes the smallest triangulated

subcategory containing addT in the derived category.

A complex T ∈ Db(modR) is said to be partial tilting if it satisfies the first two conditions.
Tilting complexes are natural generalizations of tilting modules in the derived categories. In fact,

a tilting module is just a module which is a tilting complex in the derived category. More importantly,
tilting complexes entirely characterize Morita theory for the derived categories [5]. It was also shown that
tilting complexes satisfy the rank-condition, i.e., the number of distinct indecomposable direct summands
of a tilting complex is just the rank of K0(R) [5]. Motivated by the above two questions for tilting modules,
the following, similar questions were asked by Rickard [5].

Rank Question for tilting complexes: Is a partial tilting complex that satisfies the rank-condition always
silting?

Complement Question for partial tilting complexes: Can a partial tilting complex always be completed to
a tilting complex? That is, for a partial tilting complex T, is there a complex T′ ∈ Db(modR) such that T ⊕ T′

becomes a tilting complex?

It is also easy to see that a positive answer to the Complement Question for partial tilting complexes
implies a positive answer to the Rank Question for tilting complexes, and the latter implies a positive
answer to the Rank Question for tilting modules.

Unfortunately, Rickard [5] also gave a simple counter-example to the Complement Question for
partial tilting complexes. Moreover, it was also shown in [6] that the counter-example by Rickard and
Schofield [4] is also a counter-example to this question.

In this short note, we will suggest a new idea to consider the Rank Question for tilting modules via
silting complexes and show that the above mentioned counter-examples will not be counter-examples to
our new questions.

2. Silting Complexes

In studying tilting complexes, Keller and Vossieck [7] first introduced silting complexes. Later,
silting complexes were recognized in [8,9]. Let T ∈ Db(modR). Recall that T is silting [7–9] if it satifies
the following conditions:

(1) T is isomorphic to an object in Kb(PR);
(2) HomD(T, T[i]) = 0 for all i > 0;
(3) T generates Kb(PR), i.e., 〈addT〉 = Kb(PR), where 〈addT〉 denotes the smallest triangulated

subcategory containing addT in the derived category.

A complex T ∈ Db(modR) is said to be partial silting if it satisfies the first two conditions.
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Thus, silting complexes are a small generalization of tilting complexes and are larger generalizations
of tilting modules in the derived category. Some important results of tilting modules have been extended
to silting complexes, see, for instance [8–12] etc. A good survey on the theory of silting complexes is [13],
by Angeleri-Hügel. In particular, it was proved in [8] that silting complexes satisfy the rank-condition,
i.e., the number of distinct indecomposable direct summands of a silting complex is equal to the rank
of K0(R).

Now, we extend the above two questions on tilting modules to silting complexes.

Rank Question for silting complexes: Is a partial silting complex that satisfies the rank-condition
always silting?

Complement Question for partial silting complexes: Can a partial silting complex always be completed to a
silting complex? That is, for a partial silting complex T, is there a complex T′ ∈ Db(modR) such that T ⊕ T′

becomes a silting complex?

It is easy to see that a positive answer to the Complement Question for partial silting complexes
implies a positive answer to the Rank Question for silting complexes, and the latter implies a positive
answer to the Rank Question for tilting complexes, which finally implies a positive answer to the Rank
Question for tilting modules.

As proven in [9], the Complement Question for partial 1-silting complexes has a positive answer.
Here, a partial silting complex is partial 1-silting provided that, up to shifts, it is isomorphic to a complex
of the form 0 → P1 → P0 → 0 in the derived category, where P1, P0 are finitely generated projective
modules. The notion of 1-silting complex is defined similarly. In particular, classical tilting modules are
1-silting complexes when considered as a complex in the derived category. Theorem 2.10 in [14] shows
that every 1-silting module has a Bongartz complement.

We do not know the answers to the above questions in general.
Now, let us return to the Rank Question for tilting modules. Note that partial tilting modules

are partial silting complexes when considered in the derived category, so we can also ask the
following question.

Silting Complement Question for partial tilting modules: Can a partial tilting module always be completed
to a silting complex ?

We have the following observation.

Observation If the Silting Complement Question for partial tilting modules has a positive answer, then the Rank
Question for tilting modules also has a positive answer.

Proof. Given a partial tilting module satisfying the rank-condition, say T, then the number of distinct
indecomposable direct summands of T is just the rank of K0(R). By assumption, there is a complex T′ ∈
Db(modR) such that T⊕ T′ becomes a silting complex. Therefore, the number of distinct indecomposable
direct summands of T ⊕ T′ are also the same as the rank of K0(R). It follows that the number of
distinct indecomposable direct summands of T is equal to the number of distinct indecomposable direct
summands of T⊕ T′, and, consequently, indecomposable direct summands of T′ are also indecomposable
direct summands of T, up to isomorphisms. Thus, T and T ⊕ T′ are equivalent, and then T is a silting
complex too. Hence, T is a tilting module, as we mentioned before.

According to the above observation, a new idea to consider in the Rank Question for tilting modules
is the Complement Question for partial silting complexes, or the Silting Complement Question for partial
tilting modules.

From the above, one must wonder whether Rickard and Schofield’s counter-example is a
counter-example to the Complement Question for partial silting complexes or the Complement Question
for partial tilting modules. We now deal with this question in the following section.

It should be noted that in Example 2.6, in the paper [15] by Breaz, a similar phenomenon is exhibited
to those studied in our paper, but for a different problem.
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3. Partial Tilting Simple Modules

Recall that the counter-example to the Complement Question for partial tilting modules, given by
Rickard and Schofield [4], is as follows.

Let R be the path algebra defined by the quiver as follows

1
α

��
3

δ

@@

2
β

tt

γ

jj

and be bounded by relations αβ = γδ = δα = 0.
The global dimension of this algebra is 4. Let S be the simple module correspondent to vertex 1.

Then, S has projective dimension 2 and satisfies that Exti
R(S, S) = 0 for i > 0. Moreover, it was

shown in [4] that there is no module X such that all three equalities Ext1
A(X, X) = 0, Ext2

A(S, X) = 0
and Ext2

A(X, S) = 0 hold together. Thus, the partial tilting simple module S has no complements in
tilting modules.

The next theorem, in particular, shows that this is different for the Silting Complement Question for
simple partial tilting modules.

Theorem 1. Let R be an artin algebra and S be a simple module, which is partial tilting. Then, S always has a
complement, S′ ∈ Kb(PR), such that S⊕ S′ is a silting complex.

Proof. We may assume that R is basic and that a complete set of primitive orthogonal idempotent
elements is {e1, · · · , en}. Then, the indecomposable projective module is of the form Rei for
some 1 ≤ i ≤ n.

As the simple module S is partial tilting, it has a finite projective dimension and satisfies Exti
R(S, S) =

0 for all i > 0. We see that its minimal projective dimension is of the form

0→ Ps → · · · → P1 → P0 → S→ 0,

for some integer s ≥ 0. One can get that these assumptions imply the following two facts. One is that the
projective module P0 in the minimal projective resolution is indecomposable, and hence we may assume
that P0 ' Rek, for some 1 ≤ k ≤ n. The other is that the remained projective modules P1, · · · , Ps in the
minimal projective resolution lie in addR(1− ek).

Now, setting S′ = R(1− ek)[s] ∈ Kb(PR), we will show that S⊕ S′ is a silting complex.
We know that S⊕ S′ ∈ Kb(PR) and that HomD(S, S[i]) = 0 = HomD(S′, S′[i]) for all i > 0. Note

that S is isomorphic to the truncated complex

PS : 0→ Ps → · · · → P1 → P0 → 0,

in the derived category. It is easy to see that HomD(S, S′[i]) ' HomD(PS, R(1 − ek)[s][i]) =

0 for all i > 0, since S′ = R(1 − ek)[s] is a stalk complex at the (−s)-th position and
PS is a complex with non-zero terms only at i-th positions for −s ≤ i ≤ 0. Similarly,
we also obtain HomD(S′, S[i]) ' HomD(R(1− ek)[s], PS[i]) = 0 for all i > s. As homologies
of PS at i-th positions, where −s ≤ i ≤ −1, are zero, and as R(1 − ek) is projective,
we obtain that HomD(R(1− ek)[s], PS[i]) = 0 for all 1 ≤ i ≤ s − 1. By our assumption,
S ' top(P0) = top(Rek), so we also obtain HomD(R(1 − ek)[s], PS[s]) ' HomR(R(1 − ek), S) = 0.
Together, we obtain HomD(S′, S[i]) ' HomD(R(1− ek)[s], PS[i]) = 0 for all i > 0. Then, it follows that
HomD(S⊕ S′, S⊕ S′[i]) = 0 for all i > 0.

It remains be seen whether S⊕ S′ generates Kb(PR) by the definition of silting complexes. However,
this follows from the natural triangle Q → P0 → PS → arising from the complex PS, where Q is the
shifted truncated complex

Q : 0→ Ps → · · · → P1 → 0,



Mathematics 2020, 8, 1736 5 of 7

with P1 at 0-th position. Indeed, since S′ = R(1− ek)[s] and P1, · · · , Ps ∈ addR(1− ek), we obtain
Q ∈ 〈S′〉. Together with the fact that PS ' S in the derived category, we obtain P0 ∈ 〈S⊕ S′〉. Then we
further prove that all indecomposable projective modules are contained in 〈S ⊕ S′〉. It follows that
〈S⊕ S′〉 generates Kb(PR).

Regarding the counter-example of Rickard and Schofield, as above, we see that (Re2 ⊕ Re3)[2]⊕ S is
a silting complex from the above theorem.

Let P• := {Pi} be a (cochain) complex and t an integer. We denote by P•<t the brutal truncation
complex of P• consisting of terms P•i with i < t. Similarly, we denote by P•≥t the brutal truncation
complex of P• consisting of terms P•i with i ≥ t. Recall that 〈C〉 denotes the smallest thick triangulated
subcategory containing C.

We have the following, more general result, which gives a condition for a partial tilting module
when it can be completed to a silting complex.

Theorem 2. Let R be an artin algebra. Assume that T is a partial tilting module with its projective dimension
d. Denote by RT (R0, resp.) the direct sum of indecomposable projective modules P with HomR(P, T) nonzero
(zero, resp.). Let P•T (as a cochain complex) be the minimal projective resolution of T. If there is an integer t,
where 0 ≤ t ≤ d, such that P•<−t

T consists of projective modules in addR0 and RT ∈ 〈R0, P•≥−t
T 〉, then T⊕ R0[d]

is a silting complex.

Proof. Clearly, T ⊕ R0[d] ∈ Kb(proj) and R0[d] is partial silting.
From the definition of R0, we obtain that HomD(R0, T) ' HomR(R0, T) = 0. Together with the

knowledge that R0 is projective and T, R0 are modules, we see that HomD(R0, T[i]) = 0 for all integer i.
In particular, HomD(R0[d], T[k]) = 0 for all k > 0. On the other hand, since d is the projective dimension
of T, we can also see that HomD(T, (R0[d])[k]) = HomD(T, R0[d + k]) ' Extd+k

R (T, R0) = 0 for all k > 0.
It follows that T ⊕ R0[d] is partial silting.

It remains to prove that R ∈ 〈T, R0[d]〉 by the definition of silting complexes. Obviously, we already
have R0 ∈ 〈T, R0[d]〉. By the assumption, RT ∈ 〈R0, P•≥t

T 〉. Note that there is an obvious triangle
P•<t

T [−1] → P•≥t
T → T →; we can see that P•≥t

T is contained in 〈P•<t
T , T〉 and that P•<t

T ∈ 〈R0〉 by
assumptions, and so we obtain RT ∈ 〈R0, T〉. It follows R = R0 ⊕ RT ∈ 〈R0, T〉.

Altogether, we demonstrate that T ⊕ R0[d] is a silting complex.

Finally, we present some examples where our results apply.

Example 1. (1) Let R be the path algebra which is defined by the following quiver

5 4αoo 1
βoo //

γ //// 2 δ // 3

with relations βα = γδ = 0.

Let T =

1
222

33
⊕ 2

3
⊕ 3. Then, T is partial tilting and its projective dimension is 2. The minimal projective

resolution P•T of T is as follows:

0→ 5→ 4
5
→

1
4222

33
⊕ 2

3
⊕ 3→ 0,

In terms of the above theorem, we show that R0 := P4 ⊕ P5 and RT := P1 ⊕ P2 ⊕ P3, where Pi is the
indecomposable projective module corresponding to the point i. Obviously, P•<0

T consists of terms in R0 and

RT ∈ addP•≥0
T . Thus, by the above theorem, T ⊕ (5⊕ 4

5
)[2] is a silting complex.

(2) Let R be the path algebra given by the following quiver

6
β // 5γ

oo δ //

ρ

��
2

ζ // 1
η // 3 θ // 4
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bounded by the ideal I =< γβ, βγ, ρ2, δζ, ηθ >.

Let T =
2
1
⊕ 2. Then, T is partial tilting and its projective dimension is 2. The minimal projective resolution

of the direct summand
2
1

is as follows:

0→ 4→ 3
4
→

2
1
3
→ 0,

and the minimal projective resolution of the direct summand 2 is as follows:

0→ 1
3
→

2
1
3
→ 0.

The projective resolution P•T of T is just the direct sum of the above two projective resolutions. In terms
of the above theorem, one can easily see that R0 := P3 ⊕ P4 ⊕ P5 ⊕ P6 and RT := P1 ⊕ P2, where Pi is the
indecomposable projective module corresponding to the point i. Obviously, P•<−1

T consists of terms in R0. By the

first resolution complex, we obtain that P2(:=
2
1
3
) ∈ 〈R0〉. Then, by the second resolution complex, we further

obtain that P1(:=
1
3
) ∈ 〈P•≥−1

T , P2〉 ⊆ 〈P•≥−1
T , R0〉. Hence, by the above theorem, we see that T ⊕ R0[2] is a

silting complex.

Finally, we remark that any finitely generated partial tilting module over an artin algebra can
be completed to an infinitely generated tilting module, see [16]. We refer to [17] for recent progress
on infinitely generated tilting modules. One can also compare the tilting theory to the theory of
semi-dualizing complexes (or semi-dualizing modules), see for instance [18] for some results in
later theory.
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